-
农田土壤重金属污染造成的生态和公共健康风险已成为土壤环境研究的热点[1]. 有研究表明农田土壤中重金属的富集主要是由人为活动造成的,如废水灌溉、废气排放、化肥和农药的不合理使用等[2]. 重金属具有较强的稳定性和不可降解性,进入土壤后可长期存在并通过食物链富集进而影响生态系统及人体健康[3 − 5],因此对农业土壤重金属污染及其在土壤-作物体系中的富集,及对人体健康的潜在风险进行研究具有重要意义.
目前国际上已有许多模型和软件评价重金属的累积效应、来源及健康风险,如富集因子法[6]、地累计指数法[7]、潜在生态危害指数[8]、相关性分析[9]、主成分分析[10]、风险商[11]、效应导向分析[12]等. 随着山西省工业化和城市化的快速发展,可能引发一些重金属污染问题. 以往研究表明山西耕地土壤重金属污染问题可能尤其严重[13]. 王宇静等[14]发现,山西某焦化工业园区8种重金属的综合生态危害指数达到强生态危害水平,其中对潜在危害贡献最大的元素是Hg、Cd;土壤中Ni、Cr、Cu是致癌风险的主要因子,其对应的致癌风险值均超过人体可接受的致癌风险. 马晓瑾等[15]对太谷县玛钢厂周边蔬菜地研究发现,Hg是最主要的生态危害贡献因子. Yang等[16]对山西某煤矿附近土壤和玉米的重金属污染状况和人类健康风险研究发现,玉米中污染最严重的重金属是Ni;土壤中的As、Cr和玉米中的Cr、Ni对人体健康风险的影响最大. 朔州东部三县作为山西重要的养殖、煤炭和陶瓷工业基地,农田土壤及农作物中重金属的含量、污染水平、来源和健康风险评估却报道有限. 因此通过对朔州市东部三县农田和农作物中重金属的含量和富集水平进行调查,明确重金属在该区域的风险水平,有助于对重金属的管理控制.
本文以朔州市东部应县、怀仁市和山阴县等3个县市农田土壤-农作物重金属为研究对象,采集农田土壤、玉米、高粱、大豆样品,测定镉(Cd)、铬(Cr)、砷(As)、汞(Hg)、铅(Pb)、铜(Cu)、锌(Zn)、镍(Ni)等8种重金属的含量,判断其来源,并用美国环境保护署(US EPA)推荐的健康风险模型对重金属健康风险做出评价,为重金属风险管理和控制提供依据.
朔州东部农田土壤–农作物重金属富集及健康风险评价
Evaluation of heavy metal enrichment and health risks in agricultural soils-crops in eastern Shuozhou, Shanxi Province, China
-
摘要: 为研究重金属在农田土壤-作物之间的累积性及人群健康风险,采用富集因子(EF)、地累积指数(Igeo)和潜在生态危害指数(RI)等指标对山西省朔州市东部三县市(山阴县、应县、怀仁市)131个样点农田土壤-作物系统(玉米、高粱和大豆)中重金属的含量、来源及富集程度进行调查,并采用EPA推荐的风险评估模型对人群健康风险进行了评估. 结果表明:1)研究区土壤中8种重金属(Cd、Cr、As、Hg、Pb、Cu、Zn、Ni)含量均未超过《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018) 中农用地土壤污染风险筛选值;而Cr、Hg、Pb的平均含量分别是研究区背景值的1.20倍、6.26倍和1.33倍. 2)研究区土壤中Hg元素为显著富集,其余重金属无富集. 地累积指数分级结果表明,土壤中Hg呈中度污染,其余为无污染. 潜在生态危害指数结果表明研究区为中度污染水平. 3)主成分分析结果表明,研究区Ni、Cr、Zn、Cu主要来源于“自然来源”,Hg主要来源于“直接工业源”,As、Pb主要来源于“大气沉降-工业源”,而Cd主要来自“农业来源”. 4)8种重金属对儿童的非致癌风险高于成人. 研究区Pb对儿童和成人均无致癌风险,Cd和As对儿童和成人的致癌风险均处于可接受范围内,而Cr、Ni是主要致癌风险因子.Abstract: In order to study the accumulation of heavy metals between farmland soil and crops and the health risks of pollution, the content of 8 different heavy metals included Cd, Cr, As, Hg, Pb, Cu, Zn, and Ni in the soil and crop (corn, sorghum, and soybean) collected from 131 sites in three different country and city in eastern Shuozhou, Shanxi Province, China were determined, and various indices such as enrichment factors (EF), geo-accumulation index (Igeo) and potential ecological hazard index (RI) were used to survey the polluted degree of soil-crop systems and the pollution source. Also, the health risk was assessed based on the risk model recommended by EPA. The results showed that: 1) The concentrations of eight heavy metals (Cd, Cr, As, Hg, Pb, Cu, Zn, Ni) in the soil of the study area did not exceed the limit values stipulated in the “Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (Trial)” (GB15618—2018); while the average levels of Cr, Hg, and Pb were 1.20, 6.26 and 1.33 times higher than the background values in the study area, respectively. 2) Hg in the soil of the study area was significantly enriched, while the rest of the heavy metals were not enriched. The results of the ground accumulation index classification show that Hg was moderately contaminated and the rest was non-contaminated. The results of the Potential Ecological Hazard Index indicated the study area was moderately polluted. 3) The results of the principal component analysis show that Ni, Cr, Zn, and Cu in the study area mainly come from “natural sources”, Hg mainly comes from “direct industrial sources”, As and Pb mainly come from “atmospheric deposition-industrial sources”, and Cd Mainly from “agricultural sources”. 4) The non-carcinogenic risks of 8 heavy metals in children are higher than those in adults. In the study area, Pb had no carcinogenic risk to children and adults, and the carcinogenic risks of Cd and As to children and adults were within an acceptable range, while Cr and Ni were the main carcinogenic risk factors.
-
Key words:
- farmland soil /
- crops /
- heavy metals /
- enrichment factor /
- health risk assessment.
-
表 1 地累积指数法分级标准
Table 1. Classification standard of ground accumulation index method
等级划分
Grade 范围$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ value$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 污染程度
Level of pollutant0 ≤0$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 无污染 1 0< ≤1$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 无-中度污染 2 1< ≤2$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 中度污染 3 2< ≤3$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 中度-重度污染 4 3< ≤4$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 重度污染 5 4< ≤5$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 重度-极度污染 6 >5$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 极度污染 表 2 潜在生态危害指标分级标准
Table 2. Classification standard of potential ecological hazard index
等级划分
Grade 围$ {E}_{\mathrm{r}}^{i}\mathrm{范} $ $ {E}_{\mathrm{r}}^{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e} $ 范围$ \mathrm{R}\mathrm{I} $
RI value潜在生态危害分级
Degree of ecological risk1 $ {E}_{\mathrm{r}}^{i} < 40 $ $ \mathrm{R}\mathrm{I} < 150 $ 轻度生态危害 2 $ 40\le {E}_{\mathrm{r}}^{i} < 80 $ $ 150\le \mathrm{R}\mathrm{I} < 300 $ 中度生态危害 3 $ 80\le {E}_{\mathrm{r}}^{i} < 160 $ $ 300\le \mathrm{R}\mathrm{I} < 600 $ 强度生态危害 4 $ 160\le {E}_{\mathrm{r}}^{i} < 320 $ $ 600\le \mathrm{R}\mathrm{I} < 1200 $ 很强生态危害 5 $ {E}_{\mathrm{r}}^{i} > 320 $ $ \mathrm{R}\mathrm{I}\ge 1200 $ 极强生态危害 表 3 健康风险评价模型参数
Table 3. Health risk assessment model parameters
参数
Parameter含义
Meaning单位
Unit取值
Value数据来源
Data sources$ {C}_{i} $ 农作物中重金属的含量 mg·kg−1 IR 人均农作物的日食用量 kg·d−1 IRadult=0.15 kg·d−1, IRchild=0.10 k·d−1 [43] ED 暴露时间 a $ {\mathrm{E}\mathrm{D}}_{\mathrm{a}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{t}}=30\;\mathrm{a} $ $ {\mathrm{E}\mathrm{D}}_{\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}}=6\;\mathrm{a} $ [43] EF 暴露频率 d·a−1 $ \mathrm{E}\mathrm{F}=365\;\mathrm{d}\cdot{\mathrm{a}}^{-1} $ [42] BW 受体体重 kg $ \mathrm{B}{\mathrm{W}}_{\mathrm{a}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{t}}=70\;\mathrm{k}\mathrm{g} $ $ {\mathrm{B}\mathrm{W}}_{\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{d}}=15\;\mathrm{k}\mathrm{g} $ [47] AT 平均接触时间 d $ {\mathrm{A}\mathrm{T}}_{\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{r}}=\mathrm{E}\mathrm{D}\times 365 $ $ {\mathrm{A}\mathrm{T}}_{\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{r}}=70\times 365 $ [42] $ {\mathrm{R}\mathrm{f}\mathrm{D}}_{i} $ 重金属i暴露参考剂量 mg·kg−1·d−1 Cd、Cr、As、Hg、Pb、Cu、Zn、Ni值分别为
0.001、0.003、0.0003、
0.0003、0.0035、0.04、0.3、0.02[47] CSF 农作物重金属经口摄入的
致癌斜率因子kg·d·mg−1 Cd、Cr、As、Pb、Ni值分别为0.38、0.5、1.5、0.0085、1.7 [47]
[49]表 4 土壤重金属含量的描述性统计
Table 4. Descriptive statistics of heavy metal content in soil
统计参数
Statistical
parameters最小值/
(mg·kg−1)
Min最大值/
(mg·kg−1)
Max平均值/
(mg·kg−1)
Mean标准偏差/
(mg·kg−1)
Standard deviation全距
Overall
spread偏度
Skewness峰度
Kurtosis变异系数/%
Coefficient
of variation背景值/
(mg·kg−1)
Background
value风险筛选值/
(mg·kg−1)
Risk screening
valueCd 0.053 0.118 0.074 0.010 0.065 1.590 4.122 14.156 0.102 0.6 Cr 37.820 126.100 66.876 16.279 88.280 1.017 1.509 24.342 55.3 250 As 0.340 12.360 8.406 1.998 12.020 −0.939 1.743 23.767 9.1 25 Hg 0.008 1.359 0.144 0.182 1.351 3.294 15.522 126.450 0.023 3.4 Pb 11.690 34.860 19.581 3.921 23.170 0.724 1.230 20.024 14.7 170 Cu 13.210 43.730 21.843 4.077 30.520 1.127 5.445 18.665 22.9 100 Zn 34.780 177.700 59.612 19.056 142.920 2.976 14.132 31.967 63.5 300 Ni 9.411 40.110 20.034 6.362 30.699 0.931 0.918 31.756 29.9 190 表 5 土壤重金属的富集因子分级统计
Table 5. Classification statistics of enrichment factors of heavy metals in soil
重金属
Heavy metal均值
Mean最大值
Max最小值
Min各级样本数
Sample number at all levelsEF<2 2≤EF<5 5≤EF<20 20≤EF<40 EF≥40 Cd 0.786 1.596 0.197 131 0 0 0 0 Cr 1.307 3.14 0.343 119 12 0 0 0 As 0.999 1.878 0.045 131 0 0 0 0 Pb 1.417 2.868 0.474 124 7 0 0 0 Cu 1.018 1.859 0.318 131 0 0 0 0 Zn 0.998 2.925 0.296 128 3 0 0 0 Ni 0.715 1.712 0.217 131 0 0 0 0 Hg 6.914 41.955 0.327 34 52 32 12 1 表 6 土壤重金属的地累积指数
Table 6. Accumulation index of soil heavy metal
元素
Element地累积指数 $ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 最小值
Min最大值
Max平均值
MeanCd −1.53 −0.37 −1.06 Cr −1.13 0.60 −0.35 As −5.33 −0.14 −0.77 Hg −2.11 5.30 1.33 Pb −0.92 0.66 −0.20 Cu −1.38 0.35 −0.68 Zn −1.45 0.90 −0.73 Ni −2.25 −0.16 −1.23 表 7 土壤重金属的潜在生态危害指数
Table 7. Potential ecological hazard index of soil heavy metals
项目
Item单项重金属潜在生态危害指数 $ {E}_{r}^{i} $
Potential ecological hazard index of single heavy metal综合潜在生态危害指数RI
Comprehensive Potential Ecological
Hazard IndexCd Cr As Hg Pb Cu Zn Ni 最小值 15.59 1.37 0.37 13.91 3.98 2.88 0.55 1.57 40.22 最大值 34.71 4.56 13.58 2363.48 11.86 9.55 2.80 6.71 2447.25 平均值 21.80 2.42 9.24 250.05 6.66 4.77 0.94 3.35 299.22 表 8 土壤重金属的主成分分析
Table 8. Principal component analysis of heavy metals in soils
元素
Element1 2 3 4 Cd −0.065 0.053 −0.134 0.980 Cr 0.792 0.450 −0.194 −0.066 As −0.282 0.380 0.767 0.020 Hg 0.083 0.872 −0.056 0.100 Pb 0.455 −0.303 0.614 0.140 Cu 0.576 −0.576 −0.127 0.094 Zn 0.638 −0.068 0.340 0.089 Ni 0.914 0.212 −0.062 −0.066 特征值 2.499 1.583 1.159 1.015 方差百分比/% 31.242 19.788 14.487 12.694 表 9 农作物中重金属含量统计
Table 9. Statistics of heavy metal content in crops
作物类型
Crop type统计值
Statistical value重金属含量/(mg·kg−1)
Heavy metal contentCd Cr As Hg Pb Cu Zn Ni 玉米 最大值 0.062 0.585 0 0.019 0.191 31.380 66.300 0.566 最小值 0.002 0.199 0 0 0 1.884 12.090 0 平均值 0.008 0.441 0 0.001 0.090 3.808 24.212 0.099 标准偏差 0.010 0.121 0 0.003 0.052 4.141 9.011 0.099 高粱 最大值 0.071 0.808 0.079 0.018 0.192 18.500 62.400 0.663 最小值 0.004 0.105 0.011 0.0003 0.044 1.360 10.400 0.121 平均值 0.013 0.236 0.023 0.006 0.084 3.122 28.343 0.240 标准偏差 0.013 0.130 0.013 0.004 0.038 2.960 8.304 0.112 大豆 最大值 0.099 0.889 0.424 0.053 0.192 7.030 87.800 0.856 最小值 0.001 0.105 0.011 0 0.032 1.310 14.400 0.058 平均值 0.011 0.252 0.069 0.006 0.086 3.083 28.441 0.247 标准偏差 0.014 0.150 0.108 0.007 0.043 1.792 12.207 0.171 食品限量标准
(GB 2762—2017)谷物 0.1 1.0 0.5 0.02 0.2 — — — 大豆 0.2 1.0 — — 0.2 — — 1.0 表 10 成人和儿童的非致癌风险指数
Table 10. Indexes of noncarcinogenic risk for adults and children
人群
Crowd农作物
CropHQ HI Cd Cr As Hg Pb Cu Zn Ni 成人 玉米 0.017 0.315 0 0.005 0.055 0.204 0.173 0.008 0.778 高粱 0.028 0.169 0.167 0.041 0.052 0.167 0.202 0.026 0.852 大豆 0.024 0.180 0.490 0.045 0.053 0.165 0.203 0.026 1.187 儿童 玉米 0.054 0.979 0 0.017 0.172 0.635 0.538 0.026 2.420 高粱 0.087 0.525 0.520 0.127 0.160 0.520 0.630 0.080 2.649 大豆 0.076 0.561 1.525 0.139 0.164 0.514 0.632 0.082 3.693 表 11 成人和儿童的致癌风险指数
Table 11. Indexes of carcinogenic risk for adults and children
人群
Crowd农作物
CropLCR TLCR Cd Cr As Pb Ni 成人 玉米 2.83×10−6 2.02×10−4 0 7.03×10−7 1.21×10−4 3.26×10−4 高粱 4.53×10−6 1.09×10−4 3.23×10−5 6.57×10−7 3.74×10−4 5.20×10−4 大豆 3.98×10−6 1.16×10−4 9.45×10−5 6.72×10−7 3.86×10−4 6.01×10−4 儿童 玉米 1.76×10−6 1.26×10−4 0 4.38×10−7 7.50×10−5 2.03×10−4 高粱 2.82×10−6 6.75×10−5 2.01×10−5 4.09×10−7 2.33×10−4 3.24×10−4 大豆 2.48×10−6 7.21×10−5 5.88×10−5 4.18×10−7 2.40×10−4 3.74×10−4 -
[1] VATANPOUR N, FEIZY J, HEDAYATI TALOUKI H, et al. The high levels of heavy metal accumulation in cultivated rice from the Tajan River Basin: Health and ecological risk assessment[J]. Chemosphere, 2020, 245: 125639. doi: 10.1016/j.chemosphere.2019.125639 [2] LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. doi: 10.1016/j.jenvman.2009.01.011 [3] JAN F A, ISHAQ M, KHAN S, et al. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir)[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 612-621. [4] JIA Z M, LI S Y, WANG L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the Upper Yangtze Basin[J]. Scientific Reports, 2018, 8(1): 1-14. [5] PERERA P C T, SUNDARABARATHY T V, SIVANANTHAWERL T, et al. Arsenic and cadmium contamination in water, sediments and fish is a consequence of paddy cultivation: Evidence of river pollution in Sri Lanka[J]. Achievements in the Life Sciences, 2016, 10(2): 144-160. doi: 10.1016/j.als.2016.11.002 [6] REZAPOUR S, SIAVASH MOGHADDAM S, NOURI A, et al. Urbanization influences the distribution, enrichment, and ecological health risk of heavy metals in croplands[J]. Scientific Reports, 2022, 12(1): 1-16. doi: 10.1038/s41598-021-99269-x [7] FASEYI C A, MIYITTAH M K, YAFETTO L, et al. Pollution fingerprinting of two southwestern estuaries in Ghana[J]. Heliyon, 2022, 8(8): e10337. doi: 10.1016/j.heliyon.2022.e10337 [8] RONG S W, WU J, CAO X Y, et al. Comprehensive ecological risk assessment of heavy metals based on species sensitivity distribution in aquatic of coastal areas in Hong Kong [J]. International Journal of Environmental Research and Public Health, 2022, 19(20): 13376. doi: 10.3390/ijerph192013376 [9] XIANG M T, LI Y, YANG J Y, et al. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops[J]. Environmental Pollution, 2021, 278: 116911. doi: 10.1016/j.envpol.2021.116911 [10] LIU J W, KANG H, TAO W D, et al. A spatial distribution-Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil[J]. Science of the Total Environment, 2023, 859: 160112. doi: 10.1016/j.scitotenv.2022.160112 [11] AREO O M, NJOBEH P B. Risk assessment of heavy metals in rooibos (Aspalathus linearis) tea consumed in South Africa[J]. Environmental Science and Pollution Research, 2021, 28(42): 59687-59695. doi: 10.1007/s11356-021-14968-2 [12] GAO L, GAO B, WEI X, et al. Assessment of metal toxicity and development of sediment quality guidelines using the equilibrium partitioning model for the Three Gorges Reservoir, China[J]. Environmental Science and Pollution Research, 2015, 22(22): 17577-17585. doi: 10.1007/s11356-015-4959-8 [13] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2): 293-298. SONG W, CHEN B M, LIU L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013, 20(2): 293-298(in Chinese).
[14] 王宇静, 刘新会, 张瀚丹, 等. 山西典型焦化工业园区土壤重金属污染和居民健康风险评价[C]. 中国毒理学会环境与生态毒理学专业委员会第七届学术研讨会, 贵阳, 2021. WANG Y J, LIU X H, ZHANG H D, et al. Assessment of pollution level and human health risk of heavy metals in soils from a typical coking industrial zone in Shanxi Province[C]. The 7th Symposium of Environmental and Ecotoxicology Committee of Chinese Society of Toxicology, Guiyang, 2021 (in Chinese).
[15] 马晓瑾, 刘子姣. 太谷县玛钢厂周边蔬菜地土壤重金属污染现状及生态风险评价[J]. 山西科技, 2017, 32(6): 92-96. doi: 10.3969/j.issn.1004-6429.2017.06.027 MA X J, LIU Z J. Status and ecological risk assessment of heavy metal pollution in vegetable soils around Magang plant in Taigu County[J]. Shanxi Science and Technology, 2017, 32(6): 92-96 (in Chinese). doi: 10.3969/j.issn.1004-6429.2017.06.027
[16] YANG X Y, CHENG B J, GAO Y X, et al. Heavy metal contamination assessment and probabilistic health risks in soil and maize near coal mines[J]. Front Public Health, 2022, 10: 1004579. doi: 10.3389/fpubh.2022.1004579 [17] SINEX S A, HELZ G R. Regional geochemistry of trace elements in Chesapeake Bay sediments[J]. Environmental Geology, 1981, 3(6): 315-323. doi: 10.1007/BF02473521 [18] PAZALJA M, SALIHOVIĆ M, SULEJMANOVIĆ J, et al. Heavy metals content in ashes of wood pellets and the health risk assessment related to their presence in the environment[J]. Scientific Reports, 2021, 11(: ): 17952. [19] PELLINEN V, CHERKASHINA T, GUSTAYTIS M. Assessment of metal pollution and subsequent ecological risk in the coastal zone of the Olkhon Island, Lake Baikal, Russia[J]. Science of the Total Environment, 2021, 786: 147441. doi: 10.1016/j.scitotenv.2021.147441 [20] YANG Q, YANG Z F, FILIPPELLI G M, et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China[J]. Chemical Geology, 2021, 567: 120081. doi: 10.1016/j.chemgeo.2021.120081 [21] BUCCIONE R, FORTUNATO E, PATERNOSTER M, et al. Mineralogy and heavy metal assessment of the Pietra del Pertusillo Reservoir sediments (Southern Italy)[J]. Environmental Science and Pollution Research, 2021, 28(4): 4857-4878. doi: 10.1007/s11356-020-10829-6 [22] GALLEGO J L R, ORTIZ J E, SÁNCHEZ-PALENCIA Y, et al. A multivariate examination of the timing and accumulation of potentially toxic elements at Las Conchas bog (NW Spain)[J]. Environmental Pollution, 2019, 254: 113048. doi: 10.1016/j.envpol.2019.113048 [23] GONG J J, YANG J Z, WU H, et al. Spatial distribution and environmental impact factors of soil selenium in Hainan Island, China[J]. Science of the Total Environment, 2022, 811: 151329. doi: 10.1016/j.scitotenv.2021.151329 [24] KUSIN F M, RAHMAN M S A, MADZIN Z, et al. The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang, Malaysia[J]. Environmental Science and Pollution Research, 2017, 24(2): 1306-1321. doi: 10.1007/s11356-016-7814-7 [25] WANG Z, WATANABE I, OZAKI H, et al. Enrichment and bioavailability of trace elements in soil in vicinity of railways in Japan[J]. Archives of Environmental Contamination and Toxicology, 2018, 74(1): 16-31. doi: 10.1007/s00244-017-0471-0 [26] 史崇文, 赵玲芝, 郭新波, 等. 山西土壤元素背景值及其特征[J]. 华北地质矿产杂志, 1994(2): 188-196. SHI C W, ZHAO L Z, GUO X B, et al. Background values of soil elements in Shanxi and their distribution feature[J]. Jour Geol & Min Res North China, 1994(2): 188-196 (in Chinese).
[27] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6): 611-627. doi: 10.1007/s002540050473 [28] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2: 108-118. [29] CHE ABDULLAH M I, MD SAH A S R, HARIS H. Geoaccumulation index and enrichment factor of arsenic in surface sediment of Bukit Merah Reservoir, Malaysia[J]. Tropical Life Sciences Research, 2020, 31(3): 109-125. doi: 10.21315/tlsr2020.31.3.8 [30] DEY G, BANERJEE P, MAITY J P, et al. Heavy metals distribution and ecological risk assessment including arsenic resistant PGPR in tidal mangrove ecosystem[J]. Marine Pollution Bulletin, 2022, 181: 113905. doi: 10.1016/j.marpolbul.2022.113905 [31] WU J N, LONG J, LIU L F, et al. Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in southwest China[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1838. doi: 10.3390/ijerph15091838 [32] CHEN H, WU W, CAO L, et al. Source analysis and contamination assessment of potentially toxic element in soil of small watershed in mountainous area of southern Henan, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(20): 13324. doi: 10.3390/ijerph192013324 [33] 晏利晶, 姜淼, 赵庆良, 等. 基于Meta分析的中国工矿业场地土壤重金属污染评价[J]. 环境科学研究, 2023, 36(1): 9-18. doi: 10.13198/j.issn.1001-6929.2022.08.14 YAN L J, JIANG M, ZHAO Q L, et al. Evaluation of soil heavy metal pollution in China’s industrial and mining sites based on meta-analysis[J]. Research of Environmental Sciences, 2023, 36(1): 9-18 (in Chinese). doi: 10.13198/j.issn.1001-6929.2022.08.14
[34] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [35] 黄钟霆, 易盛炜, 陈贝贝, 等. 典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价[J]. 环境科学, 2022, 43(2): 975-984. doi: 10.13227/j.hjkx.202105019 HUANG Z T, YI S W, CHEN B B, et al. Pollution properties and ecological risk assessment of heavy metals in farmland soils and crops around a typical manganese mining area[J]. Environmental Science, 2022, 43(2): 975-984. doi: 10.13227/j.hjkx.202105019
[36] XIANG Q, YU H, CHU H L, et al. The potential ecological risk assessment of soil heavy metals using self-organizing map[J]. Science of the Total Environment, 2022, 843: 156978. doi: 10.1016/j.scitotenv.2022.156978 [37] ZHANG P Y, QIN C Z, HONG X, et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China[J]. Science of the Total Environment, 2018, 633: 1136-1147. doi: 10.1016/j.scitotenv.2018.03.228 [38] SHEN G H, RU X, GU Y T, et al. Pollution characteristics, spatial distribution, and evaluation of heavy metal(loid)s in farmland soils in a typical mountainous hilly area in China[J]. Foods, 2023, 12(3): 681. doi: 10.3390/foods12030681 [39] WU D, LIU H, WU J, et al. Bi-directional pollution characteristics and ecological health risk assessment of heavy metals in soil and crops in Wanjiang economic zone, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9669. doi: 10.3390/ijerph19159669 [40] KAMUNDA C, MATHUTHU M, MADHUKU M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, south Africa[J]. International Journal of Environmental Research and Public Health, 2016, 13(7): 663. doi: 10.3390/ijerph13070663 [41] SIBUAR A A, ZULKAFFLEE N S, SELAMAT J, et al. Quantitative analysis and human health risk assessment of heavy metals in paddy plants collected from Perak, Malaysia[J]. International Journal of Environmental Research and Public Health, 2022, 19(2): 731. doi: 10.3390/ijerph19020731 [42] HUANG T, DENG Y X, ZHANG X L, et al. Distribution, source identification, and health risk assessment of heavy metals in the soil-rice system of a farmland protection area in Hubei Province, Central China[J]. Environmental Science and Pollution Research, 2021, 28(48): 68897-68908. doi: 10.1007/s11356-021-15213-6 [43] 欧灵芝, 胡鸣明, 安德章, 等. 高砷煤矿周围旱作土壤重金属污染特征及农作物健康风险评价[J]. 农业资源与环境学报, 2023, 40(1): 25-35. doi: 10.13254/j.jare.2021.0830 OU L Z, HU M M, AN D Z, et al. Characteristics and health risk assessment of heavy metals in dryland soil and crops around a coal mine with high levels of arsenic[J]. Journal of Agricultural Resources and Environment, 2023, 40(1): 25-35(in Chinese). doi: 10.13254/j.jare.2021.0830
[44] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365-385. doi: 10.1016/j.envint.2019.01.067 [45] XU X M, LUO P, LI S H, et al. Distributions of heavy metals in rice and corn and their health risk assessment in Guizhou Province[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(5): 926-935. doi: 10.1007/s00128-021-03407-0 [46] GUO B, HONG C L, TONG W B, et al. Health risk assessment of heavy metal pollution in a soil-rice system: A case study in the Jin-Qu Basin of China[J]. Scientific Reports, 2020, 10(1): 1-11. doi: 10.1038/s41598-019-56847-4 [47] AHMAD W, ALHARTHY R D, ZUBAIR M, et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk[J]. Scientific Reports, 2021, 11(: ): 17006. doi: 10.1038/s41598-020-79139-8 [48] CAICEDO-RIVAS G, SALAS-MORENO M, MARRUGO-NEGRETE J. Health risk assessment for human exposure to heavy metals via food consumption in inhabitants of middle basin of the atrato river in the Colombian Pacific[J]. International Journal of Environmental Research and Public Health, 2022, 20(1): 435. doi: 10.3390/ijerph20010435 [49] HOAGHIA M A, CADAR O, MOISA C, et al. Heavy metals and health risk assessment in vegetables grown in the vicinity of a former non-metallic facility located in Romania[J]. Environmental Science and Pollution Research, 2022, 29(26): 40079-40093. doi: 10.1007/s11356-022-18879-8 [50] 刘敏, 邓玮, 赵良元, 等. 长江源区主要河流表层沉积物及沿岸土壤重金属分布特征及来源[J]. 长江科学院院报, 2021, 38(7): 143-149, 154. doi: 10.11988/ckyyb.20201371 LIU M, DENG W, ZHAO L Y, et al. Distribution characteristics and sources of heavy metals in surface sediments and bank soils of major rivers in source region of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(7): 143-149, 154 (in Chinese). doi: 10.11988/ckyyb.20201371
[51] 张义璇. 基于高光谱的尾矿重金属含量反演研究[J]. 科技风, 2023(1): 148-150. doi: 10.19392/j.cnki.1671-7341.202301050 ZHANG Y X. Hyperspectral-based inversion study of heavy metal content in tailings[J]. Technological Style, 2023(1): 148-150 (in Chinese). doi: 10.19392/j.cnki.1671-7341.202301050
[52] FRANCO T C R, FERRAZ G A S, CARVALHO L C C, et al. Spatial variability of soil physical properties in longitudinal profiles[J]. Anais Da Academia Brasileira De Ciências, 2022, 94(2): e20200411. [53] WANG H Y, LU S G. Spatial distribution, source identification and affecting factors of heavy metals contamination in urban–suburban soils of Lishui city, China[J]. Environmental Earth Sciences, 2011, 64(7): 1921-1929. doi: 10.1007/s12665-011-1005-0 [54] 王学寅, 黄益灵, 全斌斌, 等. 浙江省瑞安市耕作层土壤养分元素有效态含量空间变异特征及其影响因素[J]. 现代地质, 2022, 36(3): 963-971. doi: 10.19657/j.geoscience.1000-8527.2022.03.16 WANG X Y, HUANG Y L, QUAN B B, et al. Spatial variability characteristics and influencing factors of available contents of nutritive elements in tillage layer soil of Ruian, Zhejiang Province[J]. Geoscience, 2022, 36(3): 963-971 (in Chinese). doi: 10.19657/j.geoscience.1000-8527.2022.03.16
[55] LI C Y, WANG X H, QIN M Z. Spatial variability of soil nutrients in seasonal rivers: A case study from the Guo River Basin, China[J]. PLoS One, 2021, 16(3): e0248655. doi: 10.1371/journal.pone.0248655 [56] REIMANN C, de CARITAT P. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors[J]. Science of the Total Environment, 2005, 337(1/2/3): 91-107. [57] GHREFAT H A, ABU-RUKAH Y, ROSEN M A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan[J]. Environmental Monitoring and Assessment, 2011, 178(1): 95-109. [58] 蒋起保, 欧阳永棚, 章敬若, 等. 江西省贵溪市水系沉积物重金属污染及其潜在生态风险评价[J]. 西北地质, 2022, 55(3): 326-334. doi: 10.19751/j.cnki.61-1149/p.2022.03.027 JIANG Q B, OUYANG Y P, ZHANG J R, et al. Evaluation of heavy metal pollution and its potential ecological risk in stream sediments in Guixi city, Jiangxi Province[J]. Northwestern Geology, 2022, 55(3): 326-334 (in Chinese). doi: 10.19751/j.cnki.61-1149/p.2022.03.027
[59] 刘乃静, 李臻, 赵银鑫, 等. 吴忠市表层土壤重金属污染及其潜在生态风险评价[J]. 科学技术与工程, 2020, 20(17): 7114-7121. doi: 10.3969/j.issn.1671-1815.2020.17.060 LIU N J, LI Z, ZHAO Y X, et al. Assessment of heavy metal pollution and its potential risk in the urban topsoil of Wuzhong, China[J]. Science Technology and Engineering, 2020, 20(17): 7114-7121(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.17.060
[60] DOMINECH S, ALBANESE S, GUARINO A, et al. Assessment on the source of geochemical anomalies in the sediments of the Changjiang River (China), using a modified enrichment factor based on multivariate statistical analyses[J]. Environmental Pollution, 2022, 313: 120126. doi: 10.1016/j.envpol.2022.120126 [61] REIMANN C, de CARITAT P. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry[J]. Environmental Science & Technology, 2000, 34(24): 5084-5091. [62] FENG Y, BAO Q, XIAO X, et al. Geo-accumulation vector model for evaluating the heavy metal pollution in the sediments of Western Dongting Lake[J]. Journal of Hydrology, 2019, 573: 40-48. doi: 10.1016/j.jhydrol.2019.03.064 [63] 许振成, 杨晓云, 温勇, 等. 北江中上游底泥重金属污染及其潜在生态危害评价[J]. 环境科学, 2009, 30(11): 3262-3268. doi: 10.3321/j.issn:0250-3301.2009.11.022 XU Z C, YANG X Y, WEN Y, et al. Evaluation of the heavy metals contamination and its potential ecological risk of the sediments in Beijiang River’s upper and middle reaches[J]. Environmental Science, 2009, 30(11): 3262-3268 (in Chinese). doi: 10.3321/j.issn:0250-3301.2009.11.022
[64] FAN T Y, PAN J H, WANG X M, et al. Ecological risk assessment and source apportionment of heavy metals in the soil of an opencast mine in Xinjiang[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15522. doi: 10.3390/ijerph192315522 [65] LINNIK V G, SAVELIEV A A, BAUER T V, et al. Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov region, Russia) using multivariate statistical methods[J]. Environmental Geochemistry and Health, 2022, 44(2): 511-526. doi: 10.1007/s10653-021-00853-x [66] DOLEŽALOVÁ WEISSMANNOVÁ H, MIHOČOVÁ S, CHOVANEC P, et al. Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech republic[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4495. doi: 10.3390/ijerph16224495 [67] TAŞPINAR K, ATEŞ Ö, ÖZGE PINAR M, et al. Soil contamination assessment and potential sources of heavy metals of alpu plain Eskişehir Turkey[J]. International Journal of Environmental Health Research, 2022, 32(6): 1282-1290. doi: 10.1080/09603123.2021.1876218 [68] WANG X T, DAN Z, CUI X Q, et al. Contamination, ecological and health risks of trace elements in soil of landfill and geothermal sites in Tibet[J]. Science of the Total Environment, 2020, 715: 136639. doi: 10.1016/j.scitotenv.2020.136639 [69] BORŮVKA L, VACEK O, JEHLIČKA J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils[J]. Geoderma, 2005, 128(3/4): 289-300. [70] KRAMI L K, AMIRI F, SEFIYANIAN A, et al. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments[J]. Environmental Monitoring and Assessment, 2013, 185(12): 9871-9888. doi: 10.1007/s10661-013-3298-9 [71] HU H J, HAN L, LI L Z, et al. Soil heavy metal pollution source analysis based on the land use type in Fengdong District of Xi’an, China[J]. Environmental Monitoring and Assessment, 2021, 193(10): 643. doi: 10.1007/s10661-021-09377-4 [72] WU J, LU J, LI L M, et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau[J]. Chemosphere, 2018, 201: 234-242. doi: 10.1016/j.chemosphere.2018.02.122 [73] WU Z Y, ZHANG D, XIA T X, et al. Characteristics, sources and risk assessments of heavy metal pollution in soils of typical chlor-alkali residue storage sites in northeastern China[J]. PLoS One, 2022, 17(9): e0273434. doi: 10.1371/journal.pone.0273434 [74] BILGUUN U, NAMKHAINYAMBUU D, PUREVSUREN B, et al. Sources, enrichment, and geochemical fractions of soil trace metals in Ulaanbaatar, Mongolia[J]. Archives of Environmental Contamination and Toxicology, 2020, 79(2): 219-232. doi: 10.1007/s00244-020-00748-5 [75] 安礼航, 刘敏超, 张建强, 等. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 2020, 52(2): 234-246. doi: 10.13758/j.cnki.tr.2020.02.003 AN L H, LIU M C, ZHANG J Q, et al. Sources of arsenic in soil and affecting factors of migration and release: A review[J]. Soils, 2020, 52(2): 234-246(in Chinese). doi: 10.13758/j.cnki.tr.2020.02.003
[76] XIE R, WEI D H, HAN F, et al. The effect of traffic density on smog pollution: Evidence from Chinese Cities[J]. Technological Forecasting and Social Change, 2019, 144: 421-427. doi: 10.1016/j.techfore.2018.04.023 [77] ZHANG M, WANG X P, LIU C, et al. Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the Yellow River using PMF analysis combined with multiple analysis methods—Using Zhongwei city, Ningxia, as an example[J]. Environmental Science and Pollution Research, 2020, 27(14): 16203-16214. doi: 10.1007/s11356-020-07986-z [78] LIU Y F, HUANG H H, SUN T, et al. Comprehensive risk assessment and source apportionment of heavy metal contamination in the surface sediment of the Yangtze River Anqing section, China[J]. Environmental Earth Sciences, 2018, 77(13): 493. doi: 10.1007/s12665-018-7621-1 [79] XU Z, MI W B, MI N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities[J]. Environmental Science and Pollution Research, 2020, 27(31): 38835-38848. doi: 10.1007/s11356-020-09877-9 [80] 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5): 1538-1544. doi: 10.13292/j.1000-4890.201805.019 LUO H, LIU X M, WANG S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5): 1538-1544 (in Chinese). doi: 10.13292/j.1000-4890.201805.019
[81] de OLIVEIRA L M, DAS S, Da SILVA E B, et al. Metal concentrations in traditional and herbal teas and their potential risks to human health[J]. Science of the Total Environment, 2018, 633: 649-657. doi: 10.1016/j.scitotenv.2018.03.215 [82] NAILA A, MEERDINK G, JAYASENA V, et al. A review on global metal accumulators—Mechanism, enhancement, commercial application, and research trend[J]. Environmental Science and Pollution Research, 2019, 26(26): 26449-26471. doi: 10.1007/s11356-019-05992-4 [83] QIN G W, NIU Z D, YU J D, et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology[J]. Chemosphere, 2021, 267: 129205. doi: 10.1016/j.chemosphere.2020.129205 [84] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068 [85] 王北洪, 马智宏, 冯晓元, 等. 北京市蔬菜重金属含量及健康风险评价[J]. 食品安全质量检测学报, 2015, 6(7): 2736-2745. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.07.061 WANG B H, MA Z H, FENG X Y, et al. Concentrations and health risk evaluation of heavy metals in vegetables in Beijing[J]. Journal of Food Safety & Quality, 2015, 6(7): 2736-2745 (in Chinese). doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.07.061