-
土壤作为陆地生态系统的重要组成部分,是诸多生态过程的载体,其碳、氮循环因与全球变化密切相关而成为当前研究的热点[1]. 土壤碳库约占到陆地生态系统碳的2/3,是关注全球气候变化的重要指标[2]. 氮作为一种重要的生命元素,一直是生物地球化学循环过程研究的重点[3]. 近年来随着经济的快速增长和城镇化快速推进,城市土壤在陆地生态系统中的重要性不断上升. 相对于其它陆地生态系统,城市土壤碳氮循环研究仍处于起步阶段,城市化占用了越来越多的自然用地和农业用地,对土壤碳氮循环过程的影响日益受到关注[4]. 表层土壤(如0—20 cm)是受人类活动影响最为频繁的区域,其有机质更容易受到土地利用类型和农业活动等人为因素影响而发生明显变化[5 − 6]. 因此,揭示土地利用方式与土壤养分及有机碳氮的关系,对城市生态安全与环境管理具有重要意义.
土壤有机碳(SOC)、氮(TN)含量及其动态平衡直接影响着土壤肥力和林地生产力[7]. 不同土地利用类型下土壤植被种类不同以及受人为活动影响程度差异,导致有机质的输入和分解状况不同,进而影响土壤碳、氮含量的变化[8 − 10]. 钟聪等[5]研究表明,人为活动会在很大程度上掩盖气候等自然因素对土壤有机质的影响. 同时,受人为活动影响的土地利用和植被恢复是土壤有机碳变化的主导因素[11]. 刘涛泽等[12]进一步探讨了土壤侵蚀和沉积过程中有机碳的动态变化和影响因素. Li等[13]对我国南方不同土地利用类型土壤的化学计量学研究表明,土壤C/N比值呈水田高于旱地和林地的特征.
环境中元素丰度与稳定同位素组成相结合研究往往可以提供更为详细的有关生物地球化学循环和营养源的信息[14 − 15]. 国内外研究表明,碳同位素值(δ13C)在示踪土壤有机质组份来源及评估其分解状况、认识古植被的历史变化与气候的关系等方面已有广泛应用[16],而氮同位素值(δ15N)的变化特征能够指示土壤有机质氮素的主要来源[17]. 廖宇琴等[18]和李龙波等[19]利用土壤有机质稳定碳、氮同位素技术揭示了土壤碳、氮循环过程中有机碳和氮的动态变化以及迁移转化规律. 然而,土壤有机质δ13C的深度分布具有明显区域性特征且变化非常复杂,在利用有机质的稳定碳同位素组成研究土壤有机质分解程度和土壤碳周转时,应该充分考虑区域性因素[20]. 土壤δ15N被认为是气候环境变化和自然生态系统氮循环过程的可能指示,除受植被类型影响外,还受土壤的理化性质、硝化作用以及农业施肥活动等因素共同影响[21 − 22]. 尽管前人对我国不同地区土壤有机质的研究取得一系列成果,但主要集中在东部和中部经济发达地区,对于生态环境脆弱区(如西南喀斯特地区)的研究较为薄弱[23 − 24];同时针对城市土壤碳氮元素丰度与其稳定同位素组成之间的耦合关系仍缺乏深入研究.
云南昆明是中国主要的喀斯特地貌分布区,近几十年来进行了大规模的开发建设,导致城区土地利用发生变化,对喀斯特地区的土壤性质和碳、氮循环产生了重要影响. 为探究不同土地利用类型下城市土壤如何响应自然和人为干扰,本研究以昆明市城区4种土地利用类型土壤为对象,分析土壤有机碳氮元素及其同位素的空间分布特征,探讨城区不同土地利用类型土壤生源要素的来源和迁移转化过程. 研究结论有助于为中国西南喀斯特地区城市土壤有机质的地球化学循环和土壤质量提供科学依据和数据支撑.
昆明城市土壤有机碳氮含量及其稳定同位素耦合关系研究
Coupling relationship of urban soil organic carbon and nitrogen contents with isotopes in Kunming urban area
-
摘要: 随着城镇化的快速推进,城市土壤已成为陆地生态系统重要组成部分,不同土地利用类型土壤有机碳氮含量、稳定同位素组成分布特征及其耦合关系是了解城市土壤碳氮循环过程的重要途径. 选取昆明市区受人类活动影响程度不同的公园绿地、居住绿地、道路绿地、耕地4类土壤作为研究对象,开展0—20 cm土壤有机质碳氮元素及其同位素组成的空间分异特征与影响因素研究. 结果表明,昆明城市土壤有机质含量低,有机碳(SOC)和总氮(TN)含量中值分别为6.14 g·kg−1和0.55 g·kg−1,较全国城市土壤平均水平低27.22%(C)和28.57%(N). 土壤有机碳同位素(δ13C)平均值为-25.22‰±1.56‰,氮同位素(δ15N)则分布范围较广,为1.22‰—10.12‰,平均值为6.55‰±1.58‰,显著高于其他自然土壤δ15N值. 4类土地利用类型中,耕地土壤SOC、TN含量显著偏高,δ13C和δ15N值显著偏正. 垂向分布上,公园绿地、居住绿地、道路绿地SOC、TN含量随土层深度的增加而降低,δ13C和δ15N值则呈现富集趋势,表明重同位素13C、15N在土壤腐殖质中富集. 耕地土壤因人为耕作,理化性质分层特征不明显. 昆明市较低的土壤有机质含量与城市化进程导致的土地利用类型改变、绿化年限影响的成土时间较短以及昆明市气候、土质、植被类型等多因素有关. 昆明城市土壤δ13C值主要受昆明C3、C4植被覆盖度等自然环境因素影响,而δ15N值由于受城市中水灌溉影响,显著偏正于自然土壤,指示人类活动已显著改变城市土壤氮循环过程,使土壤中更富集重同位素15N. 不同土地利用类型土壤垂向分布特征揭示有机质的分解、转化过程会对碳、氮同位素产生分馏作用,且氮同位素分馏高于碳同位素的分馏.Abstract: With the rapid development of urbanization, urban soils have become an important part of terrestrial ecosystem. Stoichiometric and stable isotope compositions of soil organic carbon and nitrogen provide a unique insight into the carbon and nitrogen cycling of urban soils under different land uses. Here, four types of soil profiles, including park green land, residential green land, roadside green land and cultivated land, which were typical of urban soils in Kunming, were selected to uncover the spatial variation and drivers of carbon and nitrogen elements and their isotopic compositions in top soils (0—20 cm). The soil organic content was relatively low, with a median value of 6.14 g·kg−1 for soil organic carbon (SOC) and 0.55 g·kg−1 for total nitrogen (TN), which were 27.22% and 28.57% lower than the national urban average, respectively. Soil δ13C was significantly depleted, with an average value of -25.22‰ ± 1.56‰. While the variation of urban soil δ15N was large, ranging from 1.22‰ to 10.12‰ and with an average value of 6.55‰ ± 1.58‰, which was significantly higher than those of other natural soils. Among the four soil types, the content of SOC and TN in cultivated lands was significantly higher, with a significant enrichment in δ13C and δ15N signals. Over the soil profile, SOC and TN in park green land, residential green land and roadside green land all decreased with an increasing depth, meanwhile δ13C and δ15N values showed a trend of enrichment. Due to frequent ploughing disturbances, the stoichiometry and stable isotope of cultivated soils had no significant change in the vertical profile. Relatively low content of soil organic matter in our study region might be related to multiple anthropogenic factors, such as the change of land use type caused by urbanization, the short soil development time affected by greening practice, and the monsoon climate, soil quality, and vegetation. In comparison, soil δ13C value was mainly affected by natural factors such as C3 and C4 vegetation coverage. Possibly affected by urban reclaimed water irrigation, the δ15N value of Kunming urban soil was significantly higher than that of natural soils, indicating that human activities have significantly changed the nitrogen cycling of urban soils. Profile characteristics of soils across different land use types indicated that decomposition and mineralization of organic matter would induce fractionation of carbon and nitrogen isotopes, resulting in the enrichment of 13C and 15N signals in residual soil humus, as well as a stronger isotope fractionation for nitrogen than that for carbon.
-
Key words:
- urban soil /
- organic carbon /
- total nitrogen /
- stable isotope /
- land-use type /
- Kunming.
-
-
[1] YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China-Life Sciences, 2022, 65(5): 861-895. doi: 10.1007/s11427-021-2045-5 [2] LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. doi: 10.1126/science.1097396 [3] BINGHAM A H, COTRUFO M F. Organic nitrogen storage in mineral soil: Implications for policy and management[J]. Science of the Total Environment, 2016, 551/552: 116-126. doi: 10.1016/j.scitotenv.2016.02.020 [4] LORENZ K, LAL R. Biogeochemical C and N cycles in urban soils[J]. Environment International, 2009, 35(1): 1-8. doi: 10.1016/j.envint.2008.05.006 [5] 钟聪, 李小洁, 何园燕, 等. 广西土壤有机质空间变异特征及其影响因素研究[J]. 地理科学, 2020, 40(3): 478-485. ZHONG C, Li X J, He Y Y, et al. Spatial variation of soil organic matter and its influencing factors in Guangxi, China[J]. Scientia Geographica Sinica, 2020, 40(3): 478-485(in Chinese).
[6] 王艺杰, 于丽君, 张稳, 等. 造林后表层土壤有机碳变化及影响因素分析[J]. 地理与地理信息科学, 2022, 38(2): 103-111. WANG Y J, YU L J, ZHANG W, et al. Analysis on changes of topsoil organic carbon after afforestation and the influencing factors[J]. Geography and Geo-Information Science, 2022, 38(2): 103-111(in Chinese).
[7] TEWKSBURY C E, VAN MIEGROET H. Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce–fir forest[J]. Canadian Journal of Forest Research, 2007, 37(7): 1161-1172. doi: 10.1139/X06-317 [8] PETER P C. Soil organic matter/carbon dynamics in contrasting tillage and land management systems: A case for smallholder farmers with degraded and marginal soils[J]. Communications in Soil Science and Plant Analysis, 2017, 48(17): 2013-2031. doi: 10.1080/00103624.2017.1406099 [9] 张青青, 伍海兵, 梁晶. 上海市绿地表层土壤有机碳储量的估算[J]. 土壤, 2020, 52(4): 819-824. ZHANG Q Q, WU H B, LIANG J. Estimation of storage of organic carbon in green surface soils in Shanghai[J]. Soils, 2020, 52(4): 819-824(in Chinese).
[10] FELIPE-LUCIA M R, SOLIVERES S, PENONE C, et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(45): 28140-28149. [11] ZHAO B H, LI Z B, LI P, et al. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China[J]. Geoderma, 2017, 296: 10-17. doi: 10.1016/j.geoderma.2017.02.010 [12] 刘涛泽, 刘丛强, 张伟, 等. 喀斯特地区坡地土壤有机碳的分布特征和 δ13C值组成差异[J]. 水土保持学报, 2008, 22(5): 115-118, 124. LIU T Z, LIU C Q, ZHANG W, et al. Spatial distribution characteristics of soil organic carbon and difference in stable carbon isotope composition in slopes of Karst areas[J]. Journal of Soil and Water Conservation, 2008, 22(5): 115-118, 124(in Chinese).
[13] LI Y, WU J S, LIU S L, et al. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? [J]. Global Biogeochemical Cycles, 2012, 26(4): GB4002. [14] 郭雯, 黄林培, 王明果, 等. 不同组织碳、氮元素含量和同位素分馏特征研究: 以抚仙湖草鱼、鱇浪白鱼为例[J]. 中国环境科学, 2022, 42(1): 345-355. GUO W, HUANG L P, WANG M G, et al. Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake[J]. China Environmental Science, 2022, 42(1): 345-355(in Chinese).
[15] WANG X Y, ZHAO L X, COMEAU L P, et al. Divergent carbon stabilization pathways in aggregates in Ultisols with and without organic amendments: Implications from 13C natural abundance and NMR analysis[J]. Geoderma, 2022, 426: 116088. doi: 10.1016/j.geoderma.2022.116088 [16] 于贵瑞, 王绍强, 陈泮勤, 等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577. YU G R, WANG S Q, CHEN P Q, et al. Isotope tracer approaches in soil organic carbon cycle research[J]. Advances in Earth Science, 2005, 20(5): 568-577(in Chinese).
[17] 王毛兰, 赖建平, 胡珂图, 等. 鄱阳湖湿地土壤有机碳氮同位素特征及其环境意义[J]. 中国环境科学, 2016, 36(2): 500-505. WANG M L, LAI J P, HU K T, et al. Compositions of stable organic carbon and nitrogen isotopes in wetland soil of Poyang Lake and its environmental implications[J]. China Environmental Science, 2016, 36(2): 500-505(in Chinese).
[18] 廖宇琴, 龙娟, 木志坚, 等. 重庆农田土壤有机碳稳定性同位素空间分布特征[J]. 环境科学, 2022, 43(6): 3348-3356. LIAO Y Q, LONG J, MU Z J, et al. Spatial characterization of stable isotope composition of organic carbon from farmland soils in Chongqing[J]. Environmental Science, 2022, 43(6): 3348-3356(in Chinese).
[19] 李龙波, 涂成龙, 赵志琦, 等. 黄土高原不同植被覆盖下土壤有机碳的分布特征及其同位素组成研究[J]. 地球与环境, 2011, 39(4): 441-449. LI L B, TU C L, ZHAO Z Q, et al. Distribution characteristics of soil organic carbon and its isotopic composition for soil profiles of Loess Plateau under different vegetation conditions[J]. Earth and Environment, 2011, 39(4): 441-449(in Chinese).
[20] 朱书法, 刘丛强, 陶发祥, 等. 喀斯特地区土壤有机质的稳定碳同位素地球化学特征[J]. 地球与环境, 2006, 34(3): 51-58. ZHU S F, LIU C Q, TAO F X, et al. Geochemical characteristics of stable carbon isotopes in soil organic matter from karst areas[J]. Earth and Environment, 2006, 34(3): 51-58(in Chinese).
[21] 汪智军, 梁轩, 贺秋芳, 等. 岩溶区不同植被类型下的土壤氮同位素分异特征[J]. 生态学报, 2011, 31(17): 4970-4976. WANG Z J, LIANG X, HE Q F, et al. Differential characteristics of soil δ15N under varying vegetation in karst areas[J]. Acta Ecologica Sinica, 2011, 31(17): 4970-4976(in Chinese).
[22] BILLY C, BILLEN G, SEBILO M, et al. Nitrogen isotopic composition of leached nitrate and soil organic matter as an indicator of denitrification in a sloping drained agricultural plot and adjacent uncultivated riparian buffer strips[J]. Soil Biology and Biochemistry, 2010, 42(1): 108-117. doi: 10.1016/j.soilbio.2009.09.026 [23] 郭松, 王立发, 马海欧, 等. 滇东地区土壤剖面氮同位素垂直分异及空间分异特征[J]. 环境化学, 2018, 37(2): 279-286. doi: 10.7524/j.issn.0254-6108.2017061301 GUO S, WANG L F, MA H O, et al. Vertical distribution and spatial differentiation characteristics of nitrogen isotope in soil profile of Eastern Region of Yunnan Province[J]. Environmental Chemistry, 2018, 37(2): 279-286(in Chinese). doi: 10.7524/j.issn.0254-6108.2017061301
[24] 何高迅, 王越, 彭淑娴, 等. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学报, 2020, 40(13): 4425-4435. HE G X, WANG Y, PENG S X, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425-4435(in Chinese).
[25] 崔姗姗, 李占彬, 朱平, 等. 贵州遵义地区镉大气沉降通量与表层土壤分布特征[J]. 环境化学, 2022, 41(4): 1324-1334. doi: 10.7524/j.issn.0254-6108.2020122001 CUI S S, LI Z B, ZHU P, et al. Atmospheric deposition flux of cadmium and distribution characteristics of surface soil in Zunyi, Guizhou[J]. Environmental Chemistry, 2022, 41(4): 1324-1334(in Chinese). doi: 10.7524/j.issn.0254-6108.2020122001
[26] 陈蓉, 王明果, 黄林培, 等. 滇池浮游植物碳氮同位素时空分布特征及其影响因子分析[J]. 中国环境科学, 2022, 42(2): 843-853. CHEN R, WANG M G, HUANG L P, et al. Spatio-temporal distribution and influencing factors of stable carbon and nitrogen isotopes of phytoplankton in Dianchi Lake[J]. China Environmental Science, 2022, 42(2): 843-853(in Chinese).
[27] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992. National Soil Census Office. Soil census technology in China[M]. Beijing: Agricultural Publishing House, 1992(in Chinese).
[28] 张明, 潘国林, 张宗应, 等. 我国部分城市绿地土壤肥力质量分析与评价[J]. 内蒙古农业大学学报(自然科学版), 2019, 40(3): 46-51. ZHANG M, PAN G L, ZHANG Z Y, et al. Soil fertility quality analysis and evaluation in some urban green space of China[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2019, 40(3): 46-51(in Chinese).
[29] 李忠佩, 张桃林, 陈碧云, 等. 红壤稻田土壤有机质的积累过程特征分析[J]. 土壤学报, 2003, 40 (3): 344-352. LI Z P, ZHANG T L, CHEN B Y, et al. Soil organic matter dynamics in a cultivation chronosequence of paddy fields in subtropical China[J]. Acta Pedologica Sinica, 2003, 40 (3): 344-352(in Chinese).
[30] 邬建红, 潘剑君, 葛序娟, 等. 不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报, 2015, 29(3): 130-135. WU J H, PAN J J, GE X J, et al. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types[J]. Journal of Soil and Water Conservation, 2015, 29(3): 130-135(in Chinese).
[31] 廖洪凯, 龙健, 李娟. 土地利用方式对喀斯特山区土壤养分及有机碳活性组分的影响[J]. 自然资源学报, 2012, 27(12): 2081-2090. LIAO H K, LONG J, LI J. Effects of different land use patterns on soil nutrients and soil active organic carbon components in karst mountain area[J]. Journal of Natural Resources, 2012, 27(12): 2081-2090(in Chinese).
[32] 黄锦学, 黄李梅, 林智超, 等. 中国森林凋落物分解速率影响因素分析[J]. 亚热带资源与环境学报, 2010, 5(3): 56-63. HUANG J X, HUANG L M, LIN Z C, et al. Controlling factors of litter decomposition rate in China’s forests[J]. Journal of Subtropical Resources and Environment, 2010, 5(3): 56-63(in Chinese).
[33] 李紫燕, 李世清, 李生秀. 黄土高原典型土壤有机氮矿化过程[J]. 生态学报, 2008, 28(10): 4940-4950. LI Z Y, LI S Q, LI S X. Organic N mineralization in typical soils of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(10): 4940-4950(in Chinese).
[34] FENG D F, BAO W K, PANG X Y. Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests[J]. Journal of Soils and Sediments, 2017, 17(8): 2054-2065. doi: 10.1007/s11368-017-1665-9 [35] 陶晓, 俞元春, 张云彬, 等. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 88-96. TAO X, YU Y C, ZHANG Y B, et al. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry in urban forest soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 88-96(in Chinese).
[36] 王国安. 中国北方草本植物及表土有机质碳同位素组成[D]. 北京: 中国科学院地质与地球物理研究所, 2001. WANG G A. δ13C composition in herbaceous plants and surface soil organic matter in North China [D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2001 (in Chinese).
[37] O'LEARY M H. Carbon isotopes in photosynthesis[J]. BioScience, 1988, 38(5): 328-336. doi: 10.2307/1310735 [38] WANG Y H, YANG H, ZHANG J X, et al. Characterization of n-alkanes and their carbon isotopic composition in sediments from a small catchment of the Dianchi watershed[J]. Chemosphere, 2015, 119: 1346-1352. doi: 10.1016/j.chemosphere.2014.01.085 [39] 刘卫国, 王政. 黄土高原现代植物-土壤氮同位素组成及对环境变化的响应[J]. 科学通报, 2008, 53(23): 2917-2924. doi: 10.1360/csb2008-53-23-2917 LIU W G, WANG Z. Nitrogen isotopic compsition of plant-soil in the Loess Plateau and its responding to environmental change [J]. Chinese Science Bulletin, 2008, 53(23): 2917-2924(in Chinese). doi: 10.1360/csb2008-53-23-2917
[40] 全小龙, 段中华, 乔有明, 等. 不同高寒草甸土壤碳氮稳定同位素和密度的差异[J]. 草业学报, 2016, 25(12): 27-34. QUAN X L, DUAN Z H, QIAO Y M, et al. Variations in soil carbon and nitrogen stable isotopes and density among different alpine meadows[J]. Acta Prataculturae Sinica, 2016, 25(12): 27-34(in Chinese).
[41] HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review[J]. Chemical Geology: Isotope Geoscience Section, 1986, 59: 87-102. doi: 10.1016/0168-9622(86)90059-X [42] RUIZ-FERNÁNDEZ A C, HILLAIRE-MARCEL C, GHALEB B, et al. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients[J]. Environmental Pollution, 2002, 118(3): 365-377. doi: 10.1016/S0269-7491(01)00287-1 [43] CLEVELAND C C, LIPTZIN D. C: N: P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. doi: 10.1007/s10533-007-9132-0 [44] CHEN Q Q, SHEN C D, PENG S L, et al. Soil organic matter turnover in the subtropical mountainous region of South China[J]. Soil Science, 2002, 167(6): 401-415. doi: 10.1097/00010694-200206000-00005 [45] HÖGBERG P. Forests losing large quantities of nitrogen have elevated 15N: 14N ratios[J]. Oecologia, 1990, 84(2): 229-231. doi: 10.1007/BF00318276 [46] HU C C, LEI Y B, TAN Y H, et al. Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China[J]. Journal of Ecology, 2019, 107(1): 372–386. doi: 10.1111/1365-2745.13008 [47] XU S Q, LIU X Y, SUN Z C, et al. Isotopic elucidation of microbial nitrogen transformations in forest soils[J]. Global Biogeochemical Cycles, 2022, 35(12): e2021GB007070.