-
硫元素参与构成的官能团包括硫醚、亚砜、砜、磺酰胺、氨基磺酸等,多数具备丰富的化学和生物学意义,在医药和农药设计开发中被广泛应用. 医药中硫的使用频率排名第五,25%的小分子医药存在含硫官能团[1],青霉素、头孢等抗生素也均含有硫元素. 同时,含硫农药在保证农作物的产量和质量方面也至关重要,英国《农药手册》中记载的
1630 多种除草剂、杀虫剂等农药中,超过30%至少含有一个硫原子[2]. 数千种含硫有机物及其转化衍生物极易通过水循环广泛存在于水生系统中,成为痕量水平微污染物(ng·L−1—μg·L−1级),并长期影响人体健康和生态系统安全,形成极大潜在风险. 目前已有研究证明世界各地的地表水与地下水中普遍检测到含硫有机微污染物(sulfur-containing organic micropollutants,SOM)及其代谢衍生物[3 − 4],且大多数代谢衍生物的毒性及检出浓度近似甚至高于其母体物质[5],如砜和亚砜等代谢衍生产物[6]. 因此,水环境中含硫有机微污染物的有效削减及风险防控具有重要意义及现实紧迫性.本文总结归纳了水环境中SOM种类及理化性质,全面综述了SOM在水环境中的风险及污染分布情况,并深入分析了典型SOM去除技术及机理,以期为SOM环境风险的防范及控制提供指导.
水环境中含硫有机微污染物:污染现状、去除技术及机理分析
Sulfur-containing organic micropollutants in water environment: Pollution status, removal techniques and mechanism analysis
-
摘要: 含硫有机微污染物在国内外自然水体中高频检出,其主要包含生产生活中广泛应用的含硫医药和农药,具有难降解性及生物毒性,已形成较高环境风险. 本文系统总结了含硫有机微污染物的种类及典型污染物理化性质,全面综述了其在水环境中的来源、环境风险及污染现状,采用文献计量学方法重点分析了含硫有机微污染物的去除技术及机理,并从优化污染物高精确度检测手段、完善复合污染物风险评估方法、开发高选择性的污染控制技术、建立效价官能团-环境效应数据库、加强区域水循环体系协同治理5个方面展望了未来研究的热点趋势,以期为水环境中含硫有机微污染物的有效削减及风险防控提供参考.Abstract: Sulfur-containing organic micropollutants are frequently detected in natural water at home and abroad, mainly including sulfur-containing pharmaceuticals and pesticides widely used in production and life, which are difficult to degrade and biotoxic, and pose a high environmental risk. In this paper, the types and physicochemical properties of sulfur-containing organic micropollutants are systematically summarized, and their sources, environmental risks and pollution status in water environment are comprehensively reviewed. The removal technology and mechanism of sulfur-containing organic micropollutants are emphatically analyzed by bibliometric methods. And the hot trends of future research are prospected from five aspects: optimizing the high precision detection method of pollutants, improving the risk assessment method of complex pollutants, developing the highly selective pollution control technology, establishing the database of characteristic functional groups - environmental effects, and strengthening the cooperative governance of regional water cycle system, in order to provide reference for the effective reduction and risk control of sulfur-containing organic micropollutants in water environment.
-
图 2 地表水中含硫有机微污染物污染现状(a)含硫医药的检出率;(b)含硫农药的检出率;(c)含硫医药浓度分布;(d)含硫农药浓度分布
Figure 2. Pollution status of sulfur-containing organic micropollutants in surface water: (a) detection rate of sulfur-containing pharmaceuticals; (b) detection rate of sulfur-containing pesticides; (c) concentration distribution of sulfur-containing pharmaceuticals; (d) concentration distribution of sulfur-containing pesticides
表 1 典型含硫有机微污染物的种类及理化性质
Table 1. Types and physicochemical properties of typical sulfur-containing organic micropollutants
种类
Type含硫有机
微污染物
SOMCAS编号
CAS
number分子式
Molecular
formula相对分子
质量/
(g·mol−1)
Molecular
weight含硫官能团类别
Category of
sulfur-containing
functional
groups用途
Application分子结构
Molecular structure医药 磺胺甲恶唑 723-46-6 C10H11N3O3S 253 磺胺类 抗菌抗感染 医药 磺胺嘧啶 68-35-9 C10H10N4O2S 250 磺胺类 抗菌抗感染 医药 磺胺二甲
嘧啶57-68-1 C12H14N4O2S 278 磺胺类 抗菌抗感染 医药 磺胺噻唑 72-14-0 C9H9N3O2S2 255 磺胺类 抗菌抗感染 医药 奥美拉唑 73590 -58-6C17H19N3O3S 345 砜与亚砜类 抑制胃酸分泌 医药 替硝唑 19387 -91-8C8H13N3O4S 247 砜与亚砜类 抗菌抗感染 医药 西咪替丁 51481 -61-9C10H16N6S 252 硫醚噻唑类 抑制胃酸分泌 医药 法莫替丁 76824 -35-6C8H15N7O2S3 337 硫醚噻唑类 抑制胃酸分泌 医药 阿莫西林 26787 -78-0C16H19N3O5S 365 青霉素头孢类 抗菌抗感染 医药 氨苄西林 69-53-4 C16H19N3O4S 349 青霉素头孢类 抗菌抗感染 医药 头孢噻肟 63527 -52-6C16H17N5O7S2 455 青霉素头孢类 抗菌抗感染 医药 头孢氨苄 15686 -71-2C16H17N3O4S 347 青霉素头孢类 抗菌抗感染 农药 苄嘧磺隆 83055 -99-6C16H18N4O7S 410 磺酰脲类 稻麦田除草剂 农药 甲磺隆 74223 -64-6C14H15N5O6S 381 磺酰脲类 稻麦田除草剂 农药 噻虫嗪 153719 -23-4C8H10ClN5O3S 292 含硫杂环类 新烟碱杀虫剂 农药 噻虫胺 210880 -92-5C6H8ClN5O2S 250 含硫杂环类 新烟碱杀虫剂 农药 氟虫腈 120068 -37-3C12H4Cl2F6N4OS 437 砜与亚砜类 广谱性杀虫剂 农药 特丁净 886-50-0 C10H19N5S 241 砜与亚砜类 旱田除草剂 农药 唑嘧磺草胺 98967 -40-9C12H9F2N5O2S 325 磺胺磺酰胺类 旱田除草剂 农药 氟磺胺草醚 72178 -02-0C15H10ClF3N2O6S 439 磺胺磺酰胺类 豆田除草剂 农药 三唑磷 24017 -47-8C12H16N3O3PS 313 含硫有机磷类 广谱性杀虫剂 农药 乙硫磷 563-12-2 C9H22O4P2S4 384 含硫有机磷类 广谱性杀虫剂 -
[1] SMITH B R, EASTMAN C M, NJARDARSON J T. Beyond C, H, O, and N!Analysis of the elemental composition of U. S. FDA approved drug architectures[J]. Journal of Medicinal Chemistry, 2014, 57(23): 9764-9773. doi: 10.1021/jm501105n [2] TOMLIN C D S, TOMLIN C D S. The pesticide manual[M]. British Crop Protection Council, 2000: 1-1250. [3] SHIMIZU A, TAKADA H, KOIKE T, et al. Ubiquitous occurrence of sulfonamides in tropical Asian waters[J]. Science of the Total Environment, 2013, 452/453: 108-115. doi: 10.1016/j.scitotenv.2013.02.027 [4] 代倩子, 徐枫, 虞霖, 等. 太湖区域13种磺酰脲类除草剂污染特征[J]. 环境科学与技术, 2021, 44(9): 1-6. DAI Q Z, XU F, YU L, et al. Pollution characteristics of 13 sulfonylurea herbicides in Taihu Lake area[J]. Environmental Science & Technology, 2021, 44(9): 1-6 (in Chinese).
[5] LIU Q Q, FU Z Q, WANG Z Y, et al. Rapid and selective oxidation of refractory sulfur-containing micropollutants in water using Fe-TAML/H2O2[J]. Applied Catalysis B:Environmental, 2022, 315: 121535. doi: 10.1016/j.apcatb.2022.121535 [6] 刘清泉, 陈景文, 蔡喜运. Fe-TAML催化降解水体中含硫污染物的研究[C]. 第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会, 南京, 2016: 16. LIU Q Q, CHEN J W, CAI X Y. Study on catalytic degradation of sulfur-containing pollutants in water by Fe-TAML[C]. The 13th National Conference on Water Treatment Chemistry and Workshop on Water Treatment Chemistry in the Straits, Nanjing, 2016: 16(in Chinese).
[7] SENTER P D. Potent antibody drug conjugates for cancer therapy[J]. Current Opinion in Chemical Biology, 2009, 13(3): 235-244. doi: 10.1016/j.cbpa.2009.03.023 [8] MUSTAFA M, WINUM J Y. The importance of sulfur-containing motifs in drug design and discovery[J]. Expert Opinion on Drug Discovery, 2022, 17(5): 501-512. doi: 10.1080/17460441.2022.2044783 [9] FENG M H, TANG B Q, LIANG S H, et al. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry[J]. Current Topics in Medicinal Chemistry, 2016, 16(11): 1200-1216. doi: 10.2174/1568026615666150915111741 [10] DEVENDAR P, YANG G F. Sulfur-containing agrochemicals[J]. Topics in Current Chemistry, 2017, 375(6): 82. doi: 10.1007/s41061-017-0169-9 [11] CASIDA J E, FUKUNAGA K. Pesticides: Metabolism, degradation, and mode of action[J]. Science, 1968, 160(3826): 445-450. doi: 10.1126/science.160.3826.445 [12] BIZET V, HENDRIKS C M M, BOLM C. Sulfur imidations: Access to sulfimides and sulfoximines[J]. Chemical Society Reviews, 2015, 44(11): 3378-3390. doi: 10.1039/C5CS00208G [13] YIN F D, GROSJEAN D, SEINFELD J H. Analysis of atmospheric photooxidation mechanisms for organosulfur compounds[J]. Journal of Geophysical Research:Atmospheres, 1986, 91(D13): 14417-14438. doi: 10.1029/JD091iD13p14417 [14] ZHONG M M, WANG T L, ZHAO W X, et al. Emerging organic contaminants in Chinese surface water: Identification of priority pollutants[J]. Engineering, 2022, 11: 111-125. doi: 10.1016/j.eng.2020.12.023 [15] YANG Y, ZHANG X R, JIANG J Y, et al. Which micropollutants in water environments deserve more attention globally?[J]. Environmental Science & Technology, 2022, 56(1): 13-29. [16] 张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181. doi: 10.7524/j.issn.0254-6108.2021102405 ZHANG H J, WANG X X, LI Y. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021102405
[17] 贺艳, 邓月华. 水环境中新烟碱类农药去除技术研究进展[J]. 环境化学, 2020, 39(7): 1963-1976. doi: 10.7524/j.issn.0254-6108.2019082102 HE Y, DENG Y H. A review on the removal technologies of neonicotinoid pesticides from aquatic environment[J]. Environmental Chemistry, 2020, 39(7): 1963-1976 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019082102
[18] GREGORC A, SILVA-ZACARIN E C M, CARVALHO S M, et al. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees[J]. Chemosphere, 2016, 147: 328-336. doi: 10.1016/j.chemosphere.2015.12.030 [19] LIN H, NIU J F, XU J L, et al. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution[J]. Electrochimica Acta, 2013, 97: 167-174. doi: 10.1016/j.electacta.2013.03.019 [20] KRAEMER S A, RAMACHANDRAN A, PERRON G G. Antibiotic pollution in the environment: From microbial ecology to public policy[J]. Microorganisms, 2019, 7(6): 180. doi: 10.3390/microorganisms7060180 [21] KOVALAKOVA P, CIZMAS L, McDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351 [22] 文湘华, 申博. 新兴污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018, 38(3): 847-857. WEN X H, SHEN B. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 847-857 (in Chinese).
[23] BARAN W, ADAMEK E, ZIEMIAŃSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082 [24] SINGH R, SINGH A P, KUMAR S, et al. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies[J]. Journal of Cleaner Production, 2019, 234: 1484-1505. doi: 10.1016/j.jclepro.2019.06.243 [25] FANG W D, PENG Y, MUIR D, et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China[J]. Environment International, 2019, 131: 104994. doi: 10.1016/j.envint.2019.104994 [26] TANG F H M, LENZEN M, McBRATNEY A, et al. Risk of pesticide pollution at the global scale[J]. Nature Geoscience, 2021, 14(4): 206-210. doi: 10.1038/s41561-021-00712-5 [27] MUKHOPADHYAY D, KHAN N, KAMAL N, et al. Degradation of β-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system[J]. Bioresource Technology, 2022, 361: 127605. doi: 10.1016/j.biortech.2022.127605 [28] RAFQAH S, WONG-WAH-CHUNG P, AAMILI A, et al. Degradation of metsulfuron methyl by heterogeneous photocatalysis on TiO2 in aqueous suspensions: Kinetic and analytical studies[J]. Journal of Molecular Catalysis A:Chemical, 2005, 237(1/2): 50-59. [29] FENOLL J, HELLÍN P, FLORES P, et al. Fipronil decomposition in aqueous semiconductor suspensions using UV light and solar energy[J]. Journal of the Taiwa Institute of Chemical Engineers, 2014, 45(3): 981-988. doi: 10.1016/j.jtice.2013.09.015 [30] PAKZAD K, ALINEZHAD H, NASROLLAHZADEH M. Euphorbia polygonifolia extract assisted biosynthesis of Fe3O4@CuO nanoparticles: Applications in the removal of metronidazole, ciprofloxacin and cephalexin antibiotics from aqueous solutions under UV irradiation[J]. Applied Organometallic Chemistry, 2020, 34(11): e5910. doi: 10.1002/aoc.5910 [31] ZHU W Y, SUN F Q, GOEI R, et al. Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole[J]. Applied Catalysis B:Environmental, 2017, 207: 93-102. doi: 10.1016/j.apcatb.2017.02.012 [32] GAO B R, WANG J, DOU M M, et al. Novel nitrogen-rich g-C3N4 with adjustable energy band by introducing triazole ring for cefotaxime removal[J]. Separation and Purification Technology, 2020, 241: 116576. doi: 10.1016/j.seppur.2020.116576 [33] deLa FLOR M P, CAMARILLO R, MARTÍNEZ F, et al. Synthesis and characterization of bimetallic TiO2/CNT/Pd-Cu for efficient remediation of endocrine disruptors under solar light[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107245. doi: 10.1016/j.jece.2022.107245 [34] CAI Z J, HU X T, LI Z A, et al. Hypercrosslinking porous polymer layers on TiO2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation[J]. Water Research, 2022, 227: 119341. doi: 10.1016/j.watres.2022.119341 [35] LI S, CHEN H, WANG X, et al. Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system[J]. Environmental Science and Pollution Research, 2020, 27(23): 29599-29611. doi: 10.1007/s11356-020-09303-0 [36] TRINH T, van den AKKER B, STUETZ R M, et al. Removal of trace organic chemical contaminants by a membrane bioreactor[J]. Water Science and Technology, 2012, 66(9): 1856-1863. doi: 10.2166/wst.2012.374 [37] ZHANG Q H, ZHANG L, LI Z H, et al. Enhancement of fipronil degradation with eliminating its toxicity in a microbial fuel cell and the catabolic versatility of anodic biofilm[J]. Bioresource Technology, 2019, 290: 121723. doi: 10.1016/j.biortech.2019.121723 [38] ZHU F P, DUAN J L, YUAN X Z, et al. Hydrolysis, adsorption, and biodegradation of bensulfuron methyl under methanogenic conditions[J]. Chemosphere, 2018, 199: 138-146. doi: 10.1016/j.chemosphere.2018.01.149 [39] CHEN X C, ZHOU Q Z, LIU F M, et al. Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase[J]. Chemosphere, 2019, 233: 49-56. doi: 10.1016/j.chemosphere.2019.05.144 [40] BOUFERCHA O, MONFORTE A R, BOUDEMAGH A, et al. Biodegradation and metabolic pathway of the neonicotinoid insecticide thiamethoxam by Labrys portucalensis F11[J]. International Journal of Molecular Sciences, 2022, 23(22): 14326. doi: 10.3390/ijms232214326 [41] ANWAR S, WAHLA A Q, ALI T, et al. Biodegradation and subsequent toxicity reduction of Co-contaminants tribenuron methyl and metsulfuron methyl by a bacterial consortium B2R[J]. ACS Omega, 2022, 7(23): 19816-19827. doi: 10.1021/acsomega.2c01583 [42] WANG J L, WANG S Z. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3573-3582. doi: 10.1007/s00253-018-8845-4 [43] 万家秀, 何碧红, 张永合, 等. 水环境中磺胺类抗生素的生物降解[J]. 广州化工, 2022, 50(22): 153-156. doi: 10.3969/j.issn.1001-9677.2022.22.046 WAN J X, HE B H, ZHANG Y H, et al. Biodegradation of sulfa antibiotics in aquatic environment[J]. Guangzhou Chemical Industry, 2022, 50(22): 153-156(in Chinese) doi: 10.3969/j.issn.1001-9677.2022.22.046
[44] ARYEE A A, HAN R P, QU L B. Occurrence, detection and removal of amoxicillin in wastewater: A review[J]. Journal of Cleaner Production, 2022, 368: 133140. doi: 10.1016/j.jclepro.2022.133140 [45] KLARICH K L, PFLUG N C, DeWALD E M, et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment[J]. Environmental Science & Technology Letters, 2017, 4(5): 168-173. [46] FERNANDES J O, BERNARDINO C A R, MAHLER C F, et al. Biochar generated from agro-industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater[J]. Water, Air, & Soil Pollution, 2021, 232(2): 67. [47] CHEN H, GAO B, LI H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide[J]. Journal of Hazardous Materials, 2015, 282: 201-207. doi: 10.1016/j.jhazmat.2014.03.063 [48] MEHTA T, RATHI A, VERMA A, et al. Elimination of Fipronil insecticide by adsorption technique from aqueous solution by Cu-13X zeolite composite: Isotherms, kinetic and thermodynamic studies[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(17): 4969-4985. doi: 10.1080/03067319.2020.1790545 [49] RANI M, SHANKER U. Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles[J]. Environmental Science and Pollution Research, 2018, 25(11): 10878-10893. doi: 10.1007/s11356-018-1346-2 [50] RAHMAN N, VARSHNEY P. Assessment of ampicillin removal efficiency from aqueous solution by polydopamine/zirconium(Ⅳ) iodate: Optimization by response surface methodology[J]. RSC Advances, 2020, 10(34): 20322-20337. doi: 10.1039/D0RA02061C [51] WU J, FENG Y Q, DAI Y R, et al. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)[J]. Science of the Total Environment, 2016, 553: 13-19. doi: 10.1016/j.scitotenv.2016.02.067 [52] BESTER K, BANZHAF S, BURKHARDT M, et al. Activated soil filters for removal of biocides from contaminated Run-off and waste-waters[J]. Chemosphere, 2011, 85(8): 1233-1240. doi: 10.1016/j.chemosphere.2011.07.017 [53] HU C Y, CHENG M, LIN Y L. Chlorination of bensulfuron-methyl: Kinetics, reaction factors and disinfection by-product formation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 46-51. doi: 10.1016/j.jtice.2015.02.029 [54] AZAD H, MOHSENNIA M, CHENG C, et al. Cross-linked poly(vinyl butyral)/amine-functionalized polyacrylonitrile adsorptive membrane nano-composited with CeO2 nanoparticles for simultaneous aqueous removal of heavy metals and cefotaxime[J]. Chemical Engineering Journal, 2022, 435: 134849. doi: 10.1016/j.cej.2022.134849