-
水是物质循环和能量流动的重要组成部分,也是生态环境和人类社会发展必不可少的自然资源. 氟作为一种与人体健康密切相关的必需微量元素,广泛地存在于自然水体中. 中国是典型的大面积高氟地区,也是世界上地方性氟中毒危害最严重的国家之一[1]. 在2022年中国环境公报中,城市集中式饮用水水源(地级市、县级)和农村集中式饮用水水源存在9.50%、15.6%、32.30%监测点不达标,数据显示氟化物是主要超标物质[2]. 其中,区域气象气候条件[3]、地形地质条件[4]、水动力条件、水化学性质[5]、工业生产所排放的“三废”,是引起水体中氟含量升高的主要原因. 人体所需的氟主要来自饮用水,国家生活饮用水标准规定饮用水中氟含量不得超过 1.0 mg·L−1,世界卫生组织规定饮用水中氟含量在 0.5—1.0 mg·L−1,水中过量的氟会严重威胁人类身体健康. 研究发现,长期暴露于高氟废水条件下的儿童智力水平会显著降低[6]. 长期饮用高氟水,不仅会出现氟斑牙、氟牙症、氟骨症疾病,还会引起过敏、神经系统疾病等,最终甚至会导致癌症等致命疾病. 因此,对水体氟污染区域进行有效治理和修复显得尤为重要.
目前,常见的水体除氟方法有吸附法[7]、沉淀法[8]、离子交换法[7]、膜分离法[9]、电化学法[10 − 11]、冷冻法[12]以及植物方法[13]等. 与其他方法相比较,吸附法具有操作简单、适用性广泛、高效率低成本、运行稳定等优点,同时,吸附材料可重复再生、来源广泛. 然而,吸附容量有限、处理水量小以及易受其他因素影响等问题限制了吸附法在实际中的应用. 因此,探索开发新型吸附材料及制备工艺成为亟需突破的难题.
基于此,本文在归纳常用除氟吸附材料的基础上,探讨了各种环境因素对氟吸附过程的影响作用,概括了天然吸附材料、金属基吸附材料、生物质吸附材料、其他废弃物吸附材料以及新型吸附材料除氟的吸附机理,并展望了今后吸附材料的发展方向.
不同功能性除氟吸附材料在饮用水及含氟废水中的研究进展
Research progress of different functional defluorination adsorbent materials in drinking water and fluorinated wastewater
-
摘要: 水体氟污染会引起氟斑牙和骨骼畸形等疾病,已经严重危害到了人类健康. 利用不同功能性吸附材料吸附除氟已经成为处理含氟水当中的关键技术. 为减轻水体氟污染所诱发的环境问题,有效降低水体氟污染的环境健康风险,本文归纳了不同功能性吸附材料(天然吸附材料、金属基吸附材料、生物质吸附材料、工业废弃物吸附材料以及纳米吸附材料等)在水体氟污染处理中的吸附机理和效果. 同时,探讨了不同环境因素对功能性吸附材料在水体除氟过程中的关键影响,并展望了除氟吸附材料未来的发展趋势,以期为今后的水体氟污染治理提供一定的理论指导和依据.Abstract: Water fluorine pollution can cause dental fluorosis, bone deformity and other diseases, which have seriously harmed human health. The removal of fluorine using different functional adsorption materials has become a key technology in water fluorine pollution. To effectively reduce the environmental problems and the environmental health risk caused by water fluoride pollution, the adsorption mechanisms and effects of different functional adsorption materials (e.g., natural adsorption materials, metal-based adsorption materials, biomass adsorption materials, waste adsorption materials and nano-adsorption materials) in water fluoride pollution treatment are summarized. Furthermore, the primary impacts of diverse environmental factors on water fluoride removal by functional adsorption materials are deeply discussed, and the future development trend of fluoride removal materials is looked into, thereby providing the certain theoretical guidance and basis for the treatment of water fluoride pollution.
-
表 1 沸石吸附性能比较
Table 1. Comparison of the zeolite adsorption properties
材料
MaterialpH 温度/℃
Temperature竞争离子影响大小
Competitive ion effect size平衡时间
Equilibrium time最大吸附容量/
(mg·g−1)
Qmax氯化钙改性沸石[25] 6 25±1 CO32− > SO42− > Cl− 360 min 1.77 氢氧化铝改性辉沸石[30] 5—8 23±2 HCO3− > SO42− > Cl− 180 min 12.12 铁改性辉沸石[31] 6.94 25 — 120 min 2.31 锰改性沸石[32] 9 25 SO42− > Cl− > NO3− 240 min 2.17 镧改性沸石[28] 6.3 25 HCO3− > SO42−≈Cl−≈NO3− — 141.50 镧铁改性沸石[33] 5—7 25 HCO3− > CO32− > SO42− — 2.64 表 2 黏土矿物吸附性能对比
Table 2. Comparison of the adsorption properties of clay minerals
材料
Material改性前吸附
容量/
(mg·g−1)
q改性处理
Modified
treatmentpH 温度/℃
Temperature竞争离子影响大小
Competitive ion effect size平衡时间/min
Equilibrium time最大吸附容量/
(mg·g−1)
Qmax高岭土[18] 0.11 球磨 3 50 HCO3− > SO42− > Cl− > NO3− 30 0.78 膨润土[34] 0.62 金属改性 3—10 25±2 HCO3− > SO42− > Cl− > NO3− 720 2.26 蒙脱石[35] 0.26 纳米材料 3 — — 60 11.15 海泡石[36] 0.94 热处理 3 25 HPO42− > HCO3− > SO42−> NO3− — 169.95 火山岩[37] 8.44 盐改性、热处理 4—11 55 HCO3− > SO42− > Cl− > NO3− 240 13.77 表 3 活性氧化铝吸附性能对比
Table 3. Comparison of activated alumina
材料
Material合成方法
Synthetic
methodpH 温度/℃
Temperature竞争离子影响大小
Competitive ion effect size平衡时间/min
Equilibrium
time最大吸附容量/
(mg·g−1)
Qmax介孔氧化铝[47] 水热法 3 25 — 180 8.25 镧铝改性氧化铝[48] 水热法 5—10 30 — 720 94.64 钙铝镧复合材料[49] 水热法 6.8 — PO43− >HCO3− > SO42− > NO3− > Cl− 180 29.30 大孔活性氧化铝[45] 溶胶-凝胶法 5 25 — 240 119.20 铁镁锆氢氧化物[50] 共沉淀法 3 25 SO42− > HΡO42− > Cl−≈HCO3−≈CO32− 60 88.55 锆铝镧金属复合材料[51] 共沉淀法 3 25 PO43− > SO42− > NO3− 400 90.48 镧镁改性活性氧化铝[52] — 7 25 CO32− > SO42− > Cl− > NO3− 120 8.56 硫酸氯化铝改性活性氧化铝[53] — 6—7 25 CO32− > HΡO42− > HCO3− > H2PO4− > SO42− > Cl−≈NO3− 120 6.46 氧化石墨烯氧化铝复合材料[54] 水热法 6 25 PO43− > HCO3− > SO42− > Cl− > NO3− 90 11.52 表 4 生物质及工业废弃物吸附材料吸附性能对比
Table 4. Comparison of the adsorption performance of biomass and industrial waste adsorption materials
材料
MaterialpH 温度/℃
Temperature竞争离子影响大小
Competitive ion effect size平衡时间/min
Equilibrium time最大吸附容量/
(mg·g−1)
Qmax壳聚糖[67] 3 20 CO32− > NO3−≈ SO42− > Cl− 230 153.00 水葫芦叶柄[68] 4 30 HCO3− > SO42− > CO32−≈PO43−≈NO3− 210 5.00 象草叶[68] 4 30 HCO3− > SO42− > CO32− > NO3− > PO43− 210 7.00 废蘑菇堆生物炭[69] 6—8 25±2 SO42− > Cl− > NO3− 180 36.47 锆碳化花生壳[70] 3 25 HCO3− > SO42−≈Cl− 180 1.26 赤泥[71] 7—8 25 — 20 91.28 煤渣[72] 2 30 — 300 15.46 石灰污泥废物[73] 6.75 27 — 30 0.94 钢渣[74] 3 25 SO42− > Cl− > HCO3− 10 1.23 废泥浆[75] 5 20±1 PO43− > SO42− > NO3− 60 27.20 表 5 纳米除氟吸附材料吸附性能对比
Table 5. Comparison of adsorption properties of new nano-fluoride adsorption materials
材料
MaterialpH 温度/℃
Temperature竞争离子影响大小
Competitive ion effect size平衡时间/min
Equilibrium time最大吸附容量/
(mg·g−1)
Qmax介孔氧化钙[83] 6.5 25 CO32− > SO42− > Cl− 90 181.96 氢氧碳酸铈纳米球[84] 7±0.2 25 CO32− > HCO3− > Cl− > SO42− ≈ PO43− ≈ NO3− 240 48.15 多孔氧化镁纳米片[86] 7 25 PO43− > CO32− > HCO3− > SO42−≈Cl− ≈NO3− 60 185.50 石墨烯[99] 7 25 — 60 35.59 改性石墨烯[93] 3—11 25 — 45 29.06 氧化石墨烯复合材料[54] 6 25 PO43− > HCO3− > SO42− > Cl− > NO3− 90 11.83 MOF-801[95] 2—10 30 PO43− > HCO3− > SO42−≈Cl− ≈ NO3− 120 40.26 MIL-96(Al)[96] 3—11 25 CO32− > SO42−≈Cl−≈NO3− 90 42.19 Zr-MOFs[97] 3—9 25 SO42− > PO43−≈CO32−≈HCO3−≈ Cl− ≈NO3− 20 103.95 UiO-66(Zr)[98] 5—7 25 PO43− > HCO3− >CO32− > SO42− ≈ Cl− ≈ NO3− 240 295.00 Al-FuMOF[100] 2—9 20 SO42− > CO32− > HCO3− > Cl− > PO43− > NO3− 1440 600.00 -
[1] 郑丹阳, 耿存珍. 水体除氟方法的最新研究进展[J]. 环境科学与管理, 2014, 39(11): 31-34. ZHENG D Y, GENG C Z. Research progress for removing fluorine from water[J]. Environmental Science and Management, 2014, 39(11): 31-34 (in Chinese).
[2] 2022 年中国生态环境状况公报(摘录)[J]. 环境保护, 2023, 51(Z2): 64-81. China ecological environment status bulletin 2022 (Excerpt)[J]. Environmental Protection, 2023, 51(Z2): 64-81(in Chinese).
[3] 张启贤, 张成, 徐瑶, 等. 高氟水处理技术发展现状[J]. 绿色科技, 2021, 23(12): 46-49. ZHANG Q X, ZHANG C, XU Y, et al. Treatment status of high fluorine water[J]. Journal of Green Science and Technology, 2021, 23(12): 46-49 (in Chinese).
[4] GAO Z J, SHI M J, ZHANG H Y, et al. Formation and in situ treatment of high fluoride concentrations in shallow groundwater of a semi-arid region: Jiaolai basin, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(21): 8075. doi: 10.3390/ijerph17218075 [5] DAS S K, DAS R K. Investigation on fluoride concentration in ground water by hydrochemical pathway[J]. International Journal of Environmental Analytical Chemistry, 2021, 101(15): 2551-2567. doi: 10.1080/03067319.2019.1694672 [6] DUAN Q, JIAO J, CHEN X, et al. Association between water fluoride and the level of children’s intelligence: A dose-response metaanalysis[J]. Public Health, 2018, 154: 87-97. doi: 10.1016/j.puhe.2017.08.013 [7] TOMAR V, PRASAD S, KUMAR D. Adsorptive removal of fluoride from water samples using Zr-Mn composite material[J]. Microchemical Journal, 2013, 111: 116-124. doi: 10.1016/j.microc.2013.04.007 [8] DAVARKHAH R, ZEINAB P, HOSSEIN M A, et al. Co-application of coagulation and electrochemical processes to remove fluoride from water[J]. FLUORIDE, 2020, 53(3): 483-490. [9] 杨彬, 樊贵盛, 梁镇海. 膜法水处理技术与传统方法的比较[J]. 太原理工大学学报, 2004, 35(2): 155-159,163. YANG B, FAN G S, LIANG Z H. The comparison of membrane technology and conventional methods for water treatment[J]. Journal of Taiyuan University of Technology, 2004, 35(2): 155-159,163 (in Chinese).
[10] ARAHMAN N, MULYATI S, LUBIS M R, et al. The removal of fluoride from water based on applied current and membrane types in electrodialyis[J]. Journal of Fluorine Chemistry, 2016, 191: 97-102. doi: 10.1016/j.jfluchem.2016.10.002 [11] ARAR O, YAVUZ E, YUKSEL U, et al. Separation of low concentration of fluoride from water by electrodialysis (ED) in the presence of chloride and sulfate ions[J]. Separation Science and Technology, 2009, 44(7): 1562-1573. doi: 10.1080/01496390902775943 [12] SADAT H S, HOSSEIN M A. Removal of fluoride from drinking water by freezing technology[J]. Fluoride, 2019, 52(3): 231-247. [13] KARMAKAR S, MUKHERJEE J, MUKHERJEE S. Biosorption of fluoride by water lettuce (Pistia stratiotes) from contaminated water[J]. International Journal of Environmental Science and Technology, 2018, 15(4): 801-810. doi: 10.1007/s13762-017-1439-3 [14] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Defluoridation of drinking water using adsorption processes[J]. Journal of Hazardous Materials, 2013, 248/249: 1-19. doi: 10.1016/j.jhazmat.2012.12.043 [15] LIU X W, WANG Y X, CUI X Y, et al. Fluoride removal from wastewater by natural and modified gibbsite[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 658-668. [16] SIVASAMY A, SINGH K P, MOHAN D, et al. Studies on defluoridation of water by coal-based sorbents[J]. Journal of Chemical Technology & Biotechnology, 2001, 76(7): 717-722. [17] CORRAL-CAPULIN N G, VILCHIS-NESTOR A R, GUTIÉRREZ-SEGURA E, et al. Comparison of the removal behavior of fluoride by Fe3+ modified geomaterials from water[J]. Applied Clay Science, 2019, 173: 19-28. doi: 10.1016/j.clay.2019.03.003 [18] MEENAKSHI S, SUNDARAM C S, SUKUMAR R. Enhanced fluoride sorption by mechanochemically activated kaolinites[J]. Journal of Hazardous Materials, 2008, 153(1/2): 164-172. [19] 段平洲, 贾晓波, 后希康, 等. 磁性铝基 MOF 的表征和对水体中氟化物吸附性能研究[J]. 环境科学研究, 2021, 34(5): 1139-1147. DUAN P Z, JIA X B, HOU X K, et al. Characterization and adsorption properties of magnetic Al-MOF composite for fluoride[J]. Research of Environmental Sciences, 2021, 34(5): 1139-1147 (in Chinese).
[20] CHAKRABORTY A, NASKAR M K. Study on the synthesis and structural properties of zeolite A-MgO composite for defluoridation of water[J]. Transactions of the Indian Ceramic Society, 2021, 80(3): 199-207. doi: 10.1080/0371750X.2021.1978864 [21] 张静, 陈男, 冯传平. 铁负载壳聚糖颗粒吸附除氟研究[J]. 水处理技术, 2015, 41(7): 31-36. ZHANG J, CHEN N, FENG C P. Adsorption of fluoride by iron-impregnated chitosan(Fe-CTS)granule[J]. Technology of Water Treatment, 2015, 41(7): 31-36 (in Chinese).
[22] CHEN N, ZHANG Z Y, FENG C P, et al. Fluoride removal from water by granular ceramic adsorption[J]. Journal of Colloid and Interface Science, 2010, 348(2): 579-584. doi: 10.1016/j.jcis.2010.04.048 [23] LU W J, ZHANG C H, SU P D, et al. Research progress of modified natural zeolites for removal of typical anions in water[J]. Environmental Science:Water Research & Technology, 2022, 8(10): 2170-2189. [24] 陈连军, 陈劲松. 载镧天然沸石对水体中 F-的去除性能研究[J]. 环境科学与技术, 2022, 45(4): 38-46. CHEN L J, CHEN J S. Study on the removal performance of lanthanum-loaded natural zeolite for F- in water[J]. Environmental Science& Technology, 2022, 45(4): 38-46 (in Chinese).
[25] ZHANG Z J, TAN Y, ZHONG M F. Defluorination of wastewater by calcium chloride modified natural zeolite[J]. Desalination, 2011, 276(1/2/3): 246-252. [26] CHEN J B, YANG R J, ZHANG Z Y, et al. Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal flyash[J]. Journal of Hazardous Materials, 2022, 421: 126817. doi: 10.1016/j.jhazmat.2021.126817 [27] 陈文, 陈东, 刘林艳. 锆改性沸石的动态除氟研究[J]. 非金属矿, 2012, 35(4): 64-67. CHEN W, CHEN D, LIU L Y. Dynamic fluoride removal of zirconium modified natural zeolite[J]. Non-Metallic Mines, 2012, 35(4): 64-67 (in Chinese).
[28] YANG R J, CHEN J B, ZHANG Z Y, et al. Performance and mechanism of lanthanum-modified zeolite as a highly efficient adsorbent for fluoride removal from water[J]. Chemosphere, 2022, 307: 136063. doi: 10.1016/j.chemosphere.2022.136063 [29] DÍAZ-FLORES P E, ARCIBAR-OROZCO J A, FLORES-ROJAS A I, et al. Synthesis of a chitosan-zeolite composite modified with La(III): Characterization and its application in the removal of fluoride from aqueous systems[J]. Water, Air, & Soil Pollution, 2021, 232(6): 1-14. [30] DESSALEGNE M, ZEWGE F, DIAZ I. Aluminum hydroxide supported on zeolites for fluoride removal from drinking water[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3): 605-613. [31] SUN Y B, FANG Q H, DONG J P, et al. Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III)[J]. Desalination, 2011, 277(1/2/3): 121-127. [32] YANG B, SUN G R, QUAN B X, et al. An experimental study of fluoride removal from wastewater by Mn-Ti modified zeolite[J]. Water, 2021, 13(23): 3343. doi: 10.3390/w13233343 [33] JIA C M, FAN Y J, JIANG R L, et al. Preparation of La(III), Fe(III) modified zeolite molecular sieves for the removal of fluorine from water[J]. Water, 2022, 14(19): 2946. doi: 10.3390/w14192946 [34] THAKRE D, RAYALU S, KAWADE R, et al. Magnesium incorporated bentonite clay for defluoridation of drinking water[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 122-130. [35] NAGHIZADEH A, GHOLAMI K. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions[J]. Journal of Water and Health, 2017, 15(4): 555-565. doi: 10.2166/wh.2017.052 [36] LEE J I, HONG S H, LEE C G, et al. Experimental and model study for fluoride removal by thermally activated sepiolite[J]. Chemosphere, 2020, 241: 125094. doi: 10.1016/j.chemosphere.2019.125094 [37] 宋倩. 火山岩基多孔陶粒吸附去除地下水中氟的特性和机理研究[D]. 天津: 天津大学, 2018. SONG Q. Performance and mechanism of fluoride adsorption from aqueous solution by granular ceramic adsorbent based on native volcanic rocks[D]. Tianjin: Tianjin University, 2018 (in Chinese).
[38] MUSCHIN T, ZULCHIN H, JIA M L. Adsorption behavior of polyhydroxy-iron-modified coal-bearing Kaolin for fluoride removal[J]. ChemistrySelect, 2021, 6(13): 3075-3083. doi: 10.1002/slct.202100226 [39] TOR A. Removal of fluoride from an aqueous solution by using montmorillonite[J]. Desalination, 2006, 201(1/2/3): 267-276. [40] ZHANG S Y, LYU Y, SU X S, et al. Removal of fluoride ion from groundwater by adsorption on lanthanum and aluminum loaded clay adsorbent[J]. Environmental Earth Sciences, 2016, 75(5): 401. doi: 10.1007/s12665-015-5205-x [41] 王晨晨, 段颖, 徐微, 等. 活性氧化铝改性除氟性能研究[J]. 安徽农业大学学报, 2014, 41(2): 248-252. WANG C C, DUAN Y, XU W, et al. Performance of modified activated alumina for fluoride removal[J]. Journal of Anhui Agricultural University, 2014, 41(2): 248-252 (in Chinese).
[42] GAO Y J, YOU K, FU J X, et al. Manganese modified activated alumina through impregnation for enhanced adsorption capacity of fluoride ions[J]. Water, 2022, 14(17): 2673. doi: 10.3390/w14172673 [43] TOMAR G, THAREJA A, SARKAR S. Enhanced fluoride removal by hydroxyapatite-modified activated alumina[J]. International Journal of Environmental Science and Technology, 2015, 12(9): 2809-2818. doi: 10.1007/s13762-014-0653-5 [44] RAFIQUE A, ALI AWAN M, WASTI A, et al. Removal of fluoride from drinking water using modified immobilized activated alumina[J]. Journal of Chemistry, 2013, 2013: 1-7. [45] YU C L, LIU L, WANG X D, et al. Fluoride removal performance of highly porous activated alumina[J]. Journal of Sol-Gel Science and Technology, 2023, 106(2): 471-479. doi: 10.1007/s10971-022-05722-2 [46] COLLEDGE G T, OUTRAM J G, MILLAR G J. Improved remediation of fluoride contaminated water using titania-alumina sorbents[J]. Journal of Water Process Engineering, 2022, 49: 103091. doi: 10.1016/j.jwpe.2022.103091 [47] XU N C, LIU Z, DONG Y P, et al. Controllable synthesis of mesoporous alumina with large surface area for high and fast fluoride removal[J]. Ceramics International, 2016, 42(14): 15253-15260. doi: 10.1016/j.ceramint.2016.06.164 [48] JIANG G M, JIN L F, PAN Q L, et al. Structural modification of aluminum oxides for removing fluoride in water: Crystal forms and metal ion doping[J]. Environmental Technology, 2022, 43(21): 3248-3261. doi: 10.1080/09593330.2021.1921044 [49] XIANG W, ZHANG G K, ZHANG Y L, et al. Synthesis and characterization of cotton-like Ca-Al-La composite as an adsorbent for fluoride removal[J]. Chemical Engineering Journal, 2014, 250: 423-430. doi: 10.1016/j.cej.2014.03.118 [50] ZHANG Y Z, HUANG K. Defluoridation behavior of layered Fe-Mg-Zr hydroxides and its continuous purification of groundwater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578. [51] ZHOU J, ZHU W K, YU J, et al. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide[J]. Applied Surface Science, 2018, 435: 920-927. doi: 10.1016/j.apsusc.2017.11.108 [52] 张小磊, 李尚明, 李红艳, 等. 负载镧镁改性活性氧化铝的除氟性能[J]. 环境工程学报, 2016, 10(8): 4189-4195. ZHANG X L, LI S M, LI H Y, et al. Adsorption fluoride removal by La-Mg-loaded modified activated alumina[J]. Chinese Journal of Environmental Engineering, 2016, 10(8): 4189-4195 (in Chinese).
[53] 王晨晨, 段颖, 徐微, 等. 硫酸与氯化铝复合改性活性氧化铝吸附除氟研究[J]. 水处理技术, 2014, 40(8): 29-32,37. WANG C C, DUAN Y, XU W, et al. Study of defluorination by composite modified activated alumina adsorption[J]. Technology of Water Treatment, 2014, 40(8): 29-32,37 (in Chinese).
[54] XU N C, LI S X, LI W, et al. Removal of fluoride by graphene oxide/alumina nanocomposite: Adsorbent preparation, characterization, adsorption performance and mechanisms[J]. ChemistrySelect, 2020, 5(6): 1818-1828. doi: 10.1002/slct.201904867 [55] 杨小洪, 魏世勇, 李永峰. 几种铁氧化物吸附氟的能力及影响因素的研究[J]. 湖北民族学院学报(自然科学版), 2009, 27(3): 248-253. YANG X H, WEI S Y, LI Y F. Fluoride adsorption capacity and influence factors of several iron oxides[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2009, 27(3): 248-253 (in Chinese).
[56] 高乃云, 徐迪民, 范瑾初, 等. 氧化铁涂层砂改性滤料除氟性能研究[J]. 中国给水排水, 2000, 16(1): 1-4. GAO N Y, XU D M, FAN J C, et al. A study on the performance of modified filter media using iron oxide coated sand for fluoride removal[J]. China Water & Wastewater, 2000, 16(1): 1-4 (in Chinese).
[57] ZHANG C, LI Y Z, WANG T J, et al. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water[J]. Applied Surface Science, 2017, 425: 272-281. doi: 10.1016/j.apsusc.2017.06.159 [58] NAGENDRA RAO C R, KARTHIKEYAN J. Removal of fluoride from water by adsorption onto lanthanum oxide[J]. Water, Air, & Soil Pollution, 2012, 223(3): 1101-1114. [59] 周春琼, 邓先和, 刘海敏, 等. 吸附法处理含氟水溶液的研究与应用[J]. 水处理技术, 2006, 32(1): 1-5. ZHOU C Q, DENG X H, LIU H M, et al. Treatment of aqueous solution containing fluoride by absorption process[J]. Technology of Water Treatment, 2006, 32(1): 1-5 (in Chinese).
[60] DOU X M, MOHAN D, PITTMAN C U, et al. Remediating fluoride from water using hydrous zirconium oxide[J]. Chemical Engineering Journal, 2012, 198/199: 236-245. doi: 10.1016/j.cej.2012.05.084 [61] 郑利祥, 高杰, 杨建超. 载镧活性氧化铝制备及含氟废水除氟因素研究[J]. 煤炭科学技术, 2018, 46(9): 87-92. ZHENG L X, GAO J, YANG J C. Study on preparation of La-loaded active alumina and factors affecting fluoride removal for fluorinecontaining wastewater[J]. Coal Science and Technology, 2018, 46(9): 87-92 (in Chinese).
[62] 郜玉楠, 茹雅芳, 王静, 等. 微米氧化锆/沸石分子筛处理高氟地下水的研究[J]. 中国给水排水, 2020, 36(3): 49-53. GAO Y N, RU Y F, WANG J, et al. Treatment of high fluoride groundwater by micron zirconia/zeolite molecular sieve[J]. China Water & Wastewater, 2020, 36(3): 49-53 (in Chinese).
[63] ZHOU Y M, YU C X, SHAN Y. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin[J]. Separation and Purification Technology, 2004, 36(2): 89-94. doi: 10.1016/S1383-5866(03)00167-9 [64] BILICI BASKAN M, BIYIKLI A R. The adsorption of fluoride from aqueous solutions by Fe, Mn, and Fe/Mn modified natural clinoptilolite and optimization using response surface methodology[J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2021, 93(4): 620-635. doi: 10.1002/wer.1464 [65] YANG B, JIA C M, SUN G R, et al. Enhancing the adsorption function of F- by iron and zirconium doped zeolite: Characterization and parameter optimization[J]. Environmental Engineering Research, 2023, 28(2): 220010. [66] MALIYEKKAL S M, SHUKLA S, PHILIP L, et al. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 183-192. [67] ZHU T Y, ZHU T H, GAO J, et al. Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite[J]. Journal of Fluorine Chemistry, 2017, 194: 80-88. doi: 10.1016/j.jfluchem.2017.01.002 [68] MANNA S, ROY D, SAHA P, et al. Defluoridation of aqueous solution using alkali-steam treated water hyacinth and elephant grass[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50: 215-222. doi: 10.1016/j.jtice.2014.12.003 [69] CHEN G J, PENG C Y, FANG J Y, et al. Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide[J]. Desalination and Water Treatment, 2016, 57(26): 12385-12395. doi: 10.1080/19443994.2015.1049959 [70] ALAGUMUTHU G, RAJAN M. Kinetic and equilibrium studies on fluoride removal by zirconium (IV): Impregnated groundnut shell carbon[J]. Hemijska Industrija, 2010, 64(4): 295-304. doi: 10.2298/HEMIND100307017A [71] 魏宁, 栾兆坤, 王军, 等. 铝改性赤泥吸附剂的制备及其除氟效能的研究[J]. 无机化学学报, 2009, 25(5): 849-854. WEI N, LUAN Z K, WANG J, et al. Preparation of modified red mud with aluminum and its adsorption characteristics on fluoride removal[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(5): 849-854 (in Chinese).
[72] 李彦儒. 超声波辅助铁改性煤渣的制备及除氟性能研究[D]. 临汾: 山西师范大学, 2013. LI Y R. Preparation of ultrasonic assisting ferric chloride modified cinder and fluoride in performance research[D]. Linfen: Shanxi Normal University, 2013 (in Chinese).
[73] MOHAN R, BORA A J, DUTTA R K. Fluoride removal from water by lime-sludge waste[J]. Desalination and Water Treatment, 2018, 112: 19-33. doi: 10.5004/dwt.2018.21918 [74] 朱殿梅, 邵波霖, 钟可意, 等. 镧改性钢渣对水中氟离子的吸附性能[J]. 环境工程学报, 2023, 17(4): 1167-1176. ZHU D M, SHAO B L, ZHONG K Y, et al. Adsorption performance of lanthanum-modified steel slag towards fluoride ion in water[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1167-1176 (in Chinese).
[75] KEMER B, OZDES D, GUNDOGDU A, et al. Removal of fluoride ions from aqueous solution by waste mud[J]. Journal of Hazardous Materials, 2009, 168(2/3): 888-894. [76] 张伟彬. 改性壳聚糖微球处理含氟废水的研究[J]. 电镀与环保, 2020, 40(2): 74-76. ZHANG W B. Study on treatment of fluorine-containing wastewater by modified chitosan microspheres[J]. Electroplating & Pollution Control, 2020, 40(2): 74-76 (in Chinese).
[77] KAMBLE S P, JAGTAP S, LABHSETWAR N K, et al. Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan[J]. Chemical Engineering Journal, 2007, 129(1/2/3): 173-180. [78] WORKENEH K, ZEREFFA E A, SEGNE T A, et al. Eggshell-derived nanohydroxyapatite adsorbent for defluoridation of drinking water from bofo of Ethiopia[J]. Journal of Nanomaterials, 2019, 2019: 1-12. [79] 路坊海, 王芝成, 彭南丹, 等. 提铝钠铁后赤泥残渣的除氟性能[J]. 有色金属(冶炼部分), 2019(1): 73-76. LU F H, WANG Z C, PENG N D, et al. Defluorination performance of red mud residue after recovery of Al, Na and Fe[J]. Nonferrous Metals (Extractive Metallurgy), 2019(1): 73-76 (in Chinese).
[80] 郑雁, 郑红, 赵磊, 等. 赤泥除氟效果及吸附特性研究[J]. 有色矿冶, 2008, 24(5): 38-41. ZHENG Y, ZHENG H, ZHAO L, et al. Study on the adsorption effect and characteristics of fluorine by red mud[J]. Non-Ferrous Mining and Metallurgy, 2008, 24(5): 38-41 (in Chinese).
[81] ZHANG S Y, LU Y, LIN X Y, et al. Removal of fluoride from groundwater by adsorption onto La(III)- Al(III) loaded scoria adsorbent[J]. Applied Surface Science, 2014, 303: 1-5. doi: 10.1016/j.apsusc.2014.01.169 [82] SANTHOSH C, VELMURUGAN V, JACOB G, et al. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal, 2016, 306: 1116-1137. doi: 10.1016/j.cej.2016.08.053 [83] 李杰. 新型纳米材料的制备及其除氟性能研究[D]. 石河子: 石河子大学, 2019. LI J. Preparation of novel nano materials for fluoride adsorption from water[D]. Shihezi: Shihezi University, 2019 (in Chinese).
[84] 张开胜. 纳米吸附材料的设计、制备及对水中氟离子去除机理研究[D]. 合肥: 中国科学技术大学, 2016. ZHANG K S. Design and preparation of nano- adsorbents and adsorption mechanism for fluoride in water[D]. Hefei: University of Science and Technology of China, 2016 (in Chinese).
[85] TEE G T, GOK X Y, YONG W F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review[J]. Environmental Research, 2022, 212: 113248. doi: 10.1016/j.envres.2022.113248 [86] JIN Z, JIA Y, ZHANG K S, et al. Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism[J]. Journal of Alloys and Compounds, 2016, 675: 292-300. doi: 10.1016/j.jallcom.2016.03.118 [87] KANG D J, YU X L, GE M F. Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal[J]. Chemical Engineering Journal, 2017, 330: 36-43. doi: 10.1016/j.cej.2017.07.140 [88] 吴承慧, 陈长安, 高旭波, 等. 改性纳米级 Fe3O4对地下水中氟的吸附性能研究[J]. 环境科学与技术, 2019, 42(6): 82-88. WU C H, CHEN C A, GAO X B, et al. Adsorption of fluoride from groundwater by modified nanoscale Fe3O4[J]. Environmental Science & Technology, 2019, 42(6): 82-88 (in Chinese).
[89] ZHANG K S, ZHU B S, YANG W, et al. Fluoride removal performance and mechanism of superparamagnetic Fe3O4 nanoparticles[J]. Desalination and Water Treatment, 2021, 233: 281-291. doi: 10.5004/dwt.2021.27541 [90] WANG P, FU F G, LIU T Y. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285: 131435. doi: 10.1016/j.chemosphere.2021.131435 [91] DEHGHANI M H, HAGHIGHAT G A, YETILMEZSOY K, et al. Adsorptive removal of fluoride from aqueous solution using single-and multi-walled carbon nanotubes[J]. Journal of Molecular Liquids, 2016, 216: 401-410. doi: 10.1016/j.molliq.2016.01.057 [92] ARAGA R, KALI S, SHARMA C S. Coconut-shell-derived carbon/carbon nanotube composite for fluoride adsorption from aqueous solution[J]. CLEAN-Soil, Air, Water, 2019, 47(5): 1800286. doi: 10.1002/clen.201800286 [93] ZHANG J, CHEN N, SU P Y, et al. Fluoride removal from aqueous solution by Zirconium-Chitosan/Graphene Oxide Membrane[J]. Reactive and Functional Polymers, 2017, 114: 127-135. doi: 10.1016/j.reactfunctpolym.2017.03.008 [94] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 170-182. LU H, YANG Q, KONG Y. Advances research in adsorption removal and oxidation degradation of organic pollutants from aquatic environments by MOFs materials[J]. Materials Reports, 2023, 37(4): 170-182 (in Chinese).
[95] ZHU X H, YANG C X, YAN X P. Metal-organic framework-801 for efficient removal of fluoride from water[J]. Microporous and Mesoporous Materials, 2018, 259: 163-170. doi: 10.1016/j.micromeso.2017.10.001 [96] WANG X G, ZHU H, SUN T S, et al. Synthesis and study of an efficient metal-organic framework adsorbent (MIL-96(Al)) for fluoride removal from water[J]. Journal of Nanomaterials, 2019, 2019: 1-13. [97] HE J Y, CAI X G, CHEN K, et al. Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal[J]. Journal of Colloid and Interface Science, 2016, 484: 162-172. doi: 10.1016/j.jcis.2016.08.074 [98] 谢东华. 铁、锆、铝基金属有机框架材料的制备及其对水体污染物的去除和检测研究[D]. 合肥: 中国科学技术大学, 2019. XIE D H. Fabrication of iron, zirconium, and aluminum based metal organic frameworks for removal and detection of water pollutants[D]. Hefei: University of Science and Technology of China, 2019 (in Chinese).
[99] LI Y H, ZHANG P, DU Q J, et al. Adsorption of fluoride from aqueous solution by graphene[J]. Journal of Colloid and Interface Science, 2011, 363(1): 348-354. doi: 10.1016/j.jcis.2011.07.032 [100] KARMAKAR S, DECHNIK J, JANIAK C, et al. Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water[J]. Journal of Hazardous Materials, 2016, 303: 10-20. doi: 10.1016/j.jhazmat.2015.10.030