-
二苯酮类化合物常用作个人护理品中的防晒剂以保护人体皮肤和头发免受紫外线照射,还被用作塑料表面涂层中的紫外线稳定剂[1]. 人们可以通过皮肤和口服途径接触到该类防晒剂,研究表明在使用含有二苯酮-3(BP-3)的防晒乳液后10 h内,大约有1%—2%的BP-3可穿透表皮屏障并进入血液[2]. 动物实验表明二苯酮类化合物具有多激素效应,其中二苯酮-1(BP-1)和BP-3具有较强的雌激素和抗雄激素效应[3],BP-3还具有致突变效应可使小鼠卵巢细胞姐妹染色体交换和染色体畸变[4]. 羟苯酯类化合物[5]是对羟基苯甲酸的烷基酯,由于其成本低、无异味、稳定性好等优点[6],常被添加于化妆品、药品和食品中用作防腐剂. 越来越多的证据表明,这些化合物可以干扰激素信号通路,具有潜在的致畸和诱变作用[7],并且还可能与多种生殖、免疫和呼吸系统疾病相关,如哮喘和乳腺癌[8 − 10]等,对人类的健康构成威胁. 三氯生(TCS)和三氯卡班(TCC)常被添加于个人护理品中,用作防腐抗菌剂,包括洗手液、手部消毒剂、洗发水和沐浴露等,但其亚致死浓度会增加细菌的抗性[11]. 流行病学研究显示,慢性的TCS[12]和TCC[13]暴露可能导致生育率下降、身体发育减缓以及内源性荷尔蒙活动的改变. 近期的研究显示,无论是TCS[14]还是TCC[15],都无法有效减少传染病菌或细菌的数量. 在世界各地,这两种防腐抗菌剂正逐渐被淘汰或者禁用,与此同时,替代品的使用正在增加,如对氯间二甲苯酚(PCMX). 和早期的防腐抗菌剂一样,PCMX也被认为是安全无毒的. 目前,世界各地的河流[16]和废水[17]中都检出高浓度的PCMX,而研究显示,环境中PCMX的慢性暴露会引发水生生物毒性[18 − 19]. 体内实验显示,慢性暴露于PCMX会延迟或抑制斑马鱼和虹鳟鱼的孵化,造成胚胎死亡、形态畸形,影响基因表达,并造成红细胞DNA损伤和神经毒性[18 − 19]. 此外,由于2019年冠状病毒的大流行大大增加了全球抗菌产品的消费量,从而大幅增加人类接触PCMX的频率和程度.
人类接触这些化学物质的主要途径是通过摄入或皮肤接触,最重要的来源是食物和个人护理产品[20 − 22]. 这些化学物质的代谢途径主要是通过尿液排出体外[23],因此,通常使用尿液中可测量的生物标志物进行内暴露评估. 人体生物监测被广泛应用于风险评估工作中,是国内外公认的有效评估化学物质暴露水平的方法,尤其是全国性的人体生物监测项目,具有系统性、专业性和大样本等特征,被视为人体环境污染物暴露评估的金标准[24]. 因此,需要高效准确的高通量前处理方法来更好地满足人体生物监测项目大批量样本的检测需求.
本课题组提出了固相萃取-高效液相色谱-质谱法同时测定人尿中12种个人护理品的检测方法[25],基于该项研究基础,本研究拓展了重点关注指标,新增二苯酮-6(BP-6)、PCMX和羟苯庚酯(HepP),同时优化了前处理方法,提出了96孔板酶解尿样,96孔板全自动固相萃取的高通量高效率前处理方法. 与文献报道的方法[26 − 31]相比较,本方法尿液样品需求量少,仅需要1 mL尿液,浓缩倍数为1倍;前处理部分全程采用96孔板酶解并全自动固相萃取,耗时短效率高,能够适应大批量样本的检测,同时减少了检测人员与有机溶剂的接触,对环境和检测人员更友好;方法检出限(LOD)较低,灵敏度和精密度较高;此外,新纳入的分析物PCMX,作为替代性抗菌剂的使用正在增加,研究表明其并非安全无毒,因此开展该物质的暴露评估刻不容缓,本方法为其进一步深入研究提供方法学支撑.
自动固相萃取-超高效液相色谱-串联质谱法测定人尿中15种防晒剂和防腐剂
Determination of 15 UV absorbers and preservatives in human urine by automated solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry
-
摘要: 本文建立了同时快速测定人尿液中15种防晒剂和防腐剂的高通量自动固相萃取-超高效液相色谱-串联质谱测定方法(automatic SPE-UPLC-MS/MS). 人尿液经β-葡萄糖醛酸酶过夜酶解后,以Waters HLB 96-well Plate(30 mg,30 μm)为基础,使用全自动固相萃取装置进行前处理,经25%乙腈溶液淋洗,甲醇-乙腈溶液(V:V=1:1)洗脱,氮吹至近干,20%乙腈溶液复溶后,采用Waters Acquity BEH C18色谱柱(100 mm×2.1 mm,1.7 μm)、二元梯度洗脱系统(流动相A为水,流动相B为乙腈)进行色谱分离. 质谱方法采用多反应监测(MRM)模式、电喷雾电离负离子模式和稳定同位素内标法进行数据采集和定量分析. 15种分析物在相应线性范围内的线性相关系数(r)均大于0.999,3个加标水平的加标回收率为89.1%—110%,日内和日间精密度分别为0.9%—13%和 3.1%—14%,样本稳定性、提取液稳定性、上样周期稳定性和反复冻融稳定性的相对标准偏差均在10%之内. 将本方法应用于300名志愿者随机尿液的测定,结果显示该人群尿液的主要检出成分为4种防腐剂,分别是羟苯甲酯(MP)、羟苯乙酯(EP)、羟苯丙酯(PP)和对氯间二甲苯酚(PCMX),检出率分别为100%、92%、82%和64%,中位浓度分别为11.5、0.53、0.65、2.09 ng·mL-1. 综上,本方法可应用于人尿液中15种防晒剂和防腐剂的快速提取、净化和定量分析,具有操作简便、灵敏度高、效率高、人员友好和绿色环保等优势,适用于大批量样品的检测应用.
-
关键词:
- 96孔板固相萃取 /
- 超高效液相色谱-三重四级杆串联质谱 /
- 尿液 /
- 防晒剂 /
- 防腐剂.
Abstract: A high-throughput automated solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (Automatic SPE-UPLC-MS/MS) method was developed for the simultaneous and rapid determination of 15 UV absorbers and preservatives in human urine. After overnight digestion by β-glucuronidase, human urine was extracted with a Waters HLB 96-well Plate (30 mg, 30 μm) using a fully automated solid-phase extraction device. The sample was washed with 25% acetonitrile solution and eluted with methanol: acetonitrile (V:V=1:1) solution. The eluate was evaporated to dryness under a gentle stream of nitrogen and reconstituted with 20% acetonitrile solution. The chromatographic separation was performed on a Waters Acquity BEH C18 column (100 mm×2.1 mm, 1.7 µm) with a binary gradient elution system (water as mobile phase A and acetonitrile as mobile phase B). The mass spectrometry was operated in multiple reaction monitoring (MRM) mode and negative electrospray ionization mode. Stable isotope internal standard was adopted for quantification. The linear correlation coefficients (r) of 15 target analytes were all greater than 0.999 in the corresponding linear ranges. The recovery rates at three spiked levels ranged from 89.1% to 110%. The intra-day and inter-day precisions were 0.9%—13% and 3.1%—14%, respectively. The deviations of sample stability, extract stability, auto-sampler stability, and freeze-thaw stability were found to be within 10%. This method was applied to 300 urine samples collected from volunteers, and found methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), and chloroxylenol (PCMX) had the highest detection rates (100%, 92%, 82%, and 64%, respectively). The median concentrations were 11.5, 0.53, 0.65, and 2.09 ng·mL-1 for MP, EP, PP, and PCMX, respectively. In conclusion, this method can be applied to the rapid extraction, purification, and quantitative of 15 UV absorbers and preservatives in human urine. The method had the advantages of easy operation, high sensitivity, high efficiency, personnel-friendly, and eco-friendly. It is suitable for the application of detecting samples on a large scale. -
表 1 BP-6、HepP和PCMX及其稳定同位素内标的质谱参数
Table 1. Mass spectrometric parameters of BP-6, HepP, PCMX and their stable isotope internal standards
分析物
Analyte缩写
Abbreviation保留时间/
min
tR母离子(m/z)
Precursor ion子离子/(m/z)
Product
ions锥孔电压/V
Cone
voltage碰撞能/eV
Collision
energy内标
Internal
Standard2,2'-Dihydroxy-4,4'-dimethoxybenzophenone BP-6 11.28 272.97 122.94*, 107.91 14 18, 38 TCC-D4 Heptyl paraben HepP 13.83 235.05 92.13*, 136.32 6 26, 20 HepP-D4 Chloroxylenol PCMX 9.70 154.88, 157.10 34.90*, 37.10 4 18, 24 PCMX-D6 HepP-D4 — 13.83 239.17 95.88 14 28 — PCMX-D6 — 9.66 160.85 34.91 8 16 — *, Quantitative ion分析物的定量离子. 表 2 15种目标分析物反复冻融稳定性评估
Table 2. Repeated freeze-thaw stability assessment of 15 target analytes
分析物
Analyte测定值/(ng·mL−1)
Experimental result相对标准偏差/%
RSD第1次
1st第2次
2nd第3次
3rdBP-1 14.0 14.0 13.7 1.2 BP-2 20.2 19.0 19.3 3.0 BP-3 5.83 5.76 5.62 1.9 BP-6 3.11 4.45 4.03 18 BP-8 12.7 12.0 10.7 9.0 4-OHBP 14.2 14.7 14.0 2.6 MP 66.3 62.3 64.7 3.1 EP 21.8 21.3 22.3 2.4 PP 23.3 23.5 23.2 0.65 BP 18.8 19.6 19.3 2.2 BzP 16.3 15.9 16.3 1.5 HepP 9.31 8.84 7.69 9.7 TCS 6.83 6.36 6.02 6.3 TCC 7.24 7.15 7.00 1.7 PCMX 205 202 212 2.5 表 3 15种目标分析物上样周期(30 h)稳定性
Table 3. Stability of the 15 target analytes at sampling intervals (30 h)
分析物
Analyte定量离子峰面积
Peak area ratio of quantitative ion测定值/(ng·mL−1)
Experimental result0 h 30 h 0 h 30 h 相对偏差/%
Relative deviationBP-1 7.29×105 7.65×105 15.4 14.8 2.1 BP-2 1.14×106 1.19×106 21.0 21.7 1.6 BP-3 7.44×103 7.58×103 10.2 9.80 2.1 BP-6 1.80×105 1.95×105 19.8 21.7 4.5 BP-8 9.86×103 1.02×104 12.8 12.1 2.7 4-OHBP 3.57×105 3.74×105 15.5 15.7 0.7 MP 2.60×106 2.48×106 64.8 64.5 0.2 EP 5.87×105 5.95×105 22.5 22.6 0.3 PP 1.04×106 1.11×106 25.0 25.4 0.8 BP 1.00×107 1.04×106 20.2 20.7 1.0 BzP 6.70×105 7.03×105 16.1 16.5 1.1 HepP 3.46×105 3.11×105 12.6 12.3 1.2 TCS 1.65×102 2.82×102 8.11 7.89 1.4 TCC 3.94×105 3.38×105 8.83 8.10 4.3 PCMX 1.12×105 1.26×105 206 205 0.02 表 4 15种目标分析物的线性范围、方法检出限和方法定量限
Table 4. Linear range, correlation coefficient, limit of detection(LOD), and limit of quantification(LOQ) for 15 kinds of target analytes
分析物
Analyte线性范围/(ng·mL−1)
Linear range相关系数
Correlation coefficient(r)检出限/(ng·mL−1)
LOD定量限/(ng·mL−1)
LOQBP-1 2—400 0.9994 0.01 0.04 BP-2 2—400 0.9994 0.01 0.04 BP-3 8— 1600 0.9998 0.08 0.26 BP-6 2—400 0.9997 0.02 0.05 BP-8 2—400 0.9997 0.04 0.12 4-OHBP 2—400 0.9994 0.01 0.04 MP 8— 1600 0.9995 0.35 0.72 EP 2—400 0.9998 0.02 0.05 PP 2—400 0.9996 0.01 0.04 BP 2—400 0.9998 0.01 0.02 BzP 2—400 0.9998 0.01 0.02 HepP 2—400 0.9996 0.01 0.02 TCS 5—400 0.9992 0.21 0.69 TCC 2—400 0.9992 0.03 0.10 PCMX 8— 1600 0.9991 1.20 2.50 y, peak area ratio of quantitative ion and isotope internal standard 定量离子与同位素内标的峰面积比;x, mass concentration 质量浓度 表 5 15种目标分析物在低浓度、中浓度和高浓度条件下的加标回收率和相对标准偏差、日内精密度和日间精密度
Table 5. Spiked recoveries,relative standard deviations (RSD) of intra-day and inter-day for 15 kinds of target analytes at low, medium and high concentrations
分析物
Analyte低浓度回收率/%
Low concentration recovery中浓度回收率/%
Medium concentration recovery高浓度回收率/%
High concentration recovery日内精密度/%
Intra-day RSD日间精密度/%
Inter-day RSDBP-1 89.5 99.5 101 1.1 4.2 BP-2 99.7 105 97.1 3.9 3.9 BP-3 89.8 91.0 99.0 2.4 7.1 BP-6 108 110 108 3.1 3.1 BP-8 105 101 104 2.8 7.1 4-OHBP 100 103 106 3.0 3.7 MP 93.2 101 107 2.1 4.9 EP 95.4 97.8 104 2.3 3.7 PP 97.1 97.1 104 4.6 4.4 BP 94.7 100 102 2.0 3.8 BzP 104 105 108 2.3 4.2 HepP 89.1 94.5 97.0 0.9 4.6 TCS 94.8 99.9 101 13 14 TCC 99.7 95.1 98.0 3.2 4.3 PCMX 98.6 103 102 4.7 5.8 注:加标浓度水平:0.5、10、50 ng·mL−1 (MP、BP-3和PCMX 为2、40、200 ng·mL−1).
Note: the spiked concentration at three levels are 0.5, 10 ,50 ng·mL−1 (2, 40 , 200 ng·mL−1 for MP, BP-3 and PCMX).表 6 NIST SRM
3672 和3673 测定值与参考值比较(n=7)Table 6. Comparison of experimental results and reference values of NIST SRM
3672 and3673 (n=7)分析物
AnalyteNIST SRM 3672 NIST SRM 3673 参考值/(µg·kg−1)
Reference value测定值/(µg·kg−1)
Experimental result相对标准
偏差/%
RSD参考值/(µg·kg−1)
Reference value测定值/(µg·kg−1)
Experimental result相对标准
偏差/%
RSDBP-3 186—196 200±10 2.0 267—281 299±8 2.1 MP 111—115 106±4 2.7 77.4—81.6 78.0±1.3 1.1 EP 7.92—8.32 8.09±0.18 3.1 10.0—10.6 9.9±0.4 2.9 PP 17.3—17.9 17.1±0.6 2.5 21.0—22.2 21.1±0.7 2.2 BP 10.9—11.3 10.9±0.2 3.3 1.08—1.14 1.14±0.05 2.8 TCS 17.2—18.2 16.0±0.9 8.1 5.95—6.59 5.86±0.73 12 表 7 15种内分泌干扰物在实际人群尿液中的测定值
Table 7. Concentrations of 15 endocrine disruptors in human urine
分析物
Analyte检出率/%
DF几何均值/
(ng·mL−1)
GM浓度值/(ng·mL−1)
Concentrations第5百分位数
P5第25百分位数
P25第50百分位数
P50第75百分位数
P75第95百分位数
P95BP-1 53 0.05 ND ND 0.02 0.26 2.50 BP-2 1.3 ND ND ND ND ND ND BP-3 47 0.26 ND ND ND 1.03 10.2 BP-6 27 0.03 ND ND ND 0.04 0.86 BP-8 0.0 ND ND ND ND ND ND 4-OHBP 21 ND ND ND ND ND 0.26 MP 100 16.6 1.81 4.63 11.5 51.08 375 EP 92 0.67 ND 0.12 0.53 3.82 58.8 PP 82 0.64 ND 0.05 0.65 5.98 99.4 BP 2.8 ND ND ND ND ND ND BzP 0.0 ND ND ND ND ND ND HepP 0.0 ND ND ND ND ND ND TCS 48 0.44 ND ND ND 0.95 11.8 TCC 9.8 ND ND ND ND ND 0.17 PCMX 64 3.95 ND ND 2.09 8.30 459 DF., detection frequency检出率; ND., no detectable 未检出; P5, P25, P50, P75 and P95 . , the mass concentration of targeted analytes of 5th, 25th, 50th, 75th and 95th percentile第5、25、50、75和95百分位数. -
[1] CALAFAT A M, WONG L Y, YE X Y, et al. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003: 2004[J]. Environmental Health Perspectives, 2008, 116(7): 893-897. doi: 10.1289/ehp.11269 [2] HAYDEN C G, ROBERTS M S, BENSON H A. Systemic absorption of sunscreen after topical application[J]. The Lancet, 1997, 350(9081): 863-864. doi: 10.1016/S0140-6736(05)62032-6 [3] SCHREURS R H M M, SONNEVELD E, JANSEN J H J, et al. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays[J]. Toxicological Sciences, 2005, 83(2): 264-272. [4] FRENCH J E. NTP technical report on the toxicity studies of 2-Hydroxy-4-methoxybenzophenone (CAS No. 131-57-7) Adminstered Topically and in Dosed Feed to F344/N Rats and B6C3F1 Mice[J]. Toxicity Report Series, 1992, 21: 1-14. [5] GUO Y, KANNAN K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure[J]. Environmental Science & Technology, 2013, 47(24): 14442-14449. [6] HONDA M, ROBINSON M, KANNAN K. Parabens in human urine from several Asian countries, Greece, and the United States[J]. Chemosphere, 2018, 201: 13-19. doi: 10.1016/j.chemosphere.2018.02.165 [7] BŁĘDZKA D, GROMADZIŃSKA J, WĄSOWICZ W. Parabens. From environmental studies to human health[J]. Environment International, 2014, 67: 27-42. doi: 10.1016/j.envint.2014.02.007 [8] FARHAAN H, HOWARD M. An overview of parabens and allergic contact dermatitis[J]. Skin Therapy Letter, 2013, 18(5): 5-7. [9] JUNGE K M, BUCHENAUER L, STRUNZ S, et al. Effects of exposure to single and multiple parabens on asthma development in an experimental mouse model and a prospective cohort study[J]. Science of the Total Environment, 2022, 814: 152676. doi: 10.1016/j.scitotenv.2021.152676 [10] KRISTIN V H, CECILIE S, LÅSTAD L S H, et al. Exposure to environmental phenols and parabens, and relation to body mass index, eczema and respiratory outcomes in the Norwegian RHINESSA study[J]. Environmental Health:a Global Access Science Source, 2021, 20(1): 81. [11] DRURY B, SCOTT J, ROSI-MARSHALL E J, et al. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities[J]. Environmental Science & Technology, 2013, 47(15): 8923-8930. [12] WEATHERLY L M, GOSSE J A. Triclosan exposure, transformation, and human health effects[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2017, 20(8): 447-469. doi: 10.1080/10937404.2017.1399306 [13] ROCHESTER J R, BOLDEN A L, PELCH K E, et al. Potential developmental and reproductive impacts of triclocarban: A scoping review[J]. Journal of Toxicology, 2017, 2017: 1-15. [14] KIM S A, MOON H, LEE K, et al. Bactericidal effects of triclosan in soap both in vitro and in vivo[J]. Journal of Antimicrobial Chemotherapy, 2015, 70(12): 3345-3352. [15] KIM S A, RHEE M S. Microbicidal effects of plain soap vs triclocarban-based antibacterial soap[J]. The Journal of Hospital Infection, 2016, 94(3): 276-280. doi: 10.1016/j.jhin.2016.07.010 [16] DSIKOWITZKY L, STRÄTER M, ARIYANI F, et al. First comprehensive screening of lipophilic organic contaminants in surface waters of the megacity Jakarta, Indonesia[J]. Marine Pollution Bulletin, 2016, 110(2): 654-664. doi: 10.1016/j.marpolbul.2016.02.019 [17] SMITH A J, McGOWAN T, DEVLIN M J, et al. Screening for contaminant hotspots in the marine environment of Kuwait using ecotoxicological and chemical screening techniques[J]. Marine Pollution Bulletin, 2015, 100(2): 681-688. doi: 10.1016/j.marpolbul.2015.08.043 [18] CAPKIN E, OZCELEP T, KAYIS S, et al. Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout[J]. Chemosphere, 2017, 182: 720-729. doi: 10.1016/j.chemosphere.2017.05.093 [19] SREEVIDYA V S, LENZ K A, SVOBODA K R, et al. Benzalkonium chloride, benzethonium chloride, and chloroxylenol - Three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms[J]. Environmental Pollution, 2018, 235: 814-824. doi: 10.1016/j.envpol.2017.12.108 [20] FERGUSON K K, COLACINO J A, LEWIS R C, et al. Personal care product use among adults in NHANES: Associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen[J]. Journal of Exposure Science & Environmental Epidemiology, 2017, 27(3): 326-332. [21] PHILIPPAT C, BENNETT D, CALAFAT A M, et al. Exposure to select phthalates and phenols through use of personal care products among Californian adults and their children[J]. Environmental Research, 2015, 140: 369-376. doi: 10.1016/j.envres.2015.04.009 [22] YE X Y, BISHOP A M, REIDY J A, et al. Temporal stability of the conjugated species of bisphenol A, parabens, and other environmental phenols in human urine[J]. Journal of Exposure Science & Environmental Epidemiology, 2007, 17(6): 567-572. [23] LIAO C Y, KANNAN K. Widespread occurrence of benzophenone-type UV light filters in personal care products from China and the United States: An assessment of human exposure[J]. Environmental Science & Technology, 2014, 48(7): 4103-4109. [24] 孙玮奇, 邬春华, 周志俊. 全国性人体生物监测项目研究进展[J]. 职业卫生与应急救援, 2021, 39(2): 230-235. SUN W Q, WU C H, ZHOU Z J. Research progress of national human biological monitoring project[J]. Occupational Health and Emergency Rescue, 2021, 39(2): 230-235 (in Chinese).
[25] 韩林学, 张续, 胡小键, 等. 超高效液相色谱-串联质谱法测定人尿中12种典型个人护理品[J]. 色谱, 2023, 41(4): 312-322. HAN L X, ZHANG X, HU X J, et al. Determination of 12 typical personal care products in human urine by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2023, 41(4): 312-322 (in Chinese).
[26] DEWALQUE L, PIRARD C, DUBOIS N, et al. Simultaneous determination of some phthalate metabolites, parabens and benzophenone-3 in urine by ultra high pressure liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography B, 2014, 949/950: 37-47. doi: 10.1016/j.jchromb.2014.01.002 [27] REN L, FANG J Z, LIU G H, et al. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2’-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 408(10): 2621-2629. doi: 10.1007/s00216-016-9372-8 [28] GAVIN Q W, RAMAGE R T, WALDMAN J M, et al. Development of HPLC-MS/MS method for the simultaneous determination of environmental phenols in human urine[J]. International Journal of Environmental Analytical Chemistry, 2014, 94(2): 168-182. doi: 10.1080/03067319.2013.814123 [29] Centers for Disease Control and Prevention, National Center for Environmental Health. Fourth National Report on Human Exposure to Environmental Chemicals[EB/OL]. [2023-04-19]. [30] 黎娟, 乔庆东, 庄景新, 等. 改进的高效液相色谱-串联质谱方法同时测定动物性食品中4种β2-受体激动剂残留[J]. 色谱, 2016, 34(2): 170-175. doi: 10.3724/SP.J.1123.2015.08033 LI J, QIAO Q D, ZHUANG J X, et al. Simultaneous determination of the residues of four β2-agonists in animal foods by modified high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(2): 170-175 (in Chinese). doi: 10.3724/SP.J.1123.2015.08033
[31] United Stated Environmental Protection Agency. Definition and procedure for the determination of the method detection limit revision 2[EB/OL]. [2022-10-18]. [32] MALAKOOTIAN M, CHAVOSHANI A, HASHEMI M, et al. Concentrations of urinary parabens and reproductive hormones in Iranian women: Exposure and risk assessment[J]. Toxicology Reports, 2022, 9: 1894-1900. doi: 10.1016/j.toxrep.2022.10.001 [33] JALA A, VARGHESE B, DUTTA R, et al. Levels of parabens and bisphenols in personal care products and urinary concentrations in Indian young adult women: Implications for human exposure and health risk assessment[J]. Chemosphere, 2022, 297: 134028. doi: 10.1016/j.chemosphere.2022.134028 [34] ZHAO Y, LIU Y L, CHEN Y N, et al. Exposure to parabens and associations with oxidative stress in adults from South China[J]. Science of the Total Environment, 2021, 774: 144917. doi: 10.1016/j.scitotenv.2020.144917 [35] ZHANG H, LI J X, CHEN Y F, et al. Profiles of parabens, benzophenone-type ultraviolet filters, triclosan, and triclocarban in paired urine and indoor dust samples from Chinese university students: Implications for human exposure[J]. Science of the Total Environment, 2021, 798: 149275. doi: 10.1016/j.scitotenv.2021.149275 [36] YU L J, PENG F D, YUAN D, et al. Correlation study of parabens in urine, serum, and seminal plasma of adult men in Beijing, China[J]. Environmental Science and Pollution Research, 2021, 28(30): 41120-41126. doi: 10.1007/s11356-021-13625-y [37] TAN J H, KUANG H X, WANG C C, et al. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol[J]. Science of the Total Environment, 2021, 786: 147524. doi: 10.1016/j.scitotenv.2021.147524