-
近年来,我国“大气污染防治行动计划”等一系列行动和措施的成效突显,尤其是SO2、NO2、PM2.5、PM10等主要污染物浓度的稳定达标;但我国主要城市臭氧季节性超标频发,经常被列为影响环境空气质量的首要污染物,这与大气中氮氧化物(NOx)和挥发性有机物(VOCs)的复合污染有关,尤其是长三角、京津冀及其周边区域[1]。
VOCs的饱和蒸汽压较高,其沸点和辛烷值均较低[2 − 3],主要包括烯烃、炔烃、烷烃、卤代烃、芳香烃、二硫化碳(CS2)及含氧挥发性有机物(OVOCs)等7类化合物,也可据其来源划分为一次和二次源。一次源包括自然源和人为源,人为源主要涉及机动车尾气、化石燃料和生物质燃烧、LPG(液化石油气)/NG(天然气)、溶剂挥发及工业过程等[4],主要排放烷烃、烯烃、芳香烃、OVOCs[5 − 6]和卤代烃等[7];自然源主要是指生物及非生物排放,生物排放主要来自植物或土壤微生物排放的异戊二烯等帖烯类化合物[8],而非生物排放则涉及火山爆发、森林火灾等[9]。研究表明,生物源VOCs可占大气VOCs的近九成,且存在明显的地区和季节性差异[10 − 11]。国外学者对拉丁美洲和亚洲城市大气中VOCs的开展了短期监测[12],并对比了城市站点、农村站点及室内家具涂料挥发环境中VOCs的浓度[13]、来源和物种差异[14]。相对而言,我国大气VOCs研究工作开展较晚,但自“大气污染防治行动计划”实施以来,也取得了丰硕的成果。如系统研究了上海市不同区域不同季节大气TVOCs的浓度水平和物种组成[15 − 16],总结了我国运城[17]及西部某城市[18]VOCs的季节性特征,利用正交矩阵分解模型(PMF)解析了VOCs的季节性来源;同时,也在沈阳[19]、成都[20]、长沙[21]、厦门[22]等城市开展大气VOCs污染特征及源解析工作。
VOCs是O3的重要前驱物,在参与大气氧化反应时产生大量带有未成对电子的自由基,如羟基自由基(OH·)和过氧羟基自由基(HO2·)等,促进了对流层大气中O3和二次有机气溶胶(SOA)的形成[23 − 25];同时,大气光化学反应也能产生OVOCs[26]。因此,VOCs对大气环境质量及污染过程的影响强烈依赖于不同VOCs物种的化学反应活性。研究表明,大气中烷烃、烯烃和芳香烃等均能与OH·、RO2·、NO3·等自由基表现出不同化学反应活性[27],且不同氮氧化物条件下各VOCs物种的差异性光化学反应机制对臭氧的影响也不相同[28];受辐射强度影响,夏季VOCs的浓度及物种组成对O3生成潜势(OFP)高于冬季[29]。因此,VOCs的来源解析及其区域特征是准确理解区域大气重污染特征及成因的关键。
呼包鄂城市群位于内蒙古自治区中西部,其大气污染具有显著的季节特征。2019年呼包二市空气质量未全面达到自治区的大气约束性目标,尤其2020年初大气重污染情况显著增加。在此背景下,针对呼和浩特和包头市具有6个月采暖期的季节性特征,选取冬夏季清洁天、污染天和沙尘天的不同时间窗口,本文在野外调研与现场采样的基础上,识别了2个城市冬夏季大气中VOCs的物种组成特征,阐释了2个城市117种 VOCs的季节性污染特征,计算了不同季节不同大气特征条件下不同VOCs物种的化学反应活性,并采用PMF模型进行了源解析,揭示了研究区大气VOCs排放源的季节性差异,为精准辨析区域大气重污染特征及成因,实现我国中西部资源型城市群大气细颗粒物与臭氧的协同控制等提供了重要参考。
基于季节性污染特征的大气VOCs化学活性及源解析
Chemical activity and source apportionment of atmospheric volatile organic compounds based on seasonal pollution characteristics
-
摘要: 挥发性有机物(VOCs)是对流层大气氧化性的重要影响因子,不同VOCs物种的化学反应活性与大气环境质量及污染过程关系密切。本文针对呼和浩特和包头采暖期长达半年的季节特征,选取冬夏季清洁天、污染天和沙尘天的不同时间窗口,识别并分析了两个城市大气中117种VOCs的体积浓度,计算了不同季节不同大气特征条件下不同VOCs物种的化学反应活性,并解析了两个城市大气VOCs的来源。结果表明,乙烯、乙醛、丙烷、丙烯、丙醛、正丁醛、异戊二烯、甲苯、间/对二甲苯等是两个城市大气的主要活性VOCs物种;不同大气特征条件下不同VOCs物种对OFP(臭氧生成潜势)和LOH(羟自由基反应速率)的影响差异较大,且影响大小并不单独依赖于各VOCs物种浓度;2个城市冬季大气中的O3对VOCs的浓度变化更敏感,夏季则对NOx的浓度变化更敏感,体现了这两个城市O3前体物的季节性差异;受季节特征及供暖方式的影响,2个城市冬季燃烧源排放约贡献大气VOCs的50%,机动车排放和LPG/NG源次之;与冬季相比,夏季机动车、生物源及LPG/NG、溶剂挥发等因子的重要性显著提升,而燃烧源因子的比重明显下降,意味着大气VOCs源具有显著的季节变化特征。本研究对准确辨析区域重污染天气特征与成因,实现“十四五”期间PM2.5与臭氧协同控制等意义重大.Abstract: As an important factor affecting the oxidizing capacity of the tropospheric atmosphere, the chemical reactivity of different volatile organic compounds (VOCs) species is closely related to atmospheric environmental quality and pollution processes. In this work, the seasonal characteristics, chemical reactivity and source apportionment were discussed based on an observation of 117 species of VOCs during different periods (e.g., clean, polluted and dust period, respectively) both in summer and winter in Baotou and Hohhot. The results showed that propane, ethylene, propylene, isoprene, acetaldehyde, formaldehyde, n-butylaldehyde, toluene and xylene were the key reactive VOCs species of the two cities. Under different atmospheric conditions, the effects of VOCs on OFP (ozone formation potential) and LOH (hydroxyl radical reaction rate) significantly varied with their species and are not only dependent on the concentration of VOC species. It was found that the concentrations of O3 in the two cities were highly sensitive to VOCs and NOx in winter and summer, respectively, indicating the seasonal difference in O3 precursors. Influenced by heating events during winter, combustion sources contributed to approximately 50% of atmospheric VOCs, followed by vehicle exhaust and LPG/NG (Liquefied Petroleum Gas/Natural Gas) sources. Compared to winter, the importance of factors such as vehicle exhaust, biogenic, LPG/NG and solvent sources significantly increases in summer, while the proportion of combustion sources decreases significantly, indicating the significant seasonal variability of atmospheric VOC sources. This study is significant in accurately distinguishing the characteristics and causes of severe regional air pollution, and achieving joint control of PM2.5 and O3 during the “14th Five-Year Plan” period.
-
Key words:
- volatile organic compounds /
- seasonal pattern /
- species composition /
- reactivity /
- source apportionment.
-
表 1 采样点位信息
Table 1. Information of sampling points
城市
City点位编号
Sites ID区/县
Region/County点位名称
Site Name呼和浩特 1 赛罕区 内蒙古生态环境厅 2 赛罕区 化肥厂生活区 3 回民区 红旗小学 4 玉泉区 小召 5 玉泉区 南湖湿地公园 6 新城区 内蒙古工业大学 包头 7 昆都仑区 昆区政府 8 青山区 青山宾馆 9 东河区 包头八中 10 九原区 滨河大厦 11 昆都仑区 内蒙古科技大学 12 九原区 包头环境局 表 2 不同大气环境污染特征划分
Table 2. Classification of different air quality in Hohhot and Baotou
呼和浩特 (Hohhot) 包头 (Baotou) 冬季沙尘天(WS) 1月11—15日 1月11—15日 冬季污染天(WP) 1月20、21、24和25日 1月20和 24日 冬季清洁天(WC) 1月6—10、16—19、22、23、26日 1月6—10、16—19、21—23、25、26日 夏季污染天(SP) 7月10,11和14日 7月9—11和13、14日 夏季清洁天(SC) 7月3—9、12、13、15—26日 7月3—8、12、15—24日 表 3 不同大气特征条件下VOCs平均浓度较高的10个物种
Table 3. Top ten VOCs species with highest average concentrations in different atmospheric quality
类型
Types1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 呼和浩特 WS 乙烷 乙炔 乙烯 丙烷 甲醛 丙酮 苯 异戊烷 丙烯 甲苯 WP 乙烷 丙烷 2,2-二甲基丁烷 乙烯 乙炔 甲醛 正丁烷 丙酮 氯乙烯 苯 WC 乙烷 乙烯 乙炔 丙烷 甲醛 2,2-二甲基丁烷 正丁醛 丙酮 苯 正丁烷 SP 乙烷 正丁醛 丙酮 乙炔 丙烷 异戊烷 甲醛 乙醛 正己烷 乙烯 SC 乙烷 丙酮 正丁醛 异戊烷 乙炔 丙烷 正己烷 甲醛 乙醛 正癸烷 包头 WS 乙炔 乙烯 乙烷 丙烷 苯 甲醛 异戊烷 丙酮 乙醛 丙烯 WP 乙烷 乙炔 乙烯 丙烷 正丁烷 苯 丙酮 乙醛 异戊烷 甲苯 WC 乙烷 乙炔 乙烯 甲醛 丙烷 苯 丙酮 乙醛 丙烯 甲苯 SP 乙烷 丙酮 乙炔 乙醛 甲醛 丙烷 乙烯 异戊烷 丙醛 正丁烷 SC 丙酮 乙烷 乙醛 乙炔 二氯甲烷 甲醛 丙烷 乙烯 正己烷 丙醛 表 4 不同大气特征条件下TVOCs的OFP和LOH
Table 4. OFP and LOH of VOCs under different atmospheric environmental quality conditions
WS WP WC SP SC 冬季
Winter夏季
SummerOFP(×10−9)/(V/V) 呼和浩特城区 103.9 152.43 95 91.04 83.53 117.11 87.28 包头城区 159.51 210.78 117.7 93.17 60.62 162.66 76.9 LOH(×10−12)/(cm3·molecule−1·s−1) 呼和浩特城区 9.35 13.41 9.27 14.31 12.88 10.68 13.6 包头城区 14.22 18.13 10.9 12.78 8.01 14.42 10.39 表 5 大气OFP和LOH的主要贡献物种(前10)
Table 5. Key species (top ten) for OFP and LOH in atmosphere
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th OFP 冬 乙烯
38.18%丙烯
8.18%乙醛
5.55%乙炔
5.08%正丁醛
3.53%间,对-二甲苯
3.08%甲苯
2.92%丙醛
2.89%正丁烯
2.70%乙烷
2.43%夏 乙醛
16.60%正丁醛
12.36%乙烯
10.21%丙醛
6.57%异戊二烯
6.49%乙炔
3.50%甲苯
2.74%丙烯
2.61%间,对-二甲苯
2.61%异戊烷
2.47%LOH 冬 乙烯
18.43%丙烯
9.35%正丁醛
7.28%乙醛
6.48%正丁烯
4.46%丙醛
4.34%丁二烯
4.16%反式二丁烯
4.04%间,对-二甲苯
3.74%丁烯醛
2.76%夏 异戊二烯
18.95%正丁醛
15.52%乙醛
11.80%丙醛
6.01%己醛
4.53%戊醛
3.09%乙烯
3.00%反式二戊烯
2.29%丁烯醛
2.07%异戊烷
2.00%表 6 呼和浩特和包头大气VOCs的PMF源解析结果
Table 6. Source apportionment of VOCs according to PMF
冬季 (n=441)
Winter夏季 (n=420)
Summer呼和浩特 因子1 乙炔(69.7%) 正丁烷(76.8%)、正戊烷(37.5%)、甲基环戊烷(61.8%)、反二丁烯(81.2%)、顺二丁烯(77.4%)、 1-丁烯(53.6%) 因子2 正丁烷(66.6%)、异丁烷(56.3%)、正戊烷(45.9%) 异戊二烯(84.8%) 因子3 异丁烷(67.2%)、异戊烷(66.6%)、2,3-二甲基丁烷(46.8%)、环己烷(44.2%)、正丁烷(42.3%)、正戊烷(39.8%)、1,3丁二烯(51.9%)、反二丁烯(36.2%)、戊烯(35.6%) 环己烷(63.4%)、三氯甲烷(62.5%)、异戊烷(56.8%) 因子4 乙烯(53.7%)、丙烯(48.2%)、正丁烯(54.3%)、乙烷(48.0%)、1-戊烯(46.7%)、异戊二烯(44.1%)、苯(50.5%)、1,3丁二烯(34.5%)、反二丁烯(37.3%)、顺二丁烯(32.3%) 乙烷(57.2%)、乙烯(70.3%)、乙炔(56.2%)、丙烷(50.2%)、丙烯(41.3%)、1,3丁二烯(65.4%)、苯(48.5%) 因子5 甲基环戊烷(53.4%)、正庚烷(34.5%)、正辛烷(28.2%)、甲基环己烷(34.4%)、甲苯(48.2%)、乙苯(48.1%)、间对二甲苯(67.4%)、邻二甲苯(73%)、1,2,4-三甲基苯(62.3%) 2,3-二甲基丁烷(69.7%)、2-甲基戊烷(59.3%)、3-甲基戊烷(60.0%)、甲基环己烷(53.4%)、2-甲基己烷(54.8%)、正庚烷(48.7%)、正辛烷(39.7%)、甲苯(61.3%)、乙苯(55.3%)、间对二甲苯(69.6%)、 1,2,4-三甲基苯(64.6%) 因子6 氯甲烷(61.7%)、二氯甲烷(47.9%)、三氯甲烷(56.8%)、苯(22.2%) 氯甲烷(89.8%)、二氯甲烷(57.3%)、1,2-二氯丙烷(54.2%)、四氯化碳(55.2%)、四氯乙烯(57.6%)、邻二甲苯(33.7%)、萘(50.7%) 冬季(n=377) Winter 夏季(n=369) Summer 包头 因子1 反二丁烯(72.9%)、顺二丁烯(75.9%)、1,3丁二烯(69.4%)、2,3-二甲基丁烷(46.1%) 丙烷(75.5%)、丙烯(67.2%)、丁烷(45.0%)、1,3丁二烯(41.2%) 因子2 乙炔(52.7%)、丙烷(41.5%)、正丁烷(42.0%)、异丁烷(28.8%) 异戊二烯(81.9%) 因子3 氯甲烷(80.3%)、四氯化碳(79.3%)、三氯甲烷(60.1%) 1,3丁二烯(53.2%)、苯乙烯(48.8%)、萘(50.1%) 因子4 甲基环己烷(64.9%)、正庚烷(59.5%)、正辛烷(55.6%)、邻二甲苯(87.2%)、间对二甲苯(82.4%)、1,2,4-三甲基苯(86.3%)、乙苯(77.0%)、异戊二烯(49.3%) 二氯甲烷(52.8%)、氯甲烷(43.9%)、三氯甲烷(46.0%) 因子5 乙烯(70.5%)、乙炔(39.8%)、乙烷(51.5%)、丙烷(50.2%)、苯(59.9%) 乙烷(42.8%)、乙烯(70.3%)、乙炔(56.2%)、苯(47.1%) 因子6 2,3-二甲基丁烷(50.3%)、正戊烷(45.2%)、异戊烷(49.4%)、顺二丁烯(67.3%)、反二丁烯(56.6%)、2-甲基戊烷(57.6%)、3-甲基戊烷(59.2%)、1-戊烯(60.0%)、甲基环己烷(38.7%)、2-甲基己烷(61.7%)、正庚烷(40.5%)、甲苯(56.8%)、间对二甲苯(45.1%)、乙苯(40.6%)、1,2,4-三甲基苯(51.1%) -
[1] 燕丽, 雷宇, 张伟. 我国区域大气污染防治协作历程与展望[J]. 中国环境管理, 2021, 13(5): 61-68. YAN L, LEI Y, ZHANG W. Progress and prospect of regional air pollution prevention and control cooperation in China[J]. Chinese Journal of Environmental Management, 2021, 13(5): 61-68 (in Chinese).
[2] 张钢锋, 卜梦雅, 李杰. 我国挥发性有机物(VOCs)研究进展与态势分析[J]. 安全与环境学报, 2023, 23(3): 951-961. ZHANG G F, BU M Y, LI J. Research progress and trend analysis of volatile organic compounds in China[J]. Journal of Safety and Environment, 2023, 23(3): 951-961 (in Chinese).
[3] 姜德超. 城市大气挥发性有机物(VOCs)污染特征及来源解析[D]. 济南: 山东建筑大学, 2015. JIANG D C. Pollution characteristics and source apportionment of urban air of volatile organic compounds (VOCs)[D]. Jinan: Shandong Jianzhu University, 2015 (in Chinese).
[4] 梁小明. 我国人为源挥发性有机物反应性排放清单与臭氧控制对策研究[D]. 广州: 华南理工大学, 2017. LIANG X M. Reactivity-based anthropogenic volatile organic compounds emission inventory and O3 control strategies in China[D]. Guangzhou: South China University of Technology, 2017 (in Chinese).
[5] 刘金凤, 赵静, 李湉湉, 等. 我国人为源挥发性有机物排放清单的建立[J]. 中国环境科学, 2008, 28(6): 496-500. LIU J F, ZHAO J, LI T T, et al. Establishment of Chinese anthropogenic source volatile organic compounds emission inventory[J]. China Environmental Science, 2008, 28(6): 496-500 (in Chinese).
[6] 闫雨龙, 彭林. 山西省人为源VOCs排放清单及其对臭氧生成贡献[J]. 环境科学, 2016, 37(11): 4086-4093. YAN Y L, PENG L. Emission inventory of anthropogenic VOCs and its contribution to ozone formation in Shanxi Province[J]. Environmental Science, 2016, 37(11): 4086-4093 (in Chinese).
[7] 黄薇薇. 我国工业源挥发性有机化合物排放特征及其控制技术评估研究[D]. 杭州: 浙江大学, 2016. HUANG W W. Characteristics of industrial VOCs emissions and evaluation of control technology in China[D]. Hangzhou: Zhejiang University, 2016 (in Chinese).
[8] 王艺璇, 刘保双, 吴建会, 等. 天津市郊夏季 VOCs化学特征及其时间精细化的来源解析[J]. 环境科学, 2021, 42(12): 5644-5655. WANG Y X, LIU B S, WU J H, et al. Chemical characteristics and source apportionment with temporal refinement for VOCs in Tianjin suburb in summer[J]. Environmental Science, 2021, 42(12): 5644-5655 (in Chinese).
[9] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood[J]. Environmental Science & Technology, 2001, 35(9): 1716-1728. [10] GUENTHER A B, JIANG X, HEALD C L, et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions[J]. Geoscientific Model Development, 2012, 5(6): 1471-1492. doi: 10.5194/gmd-5-1471-2012 [11] 龚道程. 南岭高山森林大气挥发性有机物的源汇机制研究[D]. 广州: 暨南大学, 2019. GONG D C. Sources and sinks of atmospheric volatile organic compounds in the high-elevated forests in Nanling Mountains, China[D]. Guangzhou: Jinan University, 2019 (in Chinese).
[12] GEE I L, SOLLARS C J. Ambient air levels of volatile organic compounds in Latin American and Asian cities[J]. Chemosphere, 1998, 36(11): 2497-2506. doi: 10.1016/S0045-6535(97)10217-X [13] KUMAR A, SINGH D, KUMAR K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment[J]. Science of the Total Environment, 2018, 613/614: 492-501. doi: 10.1016/j.scitotenv.2017.09.096 [14] SALTHAMMER T. Emission of volatile organic compounds from furniture coatings[J]. Indoor Air, 1997, 7(3): 189-197. doi: 10.1111/j.1600-0668.1997.t01-1-00004.x [15] 张露露. 上海市青浦区大气挥发性有机物的特征及来源分析[D]. 武汉: 武汉理工大学, 2016. ZHANG L L. Study of characteristics and sources of ambient volatile organic compounds in Qingpu district of Shanghai[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese).
[16] 王红丽. 上海市大气挥发性有机物化学消耗与臭氧生成的关系[J]. 环境科学, 2015, 36(9): 3159-3167. WANG H L. Chemical loss of volatile organic compounds and its impact on the formation of ozone in Shanghai[J]. Environmental Science, 2015, 36(9): 3159-3167 (in Chinese).
[17] 高千卓. 运城市大气挥发性有机物特征及来源研究[D]. 北京: 华北电力大学, 2020. GAO Q Z. Characteristics and sources apportionment of ambient volatile organic compounds in Yuncheng[D]. Beijing: North China Electric Power University, 2020 (in Chinese).
[18] 杨亚美. 中国西部某工业城市VOCs污染成因及减排对策和建议[D]. 兰州: 兰州大学, 2021. YANG Y M. The source apportionment of VOCs, and countermeasures and suggestions for emission reduction in an industrial city in western China[D]. Lanzhou: Lanzhou University, 2021 (in Chinese).
[19] 王男. 沈阳市某化工园区环境空气中挥发性有机物污染特征及来源分析[J]. 辽宁化工, 2022, 51(2): 239-243. doi: 10.3969/j.issn.1004-0935.2022.02.026 WANG N. Pollution characteristics and source analysis of volatile organic compounds in ambient air of a chemical industrial park in Shenyang city[J]. Liaoning Chemical Industry, 2022, 51(2): 239-243 (in Chinese). doi: 10.3969/j.issn.1004-0935.2022.02.026
[20] 何丽. 成都城区大气挥发性有机物污染特征及来源研究[D]. 成都: 西南交通大学, 2018. HE L. Pollution charaterization and source apportionment of vocs in Chengdu urban air[D]. Chengdu: Southwest Jiaotong University, 2018 (in Chinese).
[21] 徐彬. 长沙市城市中心区大气挥发性有机物污染特征及来源解析[D]. 长沙: 湖南农业大学, 2020. XU B. The study of pollution characteristics and source apportionment of volatile organic compounds in the urban center of Changsha[D]. Changsha: Hunan Agricultural University, 2020 (in Chinese).
[22] NIU Z C, ZHANG H, XU Y, et al. Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China[J]. Journal of Environmental Monitoring:JEM, 2012, 14(4): 1145-1152. doi: 10.1039/c2em10884d [23] 韩成. 广州市不同功能区VOCs污染特征及臭氧形成潜势研究[D]. 广州: 广东工业大学, 2019. HAN C. Pollution profile and ozone formation potential investigation of volatile organic compounds in different functional areas of Guangzhou city[D]. Guangzhou: Guangdong University of Technology, 2019 (in Chinese).
[24] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric environmental chemistry[M]. Beijing: Higher Education Press, 2006(in Chinese).
[25] 方文政. 大气氧化及光氧化挥发性有机物生成二次有机气溶胶的研究[D]. 合肥: 中国科学技术大学, 2012. FANG W Z. The studies of secondary organic aerosols formed from the atmospheric oxidation and photooxidation of volatile organic compounds[D]. Hefei: University of Science and Technology of China, 2012 (in Chinese).
[26] 陈曦, 李杏茹. 大气中挥发性含氧有机物研究进展[J]. 首都师范大学学报(自然科学版), 2018, 39(3): 45-55. CHEN X, LI X R. Study advance on oxygenated volatile organic compounds in atmosphere[J]. Journal of Capital Normal University (Natural Science Edition), 2018, 39(3): 45-55 (in Chinese).
[27] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420 [28] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste, 1994, 44(7): 881-899. [29] GALVO E S, SANTOS J M, REIS JUNIOR N C, et al. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil[J]. Environmental Technology, 2016, 37(17): 2133-2148. doi: 10.1080/09593330.2016.1142001 [30] 呼和浩特市统计局, 2021呼和浩特统计年鉴[R]. 中国统计出版社, 2022. Statistics Bureau of Hohhot, 2021 Statistical Yearbook of Hohhot[R]. China Statistics Press, 2022 (in Chinese).
[31] 包头市统计局, 2021包头统计年鉴[R]. 中国统计出版社, 2022. Statistics Bureau of Baotou, 2021 Statistical Yearbook of Baotou[R]. China Statistics Press, 2022 (in Chinese).
[32] PAATERO P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5 [33] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [34] SONG C B, LIU B S, DAI Q L, et al. Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the North China plain[J]. Atmospheric Environment, 2019, 207: 167-181. doi: 10.1016/j.atmosenv.2019.03.030 [35] LIU B S, YANG J M, YUAN J, et al. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China[J]. Atmospheric Research, 2017, 185: 22-31. doi: 10.1016/j.atmosres.2016.10.023 [36] 孟祥来, 孙扬, 廖婷婷, 等. 北京市城区夏季VOCs变化特征分析与来源解析[J]. 环境科学, 2022, 43(9): 4484-4496. MENG X L, SUN Y, LIAO T T, et al. Characteristic analysis and source apportionment of VOCs in urban areas of Beijing in summer[J]. Environmental Science, 2022, 43(9): 4484-4496 (in Chinese).
[37] 李凯, 潘宁, 梅如波, 等. 泰安市大气挥发性有机物污染特征及来源解析[J]. 环境化学, 2022, 41(2): 482-490. doi: 10.7524/j.issn.0254-6108.2021061803 LI K, PAN N, MEI R B, et al. Characteristics and source apportionment of ambient volatile organic compounds in Taian[J]. Environmental Chemistry, 2022, 41(2): 482-490 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021061803
[38] 牛月圆. 典型煤炭资源城市挥发性有机物排放清单的建立和验证[D]. 北京: 华北电力大学, 2021. NIU Y Y. Establishment and verification of anthropogenic volatile organic compound emission inventory in A typical coal resource-based city[D]. Beijing: North China Electric Power University, 2021 (in Chinese).
[39] TORO M V, CREMADES L V, CALB J. Relationship between VOC and NO x emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia)[J]. Chemosphere, 2006, 65(5): 881-888. doi: 10.1016/j.chemosphere.2006.03.013 [40] 郑玄. 长沙市大气中醛酮类化合物的污染研究[D]. 长沙: 长沙理工大学, 2019. ZHENG X. Study on the pollution of carbonyls in the atmosphere of Changsha city[D]. Changsha: Changsha University of Science & Technology, 2019 (in Chinese).
[41] PANG X B, MU Y J. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air[J]. Atmospheric Environment, 2006, 40(33): 6313-6320. doi: 10.1016/j.atmosenv.2006.05.044 [42] 武彩虹. 广州城市地区大气挥发性有机物(VOCs)反应活性贡献研究[D]. 广州: 暨南大学, 2020. WU C H. Reactivity contribution of volatile organic compounds(VOCs) in Guangzhou urban region[D]. Guangzhou: Jinan University, 2020 (in Chinese).
[43] 王琛. 广州大气中挥发性卤代烃的时空分布特征与来源分析研究[D]. 广州: 暨南大学, 2010. WANG C. Study on spatial-temporal distribution of atmospheric volatile halocarbons and their sources apportionment in Guangzhou city[D]. Guangzhou: Jinan University, 2010 (in Chinese).
[44] 李兴华, 王书肖, 郝吉明. 民用生物质燃烧挥发性有机化合物排放特征[J]. 环境科学, 2011, 32(12): 3515-3521. LI X H, WANG S X, HAO J M. Characteristics of volatile organic compounds (VOCs) emitted from biofuel combustion in China[J]. Environmental Science, 2011, 32(12): 3515-3521 (in Chinese).
[45] 莫梓伟, 邵敏, 陆思华. 中国挥发性有机物(VOCs)排放源成分谱研究进展[J]. 环境科学学报, 2014, 34(9): 2179-2189. MO Z W, SHAO M, LU S H. Review on volatile organic compounds(VOCs) source profiles measured in China[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2179-2189 (in Chinese).
[46] 刘雅婷, 彭跃, 白志鹏, 等. 沈阳市大气挥发性有机物(VOCs)污染特征[J]. 环境科学, 2011, 32(9): 2777-2785. LIU Y T, PENG Y, BAI Z P, et al. Characterization of atmospheric volatile organic compounds in Shenyang, China[J]. Environmental Science, 2011, 32(9): 2777-2785 (in Chinese).
[47] 姜加龙, 曾立民, 王文杰, 等. 华北地区冬季和夏季大气甲醛污染特征分析[J]. 环境科学学报, 2019, 39(6): 1895-1901. JIANG J L, ZENG L M, WANG W J, et al. Characteristics of atmospheric formaldehyde pollution in winter and summer in North China[J]. Acta Scientiae Circumstantiae, 2019, 39(6): 1895-1901 (in Chinese).
[48] 陆思华, 白郁华, 张广山, 等. 机动车排放及汽油中VOCs成分谱特征的研究[J]. 北京大学学报(自然科学版), 2003, 39(4): 507-511. LU S H, BAI Y H, ZHANG G S, et al. Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2003, 39(4): 507-511 (in Chinese).
[49] QU H, WANG Y H, ZHANG R X, et al. Chemical production of oxygenated volatile organic compounds strongly enhances boundary-layer oxidation chemistry and ozone production[J]. Environmental Science & Technology, 2021, 55(20): 13718-13727. [50] 王淑妍. 大气典型含氧挥发性有机物形成二次有机气溶胶的烟雾箱模拟研究[D]. 济南: 山东大学, 2020. WANG S Y. Chamber simulation study on secondary organic aerosols formation from typical oxygenated volatile organic compounds in the atmosphere[D]. Jinan: Shandong University, 2020 (in Chinese).
[51] VENECEK M A, CARTER W P L, KLEEMAN M J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010[J]. Journal of the Air & Waste Management Association (1995), 2018, 68(12): 1301-1316. [52] DUAN J C, TAN J H, YANG L, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing[J]. Atmospheric Research, 2008, 88(1): 25-35. doi: 10.1016/j.atmosres.2007.09.004 [53] 肖凯, 张晓伟, 郝志飞, 等. 焦化厂VOCs的臭氧生成潜势及二次有机气溶胶生成潜势分析[J]. 环境工程, 2022, 40(9): 19-25, 43. XIAO K, ZHANG X W, HAO Z F, et al. Analysis of ozone formation potential and secondary organic aerosol formation potential of vocs in a coking plant[J]. Environmental Engineering, 2022, 40(9): 19-25, 43 (in Chinese).
[54] 宋琪. 基于PMF模型的太原市大气挥发性有机物污染特征及化学反应性研究[D]. 太原: 太原科技大学, 2018. SONG Q. Study on pollution characteristics and chemical reactivity of volatile organic compounds by PMF in atmospheric environment, Taiyuan[D]. Taiyuan: Taiyuan University of Science and Technology, 2018 (in Chinese).
[55] 林威. 福州市园林植物BVOCs释放及其臭氧生成潜势对温度和光照的响应[D]. 福州: 福建农林大学, 2019. LIN W. The response of BVOC emission and its ozone formation potential to temperature and light of garden plants in Fuzhou[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019 (in Chinese).
[56] 冯兆忠, 袁相洋. 臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J]. 环境科学, 2018, 39(11): 5257-5265. FENG Z Z, YUAN X Y. Effects of elevated ozone on biogenic volatile organic compounds(BVOCs)emission: A review[J]. Environmental Science, 2018, 39(11): 5257-5265 (in Chinese).
[57] BAI Y T, WANG Z C, XIE F, et al. Changes in stoichiometric characteristics of ambient air pollutants pre-to post-COVID-19 in China[J]. Environmental Research, 2022, 209: 112806. doi: 10.1016/j.envres.2022.112806 [58] 付琳琳, 邵敏, 刘源, 等. 机动车VOCs排放特征和排放因子的隧道测试研究[J]. 环境科学学报, 2005, 25(7): 879-885. FU L L, SHAO M, LIU Y, et al. Tunnel experimental study on the emission factors of volatile organic compounds (VOCs) from vehicles[J]. Acta Scientiae Circumstantiae, 2005, 25(7): 879-885 (in Chinese).
[59] JOBSON B T, BERKOWITZ C M, KUSTER W C, et al. Hydrocarbon source signatures in Houston, Texas: Influence of the petrochemical industry[J]. Journal of Geophysical Research, 2004, 109(D24): D24305. [60] 江梅, 张国宁, 邹兰, 等. 有机溶剂使用行业VOCs排放控制标准体系的构建[J]. 环境工程技术学报, 2011, 1(3): 221-225. JIANG M, ZHANG G N, ZOU L, et al. Study on emission control standard system of VOCs from the use of organic solvents in industries[J]. Journal of Environmental Engineering Technology, 2011, 1(3): 221-225 (in Chinese).
[61] 曹梦瑶. 南京工业区大气挥发性有机物污染特征、来源解析及环境效应[D]. 南京: 南京信息工程大学, 2021. CAO M Y. Characteristics, source analysis and environmental effects of atmospheric volatile organic compounds in Nanjing industrial zone[D]. Nanjing: Nanjing University of Information Science & Technology, 2021 (in Chinese).
[62] 陆思华, 白郁华, 陈运宽, 等. 北京市机动车排放挥发性有机化合物的特征[J]. 中国环境科学, 2003, 23(2): 127-130. LU S H, BAI Y H, CHEN Y K, et al. The characteristics of volatile organic compounds(VOCs) emitted from motor vehicle in Beijing[J]. China Environmental Science, 2003, 23(2): 127-130 (in Chinese)
[63] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070 [64] DERWENT R G, DAVIES T J, DELANEY M, et al. Analysis and interpretation of the continuous hourly monitoring data for 26 C2–C8 hydrocarbons at 12 United Kingdom sites during 1996[J]. Atmospheric Environment, 2000, 34(2): 297-312. doi: 10.1016/S1352-2310(99)00203-4 [65] 门正宇, 刘笃优, 郭全有, 等. 机动车制动磨损颗粒物及挥发性有机物的组分特征[J]. 环境科学, 2022, 43(10): 4348-4356. MEN Z Y, LIU D Y, GUO Q Y, et al. Chemical component of particulate matters and VOCs characteristics during vehicle brake processes[J]. Environmental Science, 2022, 43(10): 4348-4356 (in Chinese).
[66] 邹宇, 邓雪娇, 李菲, 等. 广州大气中异戊二烯浓度变化特征、化学活性和来源分析[J]. 环境科学学报, 2015, 35(3): 647-655. ZOU Y, DENG X J, LI F, et al. Variation characteristics, chemical reactivity and sources of isoprene in the atmosphere of Guangzhou[J]. Acta Scientiae Circumstantiae, 2015, 35(3): 647-655 (in Chinese).
[67] 李亮, 吴方堃, 孟晓艳. 北京大气中异戊二烯的季变化、日变化形式及影响因素研究[J]. 中国环境监测, 2013, 29(2): 120-124. LI L, WU F K, MENG X Y. Seasonal and diurnal variation of isoprene in the atmosphere of Beijing[J]. Environmental Monitoring in China, 2013, 29(2): 120-124 (in Chinese).
[68] ANDREAE M O, MERLET P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955-966. doi: 10.1029/2000GB001382 [69] 吴应. 上海市重点工业涂装行业VOCs排放特征与控制标准体系研究[D]. 上海: 华东理工大学, 2020. WU Y. Emission characteristics and control standard system of volatile organic compounds(VOCs)from main industrial coating industries in Shanghai[D]. Shanghai: East China University of Science and Technology, 2020 (in Chinese).
[70] 王瑞文. 工业源排放VOCs成分谱及其在PMF解析中的应用[D]. 广州: 暨南大学, 2019. WANG R W. Volatile organic compounds(VOCs)source profiles for industrial sources and it’s application in PMF source apportionment[D]. Guangzhou: Jinan University, 2019 (in Chinese).
[71] 杨利娴. 我国工业源VOCs排放时空分布特征与控制策略研究[D]. 广州: 华南理工大学, 2012. YANG L X. Study on temporal-spatial characteristic and control strategy of industrial emissions of volatile organic compounds in China[D]. Guangzhou: South China University of Technology, 2012 (in Chinese).
[72] 张诗炀, 龚道程, 王好, 等. 南岭国家大气背景站异戊二烯的在线观测研究[J]. 中国环境科学, 2017, 37(7): 2504-2512. ZHANG S Y, GONG D C, WANG H, et al. Online measurement of isoprene at a national air background monitoring station in the Nanling Mountains, South China[J]. China Environmental Science, 2017, 37(7): 2504-2512 (in Chinese).
[73] 王琴, 刘保献, 张大伟, 等. 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017, 37(10): 3636-3646. WANG Q, LIU B X, ZHANG D W, et al. Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017, 37(10): 3636-3646 (in Chinese).
[74] 叶露. 上海北郊大气挥发性有机物(VOCs)变化特征及来源解析[J]. 装备环境工程, 2020, 17(6): 107-116. YE L. Change characteristics and source apportionment of volatile organic compounds(VOCs) in the northern suburb of Shanghai[J]. Equipment Environmental Engineering, 2020, 17(6): 107-116 (in Chinese).
[75] 苏雷燕. 上海市城区大气VOCs的变化特征及反应活性的初步研究[D]. 上海: 华东理工大学, 2012. SU L Y. A preliminary study of ambient VOCs variation and chemical reactivity in the urban area of Shanghai, China[D]. Shanghai: East China University of Science and Technology, 2012 (in Chinese).
[76] 李明谦. 西安城区空气中挥发性有机物的污染特征和化学反应活性研究[D]. 西安: 西安建筑科技大学, 2015. LI M Q. Pollution characterization and chemical reactivity of VOCs in Xi’an urban air[D]. Xi'an: Xi'an University of Architecture and Technology, 2015 (in Chinese).
[77] 刘金荣. 长三角城市群大气VOCs污染特征及来源解析[D]. 南京: 南京信息工程大学, 2018. LIU J R. Characteristics and source apportionment of VOCs pollution in the urban agglomeration of the Yangtze River delta[D]. Nanjing: Nanjing University of Information Science & Technology, 2018 (in Chinese).
[78] 张宝军. 唐山市VOCs排放特征及来源解析: 以2020年1~7月为例[J]. 环境经济, 2021(12): 57-59. ZHANG B J. Emission characteristics and source analysis of VOCs in Tangshan city: a case study from January to July 2020[J]. Environmental Economy, 2021(12): 57-59 (in Chinese).
[79] 王男, 刘闽, 林宏, 等. 沈阳市环境空气中挥发性有机物污染特征及来源解析[J]. 中国环境监测, 2021, 37(5): 41-52. WANG N, LIU M, LIN H, et al. Pollution characteristic and source apportionment of VOCs in Shenyang[J]. Environmental Monitoring in China, 2021, 37(5): 41-52 (in Chinese).
[80] 张栋. 省会郑州和重工业城市济源VOCs污染特征及对比分析[D]. 郑州: 郑州大学, 2021. ZHANG D. Study on the pollution characteristics of VOCs and comparative analysis for the provincial capital of Zhengzhou and heavy industry city of Jiyuan[D]. Zhengzhou: Zhengzhou University, 2021 (in Chinese).
[81] 姜雪松, 张向炎, 宋艳艳, 等. 淄博市夏季大气VOCs 污染特征及来源解析.[J]. 新型工业化, 2022, 12(2): 180-185. JIANG X S, ZHANG X Y, SONG Y Y, et al. Characteristics and source apportionment of VOCs in Zibo summer periods[J]. New Industrialization, 2022, 12(2): 180-185 (in Chinese).
[82] 李瑞瑜, 郑雅清, 陈耿. 佛山市大气VOCs 污染特征及来源解析.[J]. 广东化工, 2021, 48(454): 158-192. LI R Y, ZHENG Y Q, CHEN G. Pollution characteristics and source apportionment of VOCs in Foshan City[J]. Guangdong Chemical Industry, 2021, 48(454): 158-192 (in Chinese).