-
2019年12月以来,新型冠状病毒(2019-nCoV)在全世界爆发,主要传播途径为呼吸道飞沫、气溶胶和接触被污染的物品等. 使用含氯消毒剂对医院、家庭和公共场所等进行消毒可以有效阻断病毒传播,但大量余氯会与水体中的天然有机物(natural organic matter,NOM)和无机离子反应生成有害的消毒副产物(disinfection byproducts,DBPs)[1]. DBPs已经被界定为新型污染物(emerging contaminants, ECs)[2 − 3],具有生物毒性、环境持久性、生物累积性等特征,对生态系统中包括人类的各类生物均有潜在危害. 其中,氯代消毒副产物(chlorinated disinfection byproducts,Cl-DBPs)检出率和浓度水平最高,对生态环境和人体健康的危害已引起广泛关注[4 − 5]. 三卤甲烷(THMs)、卤乙酸(HAAs)及卤乙醛是在不同消毒条件下占主导地位的DBPs,THMs中的三氯甲烷(TCM)、HAAs中的二氯乙酸(DCAA)和三氯乙酸(TCAA)及卤乙醛中的三氯乙醛浓度最高[6 − 7]. 在未受管控的消毒副产物中,以2,6-二氯-1,4-苯醌(2,6-DCBQ)、二氯乙腈、二氯乙酰胺和三氯硝基甲烷等Cl-DBPs的检出率和浓度水平较高[8 − 9]. 水体中已鉴定出的DBPs生成潜能大致排序为:氯代 > 溴氯代 > 溴代DBPs[10]. Rook[11]于1974年首次发现消毒剂次氯酸和次溴酸会与水中NOM反应生成 4 种THMs,包括TCM、一溴二氯甲烷和二溴一氯甲烷等Cl-DBPs,自此开启了针对水体中Cl-DBPs的研究. 美国国家癌症研究所证实了TCM对动物体具有致癌性,并通过Ames试验证实水体中的有机物具有诱变作用[10];人体和哺乳动物细胞的毒理学研究表明,长期暴露于Cl-DBPs与潜在的细胞毒性、基因毒性、致癌性、致突变性和内分泌紊乱等不良健康结果有关[9];流行病学研究发现,暴露于Cl-DBPs与膀胱癌、肺癌、结肠癌、出生缺陷、哮喘和皮疹等疾病密切相关[12 − 14]. 水体中Cl-DBPs已成为重要的公共卫生问题之一.
目前鉴定出的DBPs已超过900种[15],但我国《生活饮用水卫生标准》(GB
5749 —2006)中只对部分DBPs进行了监管,绝大部分DBPs还未受监管. 在目前受监管的Cl-DBPs中,THMs和HAAs已被证实具有细胞毒性和基因毒性[10]. 然而,含氯消毒剂与溶解性有机氮(dissolved organic nitrogen,DON)生成的含氮消毒副产物(nitrogenous disinfection byproducts,N-DBPs)如卤乙腈(HANs)和卤乙酰胺(HAcAms)等化合物目前尚未纳入监管范围[16 − 17]. 在过去的几十年里,研究人员对自来水、再生水和地表水中存在的受管制和未受管制DBPs的毒性效应进行了广泛的研究,发现与受管制的含碳消毒副产物(carbon disinfection byproducts,C-DBPs)如THMs和HAAs相比,未受管制的N-DBPs具有更强的发育毒性和生长抑制作用[18]. 然而,这些研究只考虑了单一DBPs的毒性效应,生态系统中人类和生物体通常暴露在复杂多重的污染体系中,混合物的联合毒性可能不同于单一化学物[19]. 当生物体暴露于两种或多种Cl-DBPs时,可能会发生相加、协同和拮抗效应. 因此,研究Cl-DBPs混合物的毒性效应对于保护人体健康和水生生态系统具有一定的必要性和重要性.本文综述了Cl-DBPs的分类和来源,并对Cl-DBPs及其混合物对水、陆生生物和人体健康的毒性效应进行了总结,初步探讨了产生这些毒性作用可能的分子机制,以期为评价Cl-DBPs的环境风险提供科学依据.
新型污染物氯代消毒副产物的生态环境及人体健康毒性效应研究进展
Research progress of the toxic effects of emerging contaminants chlorinated disinfection byproducts on ecological environment and human health
-
摘要: 水消毒是保护人体健康免受病原体侵害并防止病原体在水中传播的基本策略,已被广泛应用于水质净化中. 在水消毒过程中,消毒剂易与天然存在的有机物(如腐殖酸和富里酸)、无机物、污染物以及原水中存在的游离氯、溴或碘反应,生成新型污染物(emerging contaminants,ECs)消毒副产物(disinfection by-products,DBPs),其中氯代消毒副产物(chlorinated disinfection byproducts,Cl-DBPs)是检出率和浓度水平最高的一类. Cl-DBPs可引发内分泌紊乱及“三致”效应,对生态环境和人体健康均构成了一定的威胁,然而造成这些不良影响的毒性机制在很大程度上尚不清楚. 因此,全面了解Cl-DBPs的毒性效应对保护生态环境和人体健康至关重要. 本文综述了目前已发现的Cl-DBPs的种类和来源,探讨了Cl-DBPs及其混合物对水生生物、陆生生物、人体健康的毒性效应,为评价Cl-DBPs的环境风险提供科学依据.Abstract: Water disinfection is a fundamental strategy for safeguarding human health from pathogenic threats and preventing the spread of pathogens in drinking water. It has been widely employed in water purification. During the process of water disinfection, disinfectants readily react with natural organic matters such as humic and fulvic acids, inorganic compounds, pollutants, and free chlorine, bromine, or iodine present in the raw water, producing pollutants known as emerging contaminants (ECs) or disinfection by-products (DBPs). Among these, chlorinated disinfection by-products (Cl-DBPs) represent a category with the highest detection rate and concentration levels. The toxicities of Cl-DBPs include endocrine disruption, carcinogenicity, teratogenicity, and mutagenicity, which can threaten human health and environmental safety. However, the toxic mechanisms responsible for these adverse effects are not yet fully understood. Hence, gaining a comprehensive understanding of the toxic effects of Cl-DBPs is crucial for safeguarding both ecological environments and human health. This article provides an overview of the types and sources of Cl-DBPs that have been identified so far. It delves into the toxic effects of Cl-DBPs and their mixtures on aquatic organisms, terrestrial organisms, and human health, thereby offering a scientific foundation for assessing the environmental risks associated with Cl-DBPs.
-
表 1 Cl-DBPs的主要分类
Table 1. Main classification of Cl-DBPs
类别
Category化合物
Compounds参考文献
Reference三卤甲烷 二氯甲烷、三氯甲烷、二溴一氯甲烷、一溴二氯甲烷、溴氯甲烷、一氯二碘甲烷、二氯碘甲烷、溴氯碘甲烷 [20 − 22] 卤乙酸 氯乙酸、二氯乙酸、三氯乙酸、溴氯乙酸、一溴二氯乙酸、一氯二溴乙酸 [23 − 25] 卤乙腈 氯乙腈、二氯乙腈、三氯乙腈、溴氯乙腈、溴二氯乙腈、二溴氯乙腈 [26 − 27] 卤代硝基甲烷 一氯硝基甲烷、二氯硝基甲烷、三氯硝基甲烷、溴氯硝基甲烷、一溴二氯硝基甲烷、二溴氯硝基甲烷 [28 − 29] 卤代苯醌 2,6-二氯-1,4-苯醌、2,5-二氯-1,4-苯醌、2,6-二氯-3-甲基-1,4-苯醌、2,3,6-三氯-1,4-苯醌、2,3,5,6-四氯-1,4-苯醌、3,4,5,6-四氯-1,2-苯醌、2-氯-6-碘-1,4-苯醌、2-溴-6-氯-1,4-苯醌 [30 − 34] 卤乙酰胺 氯乙酰胺、二氯乙酰胺、三氯乙酰胺、溴氯乙酰胺、二溴氯乙酰胺、溴二氯乙酰胺、氯碘乙酰胺 [35] 卤乙醛 一氯乙醛、二氯乙醛、三氯乙醛、溴氯乙醛、一溴二氯乙醛、二溴氯乙醛 [36] 无机卤氧酸盐 氯酸盐、亚氯酸盐 [37] 氯代丙酮 氯丙酮、二氯丙酮、三氯丙酮、六氯丙酮 [38] 卤代苯酚 2-氯苯酚、2,4-二氯苯酚、2,4,6-三氯苯酚、2,6-二氯-4-硝基苯酚、4-溴-2-氯苯酚、2-溴-4-氯苯酚、
2,6-二氯-4-溴苯酚、[39] 其他Cl-DBPs 四氯化碳、氯化氰、3,5-二氯-4-羟基苯甲醛、3-溴-5-氯-4-羟基苯甲醛、3,5-二氯-4-羟基苯甲酸、
3-溴-5-氯-4-羟基苯甲酸、3,5-二氯水杨酸、3-溴-5-氯水杨酸、3-氯-2,2-二甲基-1-丙醇[40 − 42] 表 2 Cl-DBPs对水生生物的毒性效应
Table 2. Toxicity effects of Cl-DBPs on aquatic organisms
水生生物
Aquatic organisms氯代消毒副产物
Cl-DBPs生态毒性效应
Toxicological effects参考文献
Reference铜绿微囊藻 氯乙酸 刺激MC-LR产生, 损伤藻细胞的超微结构, 抑制生长 [23] 栅藻 氯乙酸 破坏类囊体片, 微藻蛋白核消失, ROS显著增加, DNA受损, 细胞凋亡 [24] 小球藻 氯乙酸 生长速率减慢, 最大光化学量子产量下降, 叶绿素 a 浓度降低, SOD、CAT、GSH含量上升, MDA含量下降 [59] 鲤鱼 三氯甲烷 血液参数下降, 生化指标(葡萄糖、总蛋白、丙氨酸转氨酶)的变化显著, 引发肝损伤 [4] 斑马鱼 2,6-二氯-1,4-苯醌 雌性青春期延迟, 卵巢生长迟缓, 生育能力低下 [63] 存活率降低, 畸变率提高 [64] 2,5-二氯-1,4-苯醌 体长减少, 心率降低, 色素沉着减少, 运动轴突结构异常等发育缺陷, 神经元发育相关的基因显著下调 [66] 二氯乙酰胺 引起斑马鱼急性代谢损伤 [68] 表 3 Cl-DBPs对陆生生物的毒性效应
Table 3. Toxicity effects of Cl-DBPs on terrestrial organisms
受试物种
Subject species氯代消毒副产物
Cl-DBPs生态毒性效应
Toxicology参考文献
Reference中国仓鼠卵巢细胞 氯乙酸 抑制甘油醛-3-磷酸脱氢酶、产生线粒体损伤 [79] 二氯乙腈 诱导姐妹染色单体交换和淋巴母细胞DNA链断裂 [72] 小鼠 二氯乙腈 降低细胞活力, 增加乳酸脱氢酶释放率, 诱导细胞凋亡 [80] 溴氯硝基甲烷
三氯硝基甲烷肝脏的相对重量下降, 损害肝脏抗氧化防御系统, 干扰氨基酸和
碳水化合物代谢[29] 二氯乙酸
三氯乙酸诱导不同水平的氧化应激 [76] 氯乙酸 肝细胞活力下降 [75] 秀丽隐杆线虫 2,6-二氯-1,4-苯醌 诱发DNA损伤 [81] 多毛纲 氯乙酸 影响发育 [17] 猪胚胎 一溴二氯甲烷 囊胚发育率降低, 雌二醇信号通路改变 [73] 表 4 Cl-DBPs对人体健康的毒性效应
Table 4. Toxicity effects of Cl-DBPs on human health
氯代消毒副产物
Cl-DBPs毒性效应
Toxicity effects参考文献
Reference卤代甲烷 膀胱癌, 结肠癌, 皮肤癌, 神经管缺陷, 人体气道屏障功能障碍, 气道上皮细胞紊乱, 过敏性疾病, 内分泌紊乱, 细胞基因表达异常, DNA甲基化, 心血管先天性异常, 尿道下裂风险增加, 原癌基因c-myc和
c-jun的mRNA表达增加, 肾和肝产生肿瘤[22, 92 − 94] 卤代乙酸 急慢性中毒, 胚胎发育不正常, 细胞增殖, 染色体损伤, 细胞ATP水平下降, DNA错误修复, 染色体重组或端粒末端融合损伤, 肠道微生物群及其代谢异常, 对肝、肾、神经系统产生负面影响, 影响男性生殖, 胎儿畸形, 胎儿发育迟缓, 性成熟延迟, 胎盘改变以及影响骨骼, 在尿路上皮细胞中表现出致癌特性 [17, 25, 75] 卤代乙腈 具有致畸性和致突变性, 破坏薄膜组织, 大脑的呼吸中枢瘫痪, 有机体诱变, 淋巴细胞内DNA链断裂 [26 − 27] 卤代苯醌 蛋白质和DNA的损伤与癌变, 产生活性氧, 影响基因表达, 诱导肿瘤发生 [30 − 31] -
[1] WATTS C, SUN J X, JONES P D, et al. Monthly variations of unregulated brominated disinfection by-products in chlorinated water are correlated with total bromine[J]. Eco-Environment & Health, 2022, 1(3): 147-155. [2] PAL A, HE Y L, JEKEL M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle[J]. Environment International, 2014, 71: 46-62. doi: 10.1016/j.envint.2014.05.025 [3] 丁文川, 姚瑜佳, 曾晓岚, 等. 垃圾填埋场中新型污染物的研究进展[J]. 环境化学, 2018, 37(10): 2267-2282. doi: 10.7524/j.issn.0254-6108.2017112902 DING W C, YAO Y J, ZENG X L, et al. Emerging contaminants in municipal landfills: A review[J]. Environmental Chemistry, 2018, 37(10): 2267-2282 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017112902
[4] PERVEEN S, HASHMI I, KHAN R. Evaluation of genotoxicity and hematological effects in common carp (Cyprinus carpio) induced by disinfection by-products[J]. Journal of Water and Health, 2019, 17(5): 762-776. doi: 10.2166/wh.2019.261 [5] CORTÉS C, MARCOS R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2018, 831: 1-12. doi: 10.1016/j.mrgentox.2018.04.005 [6] 李永珍, 何更生, 詹铭, 等. 上海市水源水及出厂水中卤甲烷、卤乙酸、卤乙腈类消毒副产物含量及健康风险评估[J]. 环境与职业医学, 2021, 38(5): 460-466. LI Y Z, HE G S, ZHAN M, et al. Levels and health risk assessments of halomethanes, haloacetic acids, and haloacetonitriles disinfection by-products in source and finished water in Shanghai[J]. Journal of Environmental and Occupational Medicine, 2021, 38(5): 460-466 (in Chinese).
[7] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23): 7175-7185. [8] MIAN H R, HU G J, HEWAGE K, et al. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review[J]. Water Research, 2018, 147: 112-131. doi: 10.1016/j.watres.2018.09.054 [9] ZHAO Y L, ANICHINA J, LU X F, et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection[J]. Water Research, 2012, 46(14): 4351-4360. doi: 10.1016/j.watres.2012.05.032 [10] PRESSMAN J G, RICHARDSON S D, SPETH T F, et al. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: U. S. EPA’s four lab study[J]. Environmental Science & Technology, 2010, 44(19): 7184-7192. [11] ROOK J J. Formation of haloforms during chlorination of natureal waters[J]. Water treatment Examination, 1974, 23: 234-243. [12] GRELLIER J, RUSHTON L, BRIGGS D J, et al. Assessing the human health impacts of exposure to disinfection by-products—a critical review of concepts and methods[J]. Environment International, 2015, 78: 61-81. doi: 10.1016/j.envint.2015.02.003 [13] 齐慧颖, 郭新彪. 氯化消毒副产物与膀胱癌关系研究进展[J]. 职业与健康, 2018, 34(24): 3453-3457. QI H Y, GUO X B. Research progress of relation between chlorination disinfection by-products and bladder cancer[J]. Occupation and Health, 2018, 34(24): 3453-3457 (in Chinese).
[14] EVLAMPIDOU I, FONT-RIBERA L, ROJAS-RUEDA D, et al. Trihalomethanes in drinking water and bladder cancer burden in the European union[J]. Environmental Health Perspectives, 2020, 128(1): 17001. doi: 10.1289/EHP4495 [15] USMAN M, KUCKELKORN J, KÄMPFE A, et al. Identification of disinfection by-products (DBP) in thermal water swimming pools applying non-target screening by LC-/ GC-HRMS[J]. Journal of Hazardous Materials, 2023, 449: 130981. doi: 10.1016/j.jhazmat.2023.130981 [16] WANG X X, LIU B M, LU M F, et al. Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: Comparison with natural organic matter[J]. Journal of Environmental Management, 2021, 282: 111951. doi: 10.1016/j.jenvman.2021.111951 [17] YANG M T, ZHANG X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii[J]. Environmental Science & Technology, 2013, 47(19): 10868-10876. [18] RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues[J]. Analytical Chemistry, 2022, 94(1): 382-416. doi: 10.1021/acs.analchem.1c04640 [19] POSTIGO C, EMILIANO P, BARCELÓ D, et al. Chemical characterization and relative toxicity assessment of disinfection byproduct mixtures in a large drinking water supply network[J]. Journal of Hazardous Materials, 2018, 359: 166-173. doi: 10.1016/j.jhazmat.2018.07.022 [20] LEE J, HA K T, ZOH K D. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods[J]. Science of the Total Environment, 2009, 407(6): 1990-1997. doi: 10.1016/j.scitotenv.2008.11.021 [21] TÉLLEZ TOVAR S S, RODRÍGUEZ SUSA M. Cancer risk assessment from exposure to trihalomethanes in showers by inhalation[J]. Environmental Research, 2021, 196: 110401. doi: 10.1016/j.envres.2020.110401 [22] MAHATO J K, GUPTA S K. Advanced oxidation of Trihalomethane (THMs) precursors and season-wise multi-pathway human carcinogenic risk assessment in Indian drinking water supplies[J]. Process Safety and Environmental Protection, 2022, 159: 996-1007. doi: 10.1016/j.psep.2022.01.066 [23] YE J, NI J W, TIAN F X, et al. Toxicity effects of disinfection byproduct chloroacetic acid to Microcystis aeruginosa: Cytotoxicity and mechanisms[J]. Journal of Environmental Sciences, 2023, 129: 229-239. doi: 10.1016/j.jes.2022.09.023 [24] CUI H J, CHEN B Y, JIANG Y L, et al. Toxicity of 17 disinfection by-products to different trophic levels of aquatic organisms: Ecological risks and mechanisms[J]. Environmental Science & Technology, 2021, 55(15): 10534-10541. [25] MARSÀ A, CORTÉS C, HERNÁNDEZ A, et al. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells[J]. Toxicology and Applied Pharmacology, 2018, 347: 70-78. doi: 10.1016/j.taap.2018.04.004 [26] LU G H, QIN D H, WANG Y H, et al. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line[J]. Ecotoxicology and Environmental Safety, 2018, 163: 417-426. doi: 10.1016/j.ecoenv.2018.07.104 [27] XUE P, WANG H H, YANG L L, et al. NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes[J]. Toxicology and Applied Pharmacology, 2022, 450: 116163. doi: 10.1016/j.taap.2022.116163 [28] LIVIAC D, CREUS A, MARCOS R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro[J]. Environmental Research, 2009, 109(3): 232-238. doi: 10.1016/j.envres.2008.12.009 [29] YIN J B, WU B, ZHANG X X, et al. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method[J]. Chemosphere, 2017, 185: 20-28. doi: 10.1016/j.chemosphere.2017.06.116 [30] LI J B, ZHANG H F, HAN Y N, et al. Cytotoxicity and genotoxicity assays of halobenzoquinones disinfection byproducts using different human cell lines[J]. Environmental and Molecular Mutagenesis, 2020, 61(5): 526-533. doi: 10.1002/em.22369 [31] LI J H, MOE B, LIU Y M, et al. Halobenzoquinone-induced alteration of gene expression associated with oxidative stress signaling pathways[J]. Environmental Science & Technology, 2018, 52(11): 6576-6584. [32] HUANG R F, WANG W, QIAN Y C, et al. Ultra pressure liquid chromatography-negative electrospray ionization mass spectrometry determination of twelve halobenzoquinones at ng/L levels in drinking water[J]. Analytical Chemistry, 2013, 85(9): 4520-4529. doi: 10.1021/ac400160r [33] HU S Y, GONG T T, ZHU H T, et al. Formation and decomposition of new iodinated halobenzoquinones during chloramination in drinking water[J]. Environmental Science & Technology, 2020, 54(8): 5237-5248. [34] HU S Y, CHEN X, ZHANG B B, et al. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1, 4-benzoquinone in chlorinated drinking water[J]. Journal of Hazardous Materials, 2022, 436: 129189. doi: 10.1016/j.jhazmat.2022.129189 [35] 袁婷婷, 王新亮, 董慧峪. 5种卤代乙酰胺类消毒副产物对小鼠淋巴瘤细胞Tk基因致突变性研究[J]. 生态毒理学报, 2016, 11(1): 153-158. YUAN T T, WANG X L, DONG H Y. Mutagenic analysis of five haloacetamides disinfection by-products in the tk gene of mouse lymphoma cells[J]. Asian Journal of Ecotoxicology, 2016, 11(1): 153-158 (in Chinese).
[36] TIAN X M, ZHOU Y X, WANG K J. Chloroacetaldehyde removal by zero valent iron enhanced hydrolytic acidification pretreatment[J]. Sustainable Chemistry and Pharmacy, 2020, 15: 100215. doi: 10.1016/j.scp.2020.100215 [37] 张琦, 丁雪娇, 李怡, 等. 重庆生活饮用水二氧化氯消毒副产物水平及影响因素[J]. 中国卫生工程学, 2022, 21(6): 881-884,888. ZHANG Q, DING X J, LI Y, et al. Chlorine dioxide disinfection byproducts and influencing factors in drinking water in Chongqing[J]. Chinese Journal of Public Health Engineering, 2022, 21(6): 881-884,888 (in Chinese).
[38] 高乃云, 楚文海. 饮用水中氯代丙酮类消毒副产物的分析方法研究[J]. 水工业市场, 2011(7): 39-42. GAO N Y, CHU W H. Study on analytical method of disinfection by-products of chloroacetone in drinking water[J]. Water-Industry Market, 2011(7): 39-42 (in Chinese).
[39] ZOU C, WANG M S, CHEN Y X, et al. Effects of different cathodic potentials on performance, microbial community structure and function for bioelectrochemical-stimulated dechlorination of 2, 4, 6-trichlorophenol in sediments[J]. Environmental Research, 2023, 216(Pt 1): 114477. [40] ZHOU S Q, SHAO Y S, GAO N Y, et al. Chlorination and chloramination of tetracycline antibiotics: Disinfection by-products formation and influential factors[J]. Ecotoxicology and Environmental Safety, 2014, 107: 30-35. doi: 10.1016/j.ecoenv.2014.05.008 [41] McKIE M J, TAYLOR-EDMONDS L, ANDREWS S A, et al. Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity[J]. Water Research, 2015, 81: 196-207. doi: 10.1016/j.watres.2015.05.034 [42] XUE L R, LI X, ZHU X R, et al. Carbon tetrachloride exposure induces ovarian damage through oxidative stress and inflammatory mediated ovarian fibrosis[J]. Ecotoxicology and Environmental Safety, 2022, 242: 113859. doi: 10.1016/j.ecoenv.2022.113859 [43] WANG L Y, ZHANG X, CHEN S S, et al. Spatial variation of dissolved organic nitrogen in Wuhan surface waters: Correlation with the occurrence of disinfection byproducts during the COVID-19 pandemic[J]. Water Research, 2021, 198: 117138. doi: 10.1016/j.watres.2021.117138 [44] KOROTTA-GAMAGE S M, SATHASIVAN A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process[J]. Chemosphere, 2017, 167: 120-138. doi: 10.1016/j.chemosphere.2016.09.097 [45] ZHAO Z M, SUN W J, RAY A K, et al. Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of algae and cyanobacteria[J]. Chemosphere, 2020, 245: 125669. doi: 10.1016/j.chemosphere.2019.125669 [46] GONSIOR M, POWERS L C, WILLIAMS E, et al. The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination[J]. Water Research, 2019, 155: 300-309. doi: 10.1016/j.watres.2019.02.030 [47] LI X, RAO N R H, LINGE K L, et al. Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination[J]. Water Research, 2020, 183: 116047. doi: 10.1016/j.watres.2020.116047 [48] FANG C, HU J L, CHU W H, et al. Formation of CX3R-type disinfection by-products during the chlorination of protein: The effect of enzymolysis[J]. Chemical Engineering Journal, 2019, 363: 309-317. doi: 10.1016/j.cej.2019.01.143 [49] LU Y, SONG Z M, WANG C, et al. Combination of high resolution mass spectrometry and a halogen extraction code to identify chlorinated disinfection byproducts formed from aromatic amino acids[J]. Water Research, 2021, 190: 116710. doi: 10.1016/j.watres.2020.116710 [50] CHU W H, KRASNER S W, GAO N Y, et al. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2016, 50(1): 388-396. [51] GAO Y Q, ZHOU J Q, RAO Y Y, et al. Comparative study of degradation of ketoprofen and paracetamol by ultrasonic irradiation: Mechanism, toxicity and DBP formation[J]. Ultrasonics Sonochemistry, 2022, 82: 105906. doi: 10.1016/j.ultsonch.2021.105906 [52] ZHANG W J, DONG T Y, AI J, et al. Mechanistic insights into the generation and control of Cl-DBPs during wastewater sludge chlorination disinfection process[J]. Environment International, 2022, 167: 107389. doi: 10.1016/j.envint.2022.107389 [53] VILLANUEVA C M, CORDIER S, FONT-RIBERA L, et al. Overview of disinfection by-products and associated health effects[J]. Current Environmental Health Reports, 2015, 2(1): 107-115. doi: 10.1007/s40572-014-0032-x [54] NIEUWENHUIJSEN M J, GRELLIER J, SMITH R, et al. The epidemiology and possible mechanisms of disinfection by-products in drinking water[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1904): 4043-4076. [55] PEREIRA M A, KRAMER P M, CONRAN P B, et al. Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c- myc gene and on their promotion of liver and kidney tumors in mice[J]. Carcinogenesis, 2001, 22(9): 1511-1519. doi: 10.1093/carcin/22.9.1511 [56] LI Z G, LIU X Y, HUANG Z J, et al. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China[J]. Water Research, 2019, 157: 247-257. doi: 10.1016/j.watres.2019.03.072 [57] FISHER D, YONKOS L, ZIEGLER G, et al. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana[J]. Water Research, 2014, 55: 233-244. doi: 10.1016/j.watres.2014.01.056 [58] ZHANG H, TANG W Z, CHEN Y S, et al. Disinfection threatens aquatic ecosystems[J]. Science, 2020, 368(6487): 146-147. doi: 10.1126/science.abb8905 [59] 张亚凤, 程子波, 肖付耀, 等. 污水厂尾水中消毒副产物对小球藻的生长生理影响[J]. 环境化学, 2023, 42(2): 370-378. doi: 10.7524/j.issn.0254-6108.2021092703 ZHANG Y F, CHENG Z B, XIAO F Y, et al. Effects of disinfection by-products in sewage treatment plant effluent on the growth and physiology of Chlorella vulgaris[J]. Environmental Chemistry, 2023, 42(2): 370-378 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021092703
[60] CUI H J, ZHU X S, ZHU Y J, et al. Ecotoxicological effects of DBPs on freshwater phytoplankton communities in co-culture systems[J]. Journal of Hazardous Materials, 2022, 421: 126679. doi: 10.1016/j.jhazmat.2021.126679 [61] HU L L, SHAN K, LIN L Z, et al. Multi-year assessment of toxic genotypes and microcystin concentration in northern Lake Taihu, China[J]. Toxins, 2016, 8(1): 23. doi: 10.3390/toxins8010023 [62] MELO A, FERREIRA C, FERREIRA I M P L V O, et al. Acute and chronic toxicity assessment of haloacetic acids using Daphnia magna[J]. Journal of Toxicology and Environmental Health. Part A, 2019, 82(18): 977-989. doi: 10.1080/15287394.2019.1676959 [63] SONG W Y, WU K, WU X L, et al. The antiestrogen-like activity and reproductive toxicity of 2, 6-DCBQ on female zebrafish upon sub-chronic exposure[J]. Journal of Environmental Sciences, 2022, 117: 10-20. doi: 10.1016/j.jes.2021.11.012 [64] SUN H J, ZHANG Y, ZHANG J Y, et al. The toxicity of 2, 6-dichlorobenzoquinone on the early life stage of zebrafish: A survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity[J]. Environmental Pollution, 2019, 245: 719-724. doi: 10.1016/j.envpol.2018.11.051 [65] XIAO C, WANG C, ZHANG Q W, et al. Transcriptomic analysis of adult zebrafish heart and brain in response to 2, 6-dichloro-1, 4-benzoquinone exposure[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112835. doi: 10.1016/j.ecoenv.2021.112835 [66] CHEN Y Y, XIAO L, GAO G Y, et al. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity[J]. Ecotoxicology and Environmental Safety, 2022, 243: 114007. doi: 10.1016/j.ecoenv.2022.114007 [67] CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Toxicological assessment of seven unregulated drinking water Disinfection By-products (DBPs) using the zebrafish embryo bioassay[J]. The Science of the Total Environment, 2020, 742: 140522. doi: 10.1016/j.scitotenv.2020.140522 [68] YU S L, LIN T, CHEN W, et al. The toxicity of a new disinfection by-product, 2, 2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water[J]. Chemosphere, 2015, 139: 40-46. doi: 10.1016/j.chemosphere.2015.05.079 [69] RANJAN J, MANDAL T, MANDAL D D. Environmental risk appraisement of disinfection by-products (DBPs) in plant model system: Allium cepa[J]. Environmental Science and Pollution Research International, 2019, 26(9): 8609-8622. doi: 10.1007/s11356-019-04262-7 [70] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021 [71] DONG Y, LI F, SHEN H J, et al. Evaluation of the water disinfection by-product dichloroacetonitrile-induced biochemical, oxidative, histopathological, and mitochondrial functional alterations: Subacute oral toxicity in rats[J]. Toxicology and Industrial Health, 2018, 34(3): 158-168. doi: 10.1177/0748233717744720 [72] MUELLNER M G, WAGNER E D, McCALLA K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?[J]. Environmental Science & Technology, 2007, 41(2): 645-651. [73] PAGÉ-LARIVIÈRE F, TREMBLAY A, CAMPAGNA C, et al. Low concentrations of bromodichloromethane induce a toxicogenomic response in porcine embryos in vitro[J]. Reproductive Toxicology, 2016, 66: 44-55. doi: 10.1016/j.reprotox.2016.09.010 [74] CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Hazard and mode of action of disinfection by-products (DBPs) in water for human consumption: Evidences and research priorities[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 2019, 223: 53-61. [75] HASSOUN E, CEARFOSS J, MAMADA S, et al. The effects of mixtures of dichloroacetate and trichloroacetate on induction of oxidative stress in livers of mice after subchronic exposure[J]. Journal of Toxicology and Environmental Health. Part A, 2014, 77(6): 313-323. doi: 10.1080/15287394.2013.864576 [76] WANG J, ZHANG H F, ZHENG X L, et al. In vitro toxicity and molecular interacting mechanisms of chloroacetic acid to catalase[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109981. doi: 10.1016/j.ecoenv.2019.109981 [77] FAUSTINO-ROCHA A I, RODRIGUES D, Da COSTA R G, et al. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse[J]. Environmental Toxicology, 2016, 31(8): 1009-1016. doi: 10.1002/tox.22110 [78] PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis, 2010, 51(8/9): 871-878. [79] DAD A, JEONG C H, PALS J A, et al. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis, 2013, 54(8): 629-637. doi: 10.1002/em.21795 [80] LI F, ZHOU J, ZHU X Y, et al. Oxidative injury induced by drinking water disinfection by-products dibromoacetonitrile and dichloroacetonitrile in mouse hippocampal neuronal cells: The protective effect of N-acetyl-L[J]. Toxicology Letters, 2022, 365: 61-73. doi: 10.1016/j.toxlet.2022.06.005 [81] ZUO Y T, HU Y, LU W W, et al. Toxicity of 2, 6-dichloro-1, 4-benzoquinone and five regulated drinking water disinfection by-products for the Caenorhabditis elegans nematode[J]. Journal of Hazardous Materials, 2017, 321: 456-463. doi: 10.1016/j.jhazmat.2016.09.038 [82] SAVITZ D A. Invited commentary: Biomarkers of exposure to drinking water disinfection by-products—Are we ready yet?[J]. American Journal of Epidemiology, 2012, 175(4): 276-278. doi: 10.1093/aje/kwr420 [83] VILLANUEVA C M, FONT-RIBERA L. Health impact of disinfection by-products in swimming pools[J]. Annali Dell’Istituto Superiore Di Sanita, 2012, 48(4): 387-396. doi: 10.4415/ANN_12_04_06 [84] LUBEN T J, OLSHAN A F, HERRING A H, et al. The healthy men study: An evaluation of exposure to disinfection by-products in tap water and sperm quality[J]. Environmental Health Perspectives, 2007, 115(8): 1169-1176. doi: 10.1289/ehp.10120 [85] MACLEHOSE R F, SAVITZ D A, HERRING A H, et al. Drinking water disinfection by-products and time to pregnancy[J]. Epidemiology, 2008, 19(3): 451-458. doi: 10.1097/EDE.0b013e31816a23eb [86] WALLER K, SWAN S H, DeLORENZE G, et al. Trihalomethanes in drinking water and spontaneous abortion[J]. Epidemiology, 1998, 9(2): 134-140. doi: 10.1097/00001648-199803000-00006 [87] ROSENMAN K D, MILLERICK-MAY M, REILLY M J, et al. Swimming facilities and work-related asthma[J]. The Journal of Asthma:Official Journal of the Association for the Care of Asthma, 2015, 52(1): 52-58. doi: 10.3109/02770903.2014.950428 [88] CARTER R A A, JOLL C A. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review[J]. Journal of Environmental Sciences, 2017, 58: 19-50. doi: 10.1016/j.jes.2017.06.013 [89] THICKETT K M, McCOACH J S, GERBER J M, et al. Occupational asthma caused by chloramines in indoor swimming-pool air[J]. The European Respiratory Journal, 2002, 19(5): 827-832. doi: 10.1183/09031936.02.00232802 [90] ALLEN J M, PLEWA M J, WAGNER E D, et al. Making swimming pools safer: Does copper-silver ionization with chlorine lower the toxicity and disinfection byproduct formation?[J]. Environmental Science & Technology, 2021, 55(5): 2908-2918. [91] XU T, YIN J F, CHEN S K, et al. Elevated 8-oxo-7, 8-dihydro-2’-deoxyguanosine in genome of T24 bladder cancer cells induced by halobenzoquinones[J]. Journal of Environmental Sciences, 2018, 63: 133-139. doi: 10.1016/j.jes.2017.05.024 [92] ZHANG L, XU L, ZENG Q, et al. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2012, 741(1/2): 89-94. [93] ZHOU B, YANG P, GONG Y J, et al. Effect modification of CPY2E1 and GSTZ1 genetic polymorphisms on associations between prenatal disinfection by-products exposure and birth outcomes[J]. Environmental Pollution, 2018, 243: 1126-1133. doi: 10.1016/j.envpol.2018.09.083 [94] MASHAU F, NCUBE E J, VOYI K. Drinking water disinfection by-products exposure and health effects on pregnancy outcomes: A systematic review[J]. Journal of Water and Health, 2018, 16(2): 181-196. doi: 10.2166/wh.2018.167 [95] STALTER D, O'MALLEY E, von GUNTEN U, et al. Mixture effects of drinking water disinfection by-products: Implications for risk assessment[J]. Environmental Science:Water Research & Technology, 2020, 6(9): 2341-2351. [96] FAN M G, SHU L F, ZHANG X R, et al. Synergistic cytotoxicity of binary combinations of inorganic and organic disinfection byproducts assessed by real-time cell analysis[J]. Journal of Environmental Sciences, 2022, 117: 222-231. doi: 10.1016/j.jes.2022.04.042 [97] CHEN Y H, QIN L T, MO L Y, et al. Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp. -Q67[J]. Environmental Pollution, 2019, 250: 375-385. [98] NAROTSKY M G, BEST D S, McDONALD A, et al. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids[J]. Reproductive Toxicology, 2011, 31(1): 59-65. doi: 10.1016/j.reprotox.2010.08.002 [99] 方晶云. 蓝藻细胞及藻类有机物在氯化消毒中副产物的形成机理与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010. FANG J Y. Formation and control of disinfection by-products in chlorination of B-G algae and algal organic matter (AOM)[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese).
[100] DAIBER E J, DeMARINI D M, RAVURI S A, et al. Progressive increase in disinfection byproducts and mutagenicity from source to tap to swimming pool and spa water: Impact of human inputs[J]. Environmental Science & Technology, 2016, 50(13): 6652-6662. [101] VLAANDEREN J, van VELDHOVEN K, FONT-RIBERA L, et al. Acute changes in serum immune markers due to swimming in a chlorinated pool[J]. Environment International, 2017, 105: 1-11. doi: 10.1016/j.envint.2017.04.009 [102] WRIGHT J M, EVANS A, KAUFMAN J A, et al. Disinfection by-product exposures and the risk of specific cardiac birth defects[J]. Environmental Health Perspectives, 2017, 125(2): 269-277. doi: 10.1289/EHP103 [103] ZENG Q, ZHANG S H, LIAO J, et al. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays[J]. Journal of Hazardous Materials, 2015, 296: 23-29. doi: 10.1016/j.jhazmat.2015.04.047