-
全氟和多氟烷基化合物(per- and polyfluoroalkyl substances, PFASs)是一类化合物分子中与碳原子相连的氢原子全部或部分被氟原子取代的新型有机化合物. 由于其独特的物理化学性质,如较好的稳定性、疏水疏油性以及高表面活性,被应用于消防材料、清洁剂、杀虫剂以及纺织等[1]. 因其广泛的应用和较强的环境持久性等特点,PFASs在全球范围内的水体[2]、大气[3]、土壤[4]、沉积物[5]和生物体[6]等中被频繁检出. 因PFASs具有持久性、生物累积性和毒性,已严重威胁环境和人类健康,全氟辛烷磺酸(PFOS)、全氟辛酸(PFOA)和全氟己烷磺酸(PFHxS)及其盐类和相关化合物分别于2009年、2019年和2022年被列入《关于持久性有机污染物的斯德哥尔摩公约》,旨在全球范围内限制其生产与使用. 我国已于2023年4月正式实施的生活饮用水卫生标准GB
5749 -2022中规定PFOA和PFOS的限值分别为80 ng·L−1和40 ng·L−1[7]. 近年来,C4—C6全氟羧酸类(PFCAs)、C4—C5全氟磺酸类(PFSAs)等短链传统PFASs,以及不饱和全氟烷基醇(UPFAs)、氢代全氟羧酸类(H-PFCAs)、氢代全氟磺酸类(H-PFSAs)等新型PFASs逐渐被用作传统长链PFASs的替代品使用[8]. 然而,这些替代品具有与传统长链PFASs相似的毒性、生物累积性,其健康风险仍不容忽视[9].常用PFASs检测方法主要包括:气相色谱质谱联用(GC-MS)、液相色谱质谱联用(LC-MS)和高效液相色谱串联质谱联用(HPLC-MS/MS)[10 − 11]. HPLC-MS/MS主要用于分析不挥发性、极性、热不稳定以及大分子量化合物,具有灵敏度高、特异性强、分析高效、信噪比稳定等优点. 由于大部分PFASs挥发性较弱,现今大多数研究采用HPLC-MS/MS方法对样品中传统PFASs进行靶向分析[10 − 11]. 样品中新型PFASs尚无参考标准,因此使用靶向分析方法无法准确定量样品中的新型PFASs,而可疑物筛查和非靶向分析方法将为识别环境与生物体内新型PFASs提供更广阔的前景. 已有研究表明,可疑物筛查和非靶向分析方法已在世界各地环境和生物体中发现数百种新型PFASs同系物[12 − 15].
针对世界各地地表水、地下水、市政污水、工业废水等水环境中的PFASs污染报道屡见不鲜,但关于饮用水中PFASs研究相对较少. 从我国全国范围来看,关于饮用水中PFASs的研究主要集中在四川、山东、天津、北京、上海、沈阳以及我国东部[16 − 20]等地区. 此外,尚缺少利用非靶向分析方法识别我国饮用水中新型PFASs污染的调查研究. 因此我国自来水和瓶装水中传统和新型PFASs的污染现状和特征,对控制饮用水中的PFASs污染尤为重要.
本研究以辽宁省作为研究区域,选择12个地区的自来水和瓶装水样品. 采用靶向分析和非靶向分析方法,对自来水和瓶装水中传统和新型PFASs的污染现状、污染特征开展研究,探讨PFASs分析物之间的相关性,并对饮用水中PFASs生态环境和人体健康潜在风险进行评估,以期为我国饮用水中PFASs污染的研究与管控,提供科学依据和数据支持.
辽宁省饮用水PFASs靶向与非靶向分析及其风险评估
Target and non-target analysis of PFASs and related risk assessment in drinking water of Liaoning Province
-
摘要: 为探究辽宁省饮用水中全氟和多氟烷基化合物(PFASs)污染特征,本研究采用基于超高效液相色谱与三重四极杆串联质谱联用的靶向方法、以及基于高效液相色谱与四极杆飞行时间串联质谱的非靶向方法,对采集自辽宁省的自来水和瓶装水样品中传统和新型PFASs污染水平进行分析,并开展风险评估. 结果表明,基于靶向分析,自来水中传统总浓度(ΣPFASs)浓度范围为30.1—86.8 ng·L−1,瓶装水中PFASs浓度略低于自来水,传统ΣPFASs浓度范围为41.3—79.3 ng·L−1,全氟丁酸(PFBA)、全氟戊酸(PFPeA)、全氟己酸(PFHxA)和全氟丁烷磺酸(PFBS)等短链PFASs为自来水和瓶装水中最主要的传统PFASs污染物;通过非靶向分析共检出11类52种新型PFASs,其中自来水中检出11类47种新型PFASs,其ΣPFASs相对浓度范围为0.838—20.5 ng·L−1;瓶装水中检出11类49种新型PFASs,其ΣPFASs相对浓度范围为0.838—20.5 ng·L−1,与传统PFASs不同,长链PFASs为主要的新型PFASs污染物. 辽宁省自来水和瓶装水PFASs浓度和比例特征不同,自来水含有更严重的全氟羧酸类(PFCAs)污染,而瓶装水含有更严重的全氟磺酸类(PFSAs)污染,这可能与自来水和瓶装水的处理工艺不同有关. 辽宁省自来水中PFASs的生态风险评价表明,辽宁省自来水中PFASs无生态环境风险;全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)浓度未超过我国最新生活饮用水卫生标准限值,且两者健康风险值(HR)均小于0.1,表明辽宁省自来水中PFOA和PFOS无人体健康风险.Abstract: In order to explore the contamination characteristics of per- and polyfluoroalkyl substances (PFASs) in drinking water of Liaoning Province, the target analysis based upon UPLC coupled with triple quadrupole tandem mass spectroscopy and non-target analysis based upon HPLC tandem quadrupole time-of-flight mass spectrometry were used in this study. The contamination levels of legacy and novel PFASs in tap water and bottled water samples collected from Liaoning Province were analyzed and their related risks were also assessed. The results showed that, based upon the target analysis, the concentration range of legacy ΣPFASs in tap water was 30.1—86.8 ng·L−1. The concentrations of PFASs in bottled water were slightly lower than those in tap water. Moreover, the concentration range of legacy ΣPFASs was 41.3—79.3 ng·L−1, and PFBA, PFPeA, PFHxA, and PFBS were the main legacy PFASs in tap water and bottled water. Based upon the non-target analysis, 52 novel PFASs of 11 categories were determined. 47 novel PFASs of 11 categories were detected in tap water, and relative concentration range of ΣPFASs was 0.838—20.5 ng·L−1. Furthermore, 49 novel PFASs of 11 categories were detected in bottled water, and relative concentration range of novel ΣPFASs was 0.838—20.5 ng·L−1. Different from legacy PFASs, long-chain PFASs were the main novel PFAS contaminants. The concentration and proportion characteristics of PFASs in tap water and bottled water in Liaoning province were different, tap water contained higher contamination levels of PFCAs than bottled water, which may be related to the dissimilar treatment processes of tap water and bottled water. The ecological risk evaluation of PFASs in tap water of Liaoning Province showed that there was no ecological environmental risk for PFASs in tap water of Liaoning Province. The concentrations of PFOA and PFOS did not exceed the limit of the latest drinking water sanitation standards in China, and the health risk value (HR) of both tap water and bottled water were less than 0.1, indicating that there was no human health risk for PFOA and PFOS in tap water of Liaoning Province at present.
-
表 1 辽宁省内自来水中传统PFASs浓度(ng·L−1)
Table 1. Concentration of legacy PFASs in tap water from Liaoning Province (ng·L−1)
采样点
Sampling pointPFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUndA PFBS PFHxS PFOS PFNS ΣPFASs 沈阳 7.01 4.92 2.30 1.61 2.99 0.933 0.392 n.d. 4.81 0.262 4.86 0.055 30.1 大连 9.14 5.79 2.59 1.75 4.40 1.08 0.454 n.d. 5.55 0.262 13.3 0.198 44.5 普兰店 10.5 8.83 4.79 2.59 6.20 1.37 0.357 n.d. 4.61 0.239 0.50 n.d. 40.0 庄河 16.8 10.9 3.37 2.25 3.93 1.46 0.600 n.d. 6.91 0.208 1.44 n.d. 47.9 金州 11.1 8.70 3.70 2.50 5.25 1.54 0.493 0.07 6.30 0.146 0.263 n.d. 40.1 岫岩 18.3 12.8 4.13 2.38 4.15 1.48 0.565 0.07 3.86 n.d. 0.107 n.d. 47.8 鞍山 18.2 13.4 5.10 2.49 2.65 0.992 0.498 n.d. 6.26 0.235 2.33 n.d. 52.2 抚顺 20.3 13.1 5.09 2.91 6.77 1.80 0.784 n.d. 16.6 0.417 4.95 n.d. 72.7 辽阳 7.76 5.77 2.50 1.68 2.46 0.693 0.409 n.d. 5.90 0.262 11.6 0.174 39.2 建平 33.0 18.6 5.76 3.48 6.88 1.91 0.946 n.d. 14.8 0.236 1.22 n.d. 86.8 北票 14.6 9.71 3.95 2.29 3.19 1.22 0.503 n.d. 5.44 0.208 3.26 n.d. 44.4 朝阳 27.6 15.6 4.78 2.60 2.85 1.36 0.649 n.d. 6.13 0.255 2.55 n.d. 64.4 中位数 15.7 10.3 4.04 2.44 4.04 1.37 0.501 n.d. 6.02 0.238 2.44 n.d. 47.1 n.d.:未检出. 表 2 辽宁省内瓶装水中传统PFASs浓度(ng·L−1)
Table 2. Concentration of legacy PFASs in bottled water from Liaoning Province (ng·L−1)
采样点
Sampling pointPFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFBS PFHxS PFOS ΣPFASs 沈阳 14.7 13.6 5.26 2.12 4.54 0.745 0.362 10.4 0.226 1.22 53.2 岫岩 13.8 9.80 3.73 2.29 2.60 0.857 0.367 6.20 1.26 0.432 41.3 建平 27.0 19.3 5.71 3.31 6.67 1.76 0.750 13.4 0.306 1.09 79.3 朝阳 14.5 11.3 4.30 2.21 2.50 0.823 0.505 7.47 0.456 5.34 49.4 中位数 14.6 12.5 4.78 2.25 3.57 0.840 0.436 8.94 0.383 PFOS 49.4 表 3 自来水和瓶装水中新型PFASs的种类、结构式、分子式和基质
Table 3. Species, structural formula, molecular formula, and matrix of novel PFASs in tap water and bottled water
种类
Category结构式
Structural formula分子式
Molecular formula基质
Matrix置信水平[8]
Confidence LevelUPFCAs
(m=0, 3—8)CnF2n-3O2-
(n=4, 7—12)自来水(ni=7—12)
瓶装水(ni=4, 8—12)level 2 H-PFCAs
(m=2, 5—10)CnF2n-2HO2-
(n=4, 7—12)自来水(ni=7—12)
瓶装水(ni=4, 8—12)level 2 H-PFSAs
(m=4—9)CnF2nHSO3-
(n=5—10)自来水(ni=6—10)
瓶装水(ni=5, 8—10)level 2 C-PFCAs
(m=4, 6—10)CnF2n-2ClO2-
(n=5, 7—11)自来水(ni=7—11)
瓶装水(ni=5, 7—11)level 2 Cl-PFESAs
(m=5, 6, 8)CnF2nClSO4-
(n=7, 8, 10)自来水(ni=7, 8, 10)
瓶装水(ni=7, 8, 10)level 2 Ke-PFSAs
(m=4—8)CnF2n-1SO4-
(n=6—10)自来水(ni=6—10)
瓶装水(ni=6—10)level 2 PFESAs
(m=3—10)CnF2n+1SO4-
(n=4—11)自来水(ni=5—11)
瓶装水(ni=4—11)level 2 6:2 FTS C8F13H4SO3- 自来水
瓶装水level 2 FTA
(m=5, 6, 8)CnF2n-3H2O2-
(n=7, 8, 10)自来水(ni=7, 8, 10)
瓶装水(ni=7, 8, 10)level 2 OBS C15F17H4SO4- 自来水
瓶装水level 2 UPFAs
(m=1, 5—9)CnF2n-1O-
(n=4, 8—12)自来水(ni=8—12)
瓶装水(ni=4, 8—12)level 2 注:n: C原子的数目;m: 全氟烷基部分的数量;ni: C原子的数目. n: number of C atom; m: number of perfluoroalkyl moiety; ni: number of C atom.
level 1: 通过匹配参考标准所确认的结构;level 1: structures confirmed by the matched reference standards;level 2: 通过文献数据库匹配所得到的疑似结构.
level 2: structures suspected by the matched information from in-house library.表 4 辽宁省内自来水中新型PFASs相对浓度(ng·L−1)
Table 4. Relative concentration of novel PFASs in tap water from Liaoning Province (ng·L−1)
物质
Substance浓度
Concentration物质
Substance浓度
Concentration最小值
Min中位数
Median平均值
Average最大值
Max最小值
Min中位数
Median平均值
Average最大值
MaxUPFAs Cl-PFESAs C8 1.38 5.69 5.59 11.1 5:2 1.17 2.14 1.86 2.29 C9 1.33 8.41 7.30 14.0 6:2 1.02 5.41 6.82 15.6 C10 1.21 5.62 6.48 13.9 8:2 0.855 4.34 4.82 10.9 C11 0.898 6.86 7.91 17.1 Cl-PFCAs C12 1.51 5.28 5.54 11.2 Cl-PFHxA 1.34 5.71 6.10 11.7 H-PFCAs Cl-PFOA 1.27 5.01 6.12 12.3 H-PFHxA 4.13 4.13 4.13 4.13 Cl-PFNA 1.41 6.19 7.00 15.4 H-PFOA 0.920 2.37 3.47 12.9 Cl-PFDA 1.41 8.19 6.98 13.0 H-PFNA 1.76 5.93 5.68 10.8 Cl-PFUdA 0.953 6.16 6.27 13.4 H-PFDA 1.22 6.28 6.56 14.7 Ke-PFSAs H-PFUdA 1.87 7.39 7.05 14.5 Ke-PFHpS 0.907 4.12 4.97 15.1 H-PFDoA 1.05 5.93 5.90 12.3 Ke-PFHxS 0.955 4.22 4.91 11.4 H-PFSAs Ke-PFOS 1.98 5.34 5.69 14.2 H-PFPeS 1.54 1.54 1.54 1.54 Ke-PFNS 1.24 5.42 5.74 12.3 H-PFHxS 1.18 7.01 7.01 12.8 Ke-PFDS 0.917 6.95 6.48 13.5 H-PFOS 1.17 3.37 4.38 9.78 6:2 FTS 0.955 4.22 4.91 11.4 H-PFNS 1.02 5.41 6.82 15.6 FTA H-PFDS 1.37 6.12 6.50 12.8 5:2 FTA 0.881 1.85 3.66 12.6 OBS 1.05 4.70 5.45 11.7 6:2 FTA 0.907 2.56 3.30 7.70 PFESAs 8:2 FTA 1.98 5.83 6.02 14.2 C5 3.54 3.54 3.54 3.54 UPFCAs C6 1.24 4.36 4.23 8.81 UPFHxA 1.25 8.61 9.75 20.5 C7 1.07 2.57 3.83 8.19 UPFOA 1.07 4.03 5.30 12.9 C8 0.987 7.49 7.42 15.7 UPFNA 1.22 5.09 5.59 11.4 C9 2.06 5.19 5.94 11.6 UPFDA 0.838 4.29 4.35 9.3 C10 2.01 4.61 5.59 15.2 UPFUdA 0.944 4.57 6.00 13.4 C11 1.33 5.56 5.84 17.8 UPFDoA 1.03 7.91 7.22 13.9 表 5 辽宁省内瓶装水中新型PFASs相对浓度(ng·L−1)
Table 5. Relative concentration of novel PFASs in bottled water from Liaoning Province (ng·L−1)
物质
Substance浓度
Concentration物质
Substance浓度
Concentration最小值
Min中位数
Median平均值
Average最大值
Max最小值
Min中位数
Median平均值
Average最大值
MaxUPFAs Cl-PFESAs C4 3.03 4.39 4.39 5.76 5:2 0.970 1.27 3.03 6.85 C8 5.64 5.64 5.64 5.64 6:2 1.31 2.28 3.38 6.57 C9 1.08 1.54 1.74 2.80 8:2 2.21 2.65 3.34 5.17 C10 2.13 6.70 5.32 7.12 Cl-PFCAs C11 2.15 5.43 6.98 14.9 Cl-PFPeA 1.10 1.15 1.15 1.19 C12 1.31 3.08 3.29 5.71 Cl-PFHxA 1.06 1.98 2.00 2.97 H-PFCAs Cl-PFOA n.d. 1.26 2.17 6.15 H-PFBA 1.47 2.86 2.86 4.25 Cl-PFNA 6.06 7.04 7.04 8.03 H-PFOA 0.926 3.57 2.85 4.06 Cl-PFDA 1.08 4.11 4.27 7.79 H-PFNA 1.09 1.25 3.50 10.4 Cl-PFUdA 1.11 3.84 3.86 6.64 H-PFDA 1.02 2.47 2.79 5.18 Ke-PFSAs H-PFUdA 1.68 4.02 4.45 8.09 Ke-PFHpS 2.43 2.61 3.68 7.09 H-PFDoA 0.877 2.05 3.16 7.65 Ke-PFHxS 0.898 1.73 2.73 5.57 H-PFSAs Ke-PFOS 1.48 4.21 4.51 7.85 H-PFPeA 1.17 2.22 2.22 3.27 Ke-PFNS 0.881 2.75 3.57 7.07 H-PFOS 0.970 4.08 4.08 7.18 Ke-PFDS 1.21 2.34 3.17 6.78 H-PFNS 0.969 1.79 2.78 6.57 6:2 FTS 0.898 1.77 2.50 5.57 H-PFDS 1.01 3.63 4.14 8.30 FTA OBS 1.10 1.82 3.43 8.98 5:2 FTA 1.17 2.07 2.10 3.09 PFESAs 6:2 FTA 2.43 2.61 3.68 7.09 C4 0.919 1.03 1.03 1.15 8:2 FTA 1.48 6.00 5.11 7.85 C5 0.953 0.958 0.958 0.963 UPFCAs C6 1.43 3.53 4.23 8.46 UPFBA 11.4 11.6 11.6 11.9 C7 1.05 1.29 1.81 3.59 UPFOA 1.76 4.76 4.76 7.77 C8 1.62 4.69 4.69 7.75 UPFNA 0.927 3.48 3.48 6.04 C9 1.58 5.36 6.47 13.6 UPFDA 0.955 2.08 3.45 8.70 C10 1.58 7.63 6.34 9.83 UPFUdA 0.876 4.03 4.76 10.1 C11 0.953 3.57 4.23 8.83 UPFDoA 1.40 2.15 2.65 4.90 n.d.:未检出. 表 6 辽宁省内饮用水中传统PFASs靶向分析物去除率(%)
Table 6. Removal rate of targeted analytes of legacy PFASs in drinking water in Liaoning Province (%)
去除率
RPFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFBS PFHxS PFOS 沈阳 −110 −177 −129 −31.5 −51.8 20.1 7.73 −116 13.7 74.9 岫岩 24.6 23.4 9.69 3.78 37.3 42.1 35.0 −60.6 −100 −304 建平 18.2 −3.76 0.868 4.89 3.05 7.85 20.7 9.46 −31.4 10.7 朝阳 47.5 27.6 10.0 15.0 12.3 39.5 22.2 −21.9 −78.8 −109 表 7 辽宁省内饮用水中新型PFASs非靶向分析物去除率(%)
Table 7. Removal rate of untargeted analytes of novel PFASs in drinking water in Liaoning Province (%)
Ke-PFSAs Ke-PFHpS Ke-PFHxS Ke-PFOS Ke-PFNS Ke-PFDS FTA 5:2 FTA 6:2 FTA 8:2 FTA 去除率R 36.7 59.0 21.2 49.3 66.4 R −11.5 −1.9 −3.0 H-PFSAs H-PFPeS H-PFHxS H-PFOS H-PFNS H-PFDS Cl-PFESAs 5:2 6:2 8:2 去除率R −44.6 100 −20.8 66.9 40.7 40.5 57.9 38.8 H-PFCAs H-PFBA H-PFHxA H-PFOA H-PFNA H-PFDA H-PFUdA H-PFDoA OBS OBS 去除率R −100 100 −50.7 78.9 60.6 45.6 65.4 R 61.2 UPFCAs UPFBA UPFHxA UPFOA UPFNA UPFDA UPFUdA UPFDoA FTS 6:2 FTS 去除率R −100 100 −18.1 31.7 51.5 11.8 72.8 R 58.1 PFESAs C4 C5 C6 C7 C8 C9 C10 C11 去除率R −100.0 72.9 19.1 49.8 37.5 −3.29 −65.5 35.8 UPFAs C4 C8 C9 C10 C11 C12 去除率R −100.0 0.918 81.7 −19.2 20.8 41.7 Cl-PFCAs Cl-PFPeA Cl-PFHxA Cl-PFOA Cl-PFNA Cl-PFDA Cl-PFUdA 去除率R −100 65.3 74.9 −13.8 49.9 37.6 -
[1] YUKIOKA S, TANAKA S, SUZUKI Y, et al. A new method to search for per- and polyfluoroalkyl substances (PFASs) by linking fragmentation flags with their molecular ions by drift time using ion mobility spectrometry[J]. Chemosphere, 2020, 239: 124644. doi: 10.1016/j.chemosphere.2019.124644 [2] HONGKACHOK C, BOONTANON S K, BOONTANON N, et al. Levels of perfluorinated compounds (PFCs) in groundwater around improper municipal and industrial waste disposal sites in Thailand and health risk assessment[J]. Water Science and Technology, 2018, 2017(2): 457-466. doi: 10.2166/wst.2018.168 [3] 李冰洁, 陈金媛, 刘铮铮, 等. 浙江省大气颗粒物PM2.5中全氟化合物污染特征分析及健康风险评估[J]. 环境科学, 2022, 43(2): 639-648. LI B J, CHEN J Y, LIU Z Z, et al. Pollution characteristics and health risk assessment of perfluorinated compounds in PM2.5 in Zhejiang Province[J]. Environmental Science, 2022, 43(2): 639-648 (in Chinese).
[4] 温祥洁, 陈朝辉, 徐维新, 等. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 2022, 43(6): 3253-3261. WEN X J, CHEN Z H, XU W X, et al. Distribution characteristics and source apportionment of perfluoroalkyl substances in surface soils of the northeast Tibetan Plateau[J]. Environmental Science, 2022, 43(6): 3253-3261 (in Chinese).
[5] DONG W H, LIU B L, SONG Y, et al. Occurrence and partition of perfluorinated compounds (PFCs) in water and sediment from the Songhua River, China[J]. Archives of Environmental Contamination and Toxicology, 2018, 74(3): 492-501. doi: 10.1007/s00244-017-0474-x [6] RERICHA Y, CAO D P, TRUONG L, et al. Behavior effects of structurally diverse per- and polyfluoroalkyl substances in zebrafish[J]. Chemical Research in Toxicology, 2021, 34(6): 1409-1416. doi: 10.1021/acs.chemrestox.1c00101 [7] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2022[S]. 北京: 中国标准出版社, 2022. Standardization Administration of the People's Republic of China. Standards for drinking water quality: GB 5749-2022[S]. Beijing: Standards Press of China, 2022 (in Chinese).
[8] 邵立新. 母婴体内新型PFASs污染物的非目标识别及其健康风险研究[D]. 沈阳: 沈阳工业大学, 2022. SHAO L X. Non-target identification and health risks of novel PFASs pollutants in mothers and neonates[D]. Shenyang: Shenyang University of Technology, 2022 (in Chinese).
[9] BAO J, YU W J, LIU Y, et al. Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation[J]. Chemosphere, 2020, 248: 125951. doi: 10.1016/j.chemosphere.2020.125951 [10] 齐鹏, 苏日古嘎, 杜艳青, 等. 全氟化合物的污染现状和检测技术的研究进展[J]. 化学世界, 2021, 62(3): 137-143. QI P, SURIGUGA, DU Y Q, et al. Progress in pollution status and determination methods of perfluorinated compounds[J]. Chemical World, 2021, 62(3): 137-143 (in Chinese).
[11] 鲍佳, 渠文娥, 邵立新, 等. 母婴体内PFASs的靶向与非靶向分析及其新生儿健康风险[J]. 中国环境科学,2023,43(7):3730-3740. [12] 周龙飞, 陈文静, 张扬, 等. 太湖梅梁湾水环境中全氟和多氟化合物的污染特征及风险评估[J]. 环境化学2023, 42(10): 3408-3419. ZHOU L F, CHEN W J, ZHANG Y, et al. Pollution characteristics and risk assessment of per- and polyfluoroalkyl substances in waters of Meiliang Bay, Taihu Lake[J]. Environmental Chemistry, 2023, 42(10): 3408-3419 (in Chinese).
[13] CCANCCAPA-CARTAGENA A, PICO Y, ORTIZ X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River Basin[J]. Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057 [14] KOTLARZ N, MCCORD J, COLLIER D, et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, north Carolina[J]. Environmental Health Perspectives, 2020, 128(7): 77005. doi: 10.1289/EHP6837 [15] LIU Y N, QIAN M L, MA X X, et al. Nontarget mass spectrometry reveals new perfluoroalkyl substances in fish from the Yangtze River and Tangxun Lake, China[J]. Environmental Science & Technology, 2018, 52(10): 5830-5840. [16] 方淑红, 岳月, 李成, 等. 四川省不同地区自来水中全氟化合物的污染特征及健康风险评估[J]. 环境科学学报, 2019, 39(4): 1234-1240. FANG S H, YUE Y, LI C, et al. Health risk assessment and pollution characteristics of perfluoroalkyl substances in tap water of Sichuan Province[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1234-1240 (in Chinese).
[17] LIU L Q, QU Y X, HUANG J, et al. Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: risk assessment and geographical distribution[J]. Environmental Sciences Europe, 2021, 33(1): 1-12. doi: 10.1186/s12302-020-00446-y [18] LU Z B, LU R, ZHENG H Y, et al. Risk exposure assessment of per- and polyfluoroalkyl substances (PFASs) in drinking water and atmosphere in central Eastern China[J]. Environmental Science and Pollution Research, 2018, 25(10): 9311-9320. doi: 10.1007/s11356-017-0950-x [19] LI Y N, LI J F, ZHANG L F, et al. Perfluoroalkyl acids in drinking water of China in 2017: Distribution characteristics, influencing factors and potential risks[J]. Environment International, 2019, 123: 87-95. doi: 10.1016/j.envint.2018.11.036 [20] CHEN R Y, LI G W, YU Y, et al. Occurrence and transport behaviors of perfluoroalkyl acids in drinking water distribution systems[J]. Science of the Total Environment, 2019, 697: 134162. doi: 10.1016/j.scitotenv.2019.134162 [21] 武倩倩, 吴强, 宋帅, 等. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J]. 环境科学, 2021, 42(8): 3682-3694. WU Q Q, WU Q, SONG S, et al. Distribution, sources, and risk assessment of polyfluoroalkyl substances in main rivers and soils of Tianjin[J]. Environmental Science, 2021, 42(8): 3682-3694 (in Chinese).
[22] MAK Y L, TANIYASU S, YEUNG L W Y, et al. Perfluorinated compounds in tap water from China and several other countries[J]. Environmental Science & Technology, 2009, 43(13): 4824-4829. [23] 孙殿超, 龚平, 王小萍, 等. 拉萨河全氟化合物的时空分布特征研究[J]. 中国环境科学, 2018, 38(11): 4298-4306. SUN D C, GONG P, WANG X P, et al. Special distribution and seasonal variation of perfluoroalkyls substances in Lhasa River Basin, China[J]. China Environmental Science, 2018, 38(11): 4298-4306 (in Chinese).
[24] PIAO H T, JIAO X C, GAI N, et al. Perfluoroalkyl substances in waters along the Grand Canal, China[J]. Chemosphere, 2017, 179: 387-394. doi: 10.1016/j.chemosphere.2017.03.133 [25] NEWTON S, MCMAHEN R, STOECKEL J A, et al. Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama[J]. Environmental Science & Technology, 2017, 51(3): 1544-1552. [26] LI Y Q, YU N Y, DU L T, et al. Transplacental transfer of per- and polyfluoroalkyl substances identified in paired maternal and cord sera using suspect and nontarget screening[J]. Environmental Science & Technology, 2020, 54(6): 3407-3416. [27] Stephan B, Éva F, Claudia S, et al. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH[J]. Environmental sciences Europe, 2018, 30(1): 9. doi: 10.1186/s12302-018-0134-4 [28] WANG Y, YU N Y, ZHU X B, et al. Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park[J]. Environmental Science & Technology, 2018, 52(19): 11007-11016. [29] WANG X B, YU N Y, QIAN Y Y, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants[J]. Water Research, 2020, 183: 115989. doi: 10.1016/j.watres.2020.115989 [30] YU N Y, GUO H W, YANG J P, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China[J]. Environmental Science & Technology, 2018, 52(15): 8205-8214. [31] 冯雪敏. 典型环境中新型全氟/多氟化合物的污染特征及人体内外暴露研究[D]. 天津: 南开大学, 2021. FENG X M. Pollution characteristics and human external and internal exposure of novel per-/poly-fluoroalkyl substances in typical environment[D]. Tianjin: Nankai University, 2021 (in Chinese).
[32] ZHANG X M, Rainer L, Clifton D, et al. Source attribution of poly- and perfluoroalkyl substances (PFASs) in surface waters from Rhode Island and the New York Metropolitan Area[J]. Environmental science & amp; technology letters, 2016, 3(9): 316-321. [33] Feng X M, Ye M Q, Li Y, et al. Potential sources and sediment-pore water partitioning behaviors of emerging per-/poly-fluoroalkyl substances in the South Yellow Sea[J]. Journal of Hazardous Materials, 2020, 389: 122124. doi: 10.1016/j.jhazmat.2020.122124 [34] SHI Y L, SONG X W, JIN Q, et al. Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp[J]. Environment International, 2020, 135: 105418. doi: 10.1016/j.envint.2019.105418 [35] SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5): 2396-2404.