-
随着经济社会和城市工业化的发展,水源污染问题日益显著[1]. 地表水作为我国主要的地表水源,其水质受人类活动、地质构造等因素的影响有所下降[2 − 4]. 从流域分布情况来看,我国各地表水环境受污染的程度有所不同,且主要表现为重金属含量超标,其中海河流域和珠江流域污染较为严重,长江流域污染最轻[3 − 8]. 从重金属污染情况来看,不同水源的主要污染物存在一定的差异,如黄河[5]、松花江[6]、海河[3]和珠江[7]主要污染物为As和Cd,淮河干流水系[4]主要污染物为Cd,而辽河、长江[8]主要污染物为Hg. 受地质高背景值及水岩相互作用等自然因素的影响,地下水源同样存在重金属污染现象[9]. Guo等[10]在对我国河套盆地和呼和浩特盆地地下水的研究中发现,受As和Cr含量的影响,地下水水质较差;Bian等[11]研究发现,松嫩平原地下水Cr和Cd含量超标;师环环等[12]认为雷州半岛地下水主要污染物为Mn和As. 而地表水和地下水作为我国主要的饮用水水源,摄入是重金属进入人体的重要途径之一,相较其他污染物,重金属污染物具有高毒性、持久性和不可降解等特点,伴随生物富集效应,会对人体健康造成不利影响,如出现肾脏损伤、皮肤癌和食道癌等疾病[13 − 14]. 因此,对地表水和地下水重金属进行健康风险评价是十分必要的. 但由于不同重金属的毒性存在差异,将重金属含量与指导值进行单一比较不足以评估其对人体产生的潜在健康风险. 目前相关学者对重金属的健康风险评价通常采用美国国家环保署(US EPA)的水环境健康风险评价模型[15],该模型是以重金属的平均含量为指标,基于对日平均剂量和暴露水平的评估,科学地表征重金属对人体所产生的潜在健康风险. 此外,再通过蒙特卡洛模拟的概率分析来量化评价过程中产生的不确定性,可以更真实地反映重金属的风险状况[16].
新疆地处中国西北内陆,受降水季节分布不均和蒸发量大的影响,水资源相对缺乏[17 − 18]. 在“一带一路”背景下,新疆城镇化进程不断推进,经济得到了快速发展,但同时也带来了一系列水源重金属污染问题[19 − 20]. 目前,相关学者对新疆地区不同水体(地表水或地下水)或不同区域水源的重金属污染情况已进行了相关研究,如吴丽娜等[19]在对乌鲁木齐周边地表水调查中发现,受工农业活动的影响,其地表水源存在一定的As和Cd污染;王楠等[21]和魏兴等[22]的研究发现,石河子和喀什地区地下水存在一定的Mn和As污染,且具有空间异质性;韩芹芹等[23]对乌鲁木齐主要饮用水源地水质进行了研究,发现乌鲁木齐地表水和地下水均存在重金属污染现象. 但由于新疆地区地表水和地下水具有同源性,在水循环过程中存在一定的交互过程[24],而这种交互过程是否会对地表水和地下水中重金属含量的再分布产生影响尚不清晰. 因此,全面而系统地分析和评价新疆主要水源的水质对于了解新疆地区地表水和地下水中重金属的分布特征和对人体的健康风险进行评价是十分必要的.
本研究主要收集了近16年(2007 — 2023)国内外已发表的学术论文,以新疆地区不同流域地表水和地下水中重金属的平均含量为基准,探究其空间分布特征及健康风险,旨在明晰新疆各流域地表水和地下水中重金属空间分布和污染程度,以期为保障新疆地区居民的饮水安全及水资源的科学利用提供理论依据.
新疆典型地区地表水与地下水重金属分布特征及健康风险评价
Distribution characteristics and health risk assessment of heavy metals in surface water and groundwater in typical areas of Xinjiang
-
摘要: 水源水质是影响社会稳定和经济发展的主要因素. 为综合分析评价新疆典型地区地表水和地下水中重金属的分布特征及对人体的健康风险,本研究选取了8处典型流域地表水(404组水环境样品)和7处典型流域地下水(552组水环境样品)中的7种典型重金属元素(As、Cd、Cr、Cu、Ni、Pb和Zn)进行统计,分别运用多元统计分析、健康风险评价及其不确定性分析以揭示新疆典型地区地表水和地下水重金属的分布状况和对人体产生的健康风险. 结果表明,新疆各研究区域地表水和地下水重金属的平均含量均符合我国现行的饮用水卫生标准. 各重金属的含量分布在地表水源中并未表现出明显的地域特征,但在地下水源中主要表现为塔里木盆地As和Cd富集的特点;健康风险评价结果表明,健康风险主要来源于摄入途径且儿童的健康风险较高. 非致癌健康风险(HI)主要由金属元素As引起,具体体现在地表水源的博斯腾湖流域和地下水源的奎屯垦区、叶尔羌河流域. 其中,地表水源中各重金属对人体非致癌风险的排序为: As >Cr >Cd >Ni >Pb >Cu >Zn;地下水源中的排序为:As >Cd >Cr >Pb >Ni >Cu >Zn . 致癌风险评价结果显示,As和Cr是新疆各水源中影响人体健康的主要重金属元素,尤其是地下水源. 因此,当地政府在饮用水源的选取过程中,应同时加强对水体中As和Cr的监管和控制.Abstract: Water quality of source water is an important factor, which affects the social stability and economic development. In order to comprehensive analyze and evaluate the distribution characteristics and health risk to humans of heavy metals in surface water and groundwater in typical areas of Xinjiang, seven typical heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were selected from eight typical catchment surface water (404 groups of water environment samples) and seven typical catchment groundwater (552 groups of water environment samples) in the research, and used Multivariate statistical analysis, health risk assessment and uncertainty analysis to reveal the distribution and health risk of heavy metals in surface water and groundwater in typical areas of Xinjiang. The results revealed that: The average concentrations of heavy metals in surface water and groundwater of various research areas in Xinjiang were coincidenced the current drinking water hygienic standard. The content distribution of heavy metals in surface water show unobvious regional characteristics, but it mainly manifested as As and Cd were enrichmented in Tarim Basin in groundwater; The health risk assessment showed that the health risks were mainly from ingestion routes, and the health risks to children was higher than that to adults. The non-carcinogenic health risk(HI) was mainly caused by As, and were specific reflected in the Bosten Lake basin of surface water and the Kuitun Reclamation area、the Yerqiang River basin of groundwater. the non-carcinogenic health risk of heavy metals in surface water were in order: As > Cr > Cd > Ni > Pb > Cu > Zn; in groundwater were in order: As > Cd > Cr > Pb > Ni > Cu > Zn; Carcinogenic health risk assessment results show that As and Cr were the main heavy metal element affecting human health in water sources in Xinjiang, especially in groundwater. Therefore, the local government should strengthen the supervision and control of As and Cr in water during the selection of drinking water sources.
-
Key words:
- surface water /
- groundwater /
- heavy metals /
- health risk assessment.
-
表 1 水体中重金属元素在皮肤上的渗透常数和参考剂量
Table 1. Permeability constant and reference dose of heavy metals on skin in water
重金属
MetalsAs Cd Cr Cu Pb Ni Zn 渗透常数PC/(cm·h−1) 1×10−3 1×10−3 2×10−3 1×10−3 1×10−4 2×10−4 6×10−4 参考剂量RfD/(μg·(kg·d)−1) RfDingestion 0.3 0.5 3 40 1.4 20 300 RfDdermal 0.285 0.025 0.075 12 0.42 0.8 60 表 2 水体中重金属通过直接摄入和皮肤入渗的致癌强度系数
Table 2. Carcinogenic intensity coefficient through direct ingestion and skin penetration of heavy metals in water
重金属
MetalsAs Cd Cr SF/(μg·(kg·d)−1) SFingestion 1.5 6.1 0.5 SFdermal 3.66 0.38 0.5 表 3 基于蒙特卡洛法不确定参数的分布类型
Table 3. Distribution types of uncertain parameters based on Monte Carlo method
表 4 新疆典型地区地表水重金属含量统计
Table 4. The concentration statistics of heavy metals for surface water in typical areas of Xinjiang
地区
Regions重金属元素含量/(μg·L−1)
Contents of heavy metals参考文献
ReferencesAs Cd Cr Cu Ni Pb Zn 博斯腾湖
(N=34)Min 3.55 0.04 3.19 5.48 24.31 0.02 2.10 [30] Max 39.18 0.29 12.56 32.45 64.22 0.19 24.59 Avg 21.13 0.12 4.97 17.03 33.54 0.09 11.16 巩乃斯河
(N=10)Min — 0.024 0.27 0.56 6.48 0.029 1.56 [31] Max — 0.081 1.37 1.47 11.96 0.23 10.96 Avg — 0.048 0.59 0.77 8.48 0.057 5.20 乌拉泊水库
(N=5)Min 1.70 0.07 2.70 1.20 — 0.80 7.00 [32] Max 3.50 0.12 6.20 1.70 — 1.40 13.00 Avg 2.20 0.10 4.30 1.50 — 1.10 9.00 天山地表水
(N=25)Min 0.71 — 0.46 0.27 5.38 — 0.085 [33] Max 22.67 0.28 4.34 11.41 91.88 0.061 4.90 Avg 5.37 0.062 1.17 2.11 24.48 0.007 1.33 博尔塔拉河
(N=21)Min — — — — — — 8.70 [34] Max 8.70 14.0 150.00 7.90 — 81.00 47.00 Avg 4.20 7.50 59.00 3.90 — 45.00 28.00 昌吉沙湾融雪水
(N=180)Min 0.52 0.013 0.78 — 0.72 0.007 0.39 [35] Max 5.73 0.13 2.13 — 1.73 0.466 449.05 Avg 1.58 0.034 1.44 — 0.95 0.072 56.23 塔里木河
(N=56)Min 0.40 0.01 0.07 0.14 0.11 0.02 0.12 [36] Max 14.24 0.17 2.36 11.44 44.80 2.18 43.52 Avg 3.07 0.02 0.43 1.22 1.79 0.45 7.11 乌鲁木齐地表水
(N=73)Min — — 0.40 0.20 — 0.00 — [37] Max — 0.30 31.70 51.60 — 49.00 — Avg — 0.10 4.80 7.20 — 2.70 — Mississippi River, USA Avg 11 — — — — — 15 [38] Seine River, France Avg 0.075 0.031 — 2.23 — 0.354 — [39] Nile River Avg 2.4 0.8 3.3 8 3.3 22 13 [40] Tigris River Avg 0.63 0.044 25.41 17.1 24.52 2.82 12.01 [41] Ganga River, India Avg — 5 — 600 140 120 — [42] World average Avg 0.62 0.08 0.7 1.48 0.8 0.079 0.6 地表水环境质量标准I类 (GB 3838 —2002)50 1 10 10 — 10 50 [43] 生活饮用水卫生标准(GB 5749 —2022)10 5 50 1000 — 10 1000 [44] WHO,2011 10 3 50 2000 70 10 — [45] US EPA,2012 10 5 100 1300 — — — [15] 注:表中“—”代表未检出. Note:The“—”represents not detected in the table. 表 5 新疆典型地区地下水重金属含量统计
Table 5. The concentration statistics of heavy metals for groundwater in typical areas of Xinjiang
地区Regions 重金属元素含量/(μg·L−1)
Contents of heavy metals参考文献
ReferencesAs Cd Cr Cu Ni Pb Zn 喀什地区
(N=68)Min — — — — — — — [48] Max 34.00 16.00 — — 132.00 — 684.00 Avg 7.00 3.00 — — 62.00 — 35.00 博斯腾湖流域
(N=67)Min — 2.00 5.00 9.00 — — 5.00 [49] Max — 11.00 42.00 108.00 109.00 — 454.00 Avg — 7.00 12.00 27.00 22.00 — 65.00 奎屯垦区
(N=16)Min 45.00 — — — — — — [50] Max 381.00 3.50 3.50 2.80 — 42.50 — Avg 210.20 2.10 2.00 1.50 — 28.20 — 叶尔羌河流域
(N=75)Min — — — — — — — [51] Max 136.00 4.00 5.00 — — 2.00 2435.00 Avg 9.00 1.00 2.00 — — 1.00 65.00 焉耆盆地
(N=42)Min — — — — — — — Max 10 — 25.00 — — 3.00 613.00 Avg 2.00 — 4.00 — — 1.00 18.00 若羌-且末
(N=18)Min — — — — — — — Max 6.00 — 14.00 2.00 — 2.00 4.00 Avg 1.00 — 3.00 1.00 — 1.00 1.00 塔里木盆地
(N=266)Min 1.00 2.00 4.00 10.00 — 1.00 2.00 [52] Max 91.00 1340.00 25.00 670.00 — 50.00 800.00 Avg 5.00 20.00 20.00 30.00 — 4.00 40.00 Southern Italy Min 0.78 0.53 0.83 0.61 0.90 0.85 [53] Max 145.3 6.2 — 85.9 263.8 7.5 786.2 Avg 3.56 2.14 — 3.87 3.66 1.22 12.8 Pakistan Avg — 10 — 310 90 140 610 [54] Ropar wetland, Punjab, India Avg — 3 5 10 — 40 580 [55] 地下水质量标准(GB/T 14848 —2017) III类10 5 50 1000 20 10 1000 [56] 生活饮用水卫生标准(GB 5749 —2022)10 5 50 1000 — 10 1000 [44] WHO, 2011 10 3 50 2000 70 10 — [45] US EPA, 2012 10 5 100 1300 — — — [15] 注:表中“—”代表未检出. Note:The“—”represents not detected in the table. 表 6 新疆典型地区地表水重金属评价
Table 6. Evaluation of heavy metals for surface water in typical areas of Xinjiang
博斯腾湖
Bosten Lake巩乃斯河
Kunes River乌拉泊水库
Wulabo Reservoir天山地表水
Surface water of
Tianshan Mountains博尔塔拉河
Bortala River昌吉沙湾融雪水
Snowmelt water in
Changji and Shawan塔里木河
Tarim River乌鲁木齐地表水
Surface water
of Urumqi成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 HQingestion As 1.94 2.88 — — 2.01×10−1 3.00×10−1 4.92×10−1 7.32×10−1 3.85×10-1 5.73×10−1 1.45×10−1 2.15×10−1 2.81×10−1 4.19×10−1 — — Cd 6.59×10−3 9.82×10−3 1.87×10−2 2.79×10−2 5.49×10−3 8.18×10−3 3.41×10−3 5.07×10−3 4.12×10-1 6.14×10−1 1.87×10−3 2.78×10−3 1.10×10−3 1.63×10−3 5.49×10−3 8.18×10−3 Cr 4.55×10−2 6.78×10−2 1.41×10−2 2.10×10−2 3.94×10−2 5.86×10−2 1.07×10−2 1.59×10−2 5.40×10-1 8.05×10−1 1.32×10−2 1.96×10−2 3.94×10−3 5.86×10−3 4.40×10−2 6.55×10−2 Cu 1.17×10−2 1.74×10−2 1.52×10−3 2.27×10−3 1.03×10−3 1.53×10−3 1.45×10−3 2.16×10−3 312.68×10−3 3.99×10−3 — — 8.38×10−4 1.25×10−3 4.95×10−3 7.36×10−3 Ni 4.61×10−2 6.86×10−2 1.58×10−2 2.35×10−2 — — 3.36×10−2 5.01×10−2 — — 1.30×10−3 1.94×10−3 2.46×10−3 3.66×10−3 — — Pb 1.77×10−3 2.63×10−3 3.30×10−3 4.91×10−3 2.16×10−2 3.21×10−2 1.37×10−4 2.05×10−4 8.83×10−1 1.32 1.41×10−3 2.10×10−3 8.83×10−3 1.32×10−2 5.30×10−2 7.89×10−2 Zn 1.02×10−3 1.52×10−3 1.12×10−3 1.66×10−3 8.24×10−4 1.23×10−3 1.22×10−4 1.82×10−4 2.56×10−3 3.82×10−3 5.15×10−3 7.67×10−3 6.51×10−4 9.70×10−4 — — HQdermal As 3.04×10−5 8.94×10−5 — — 3.16×10−6 9.31×10−6 7.72×10−6 2.27×10−5 6.04×10−6 1.78×10−5 2.27×10−6 6.68×10−6 4.41×10−6 1.30×10−5 — — Cd 1.97×10−6 5.79×10−6 5.59×10−6 1.64×10−5 1.64×10−6 4.82×10−6 1.02×10−6 2.99×10−6 1.23×10−4 3.62×10−4 5.57×10−7 1.64×10−6 3.28×10−7 9.64×10−7 1.64×10−6 4.82×10−6 Cr 5.43×10−5 1.60×10−4 1.68×10−5 4.94×10−5 4.70×10−5 1.38×10−4 1.28×10−5 3.76×10−5 6.45×10−4 1.90×10−3 1.57×10−5 4.62×10−5 4.70×10−6 1.38×10−5 5.25×10−5 1.54×10−4 Cu 5.82×10−7 1.71×10−6 7.57×10−8 2.23×10−7 5.12×10−8 1.51×10−7 7.22×10−8 2.12×10−7 1.33×10−7 3.92×10−7 — — 4.17×10−8 1.23×10−7 2.46×10−7 7.23×10−7 Ni 3.44×10−6 1.01×10−5 1.18×10−6 3.47×10−6 — — 2.51×10−6 7.38×10−6 — — 9.73×10−8 2.86×10−7 1.83×10−7 5.39×10−7 — — Pb 8.78×10−9 2.58×10−8 1.64×10−8 4.82×10−8 1.07×10−7 3.16×10−7 6.83×10-10 2.01×10−9 4.39×10−6 1.29×10−5 7.02×10−9 2.07×10−8 4.39×10−8 1.29×10−7 2.63×10−7 7.75×10−7 Zn 4.57×10−8 1.35×10−7 4.99×10−8 1.47×10−7 3.69×10−8 1.08×10−7 5.46×10−9 1.61×10−8 1.15×10−7 3.37×10−7 2.30×10−7 6.78×10−7 2.91×10−8 8.57×10−8 — — HI As 1.94 2.88 — — 2.01×10−1 3.00×10−1 4.92×10−1 7.32×10−1 3.85×10−1 5.73×10−1 1.45×10−1 2.15×10−1 2.81×10−1 4.19×10−1 — — Cd 6.59×10−3 9.83×10−3 1.87×10−2 2.79×10−2 5.50×10−3 8.19×10−3 3.41×10−3 5.08×10−3 4.12×10−1 6.14×10−1 1.87×10−3 2.78×10−3 1.10×10−3 1.64×10−3 5.50×10−3 8.19×10−3 Cr 4.56×10−2 6.79×10−2 1.41×10−2 2.10×10−2 3.94×10−2 5.88×10−2 1.07×10−2 1.60×10−2 5.41×10−1 8.06×10−1 1.32×10−2 1.97×10−2 3.94×10−3 5.88×10−3 4.40×10−2 6.53×10−2 Cu 1.17×10−2 1.74×10−2 1.52×10−3 2.27×10−3 1.03×10−3 1.53×10−3 1.45×10−3 2.16×10−3 2.68×10−3 3.99×10−3 — — 8.38×10−4 1.25×10−3 4.95×10−3 7.37×10−3 Ni 4.61×10−2 6.86×10−2 1.58×10−2 2.35×10−2 — — 3.36×10−2 5.01×10−2 — — 1.30×10−3 1.94×10−3 2.45×10−3 3.66×10−3 — — Pb 1.77×10−3 2.63×10−3 3.30×10−3 4.91×10−3 2.16×10−2 3.21×10−2 1.37×10−4 2.05×10−4 8.83×10−1 1.32 1.41×10−3 2.10×10−3 8.83×10−3 1.32×10−2 5.3×10−2 7.89×10−2 Zn 1.02×10−3 1.52×10−3 1.12×10−3 1.66×10−3 8.24×10−4 1.23×10−3 1.22×10−4 1.82×10−4 2.56×10−3 3.82×10−3 5.15×10−3 7.67×10−3 6.51×10−4 9.70×10−4 — — 注:表中“—”代表未检出,无法计算相应数据.
Note:The“—”represents not detected in the table, and the corresponding data cannot be calculated.表 7 新疆典型地区地下水重金属评价
Table 7. Evaluation of heavy metals for groundwater in typical areas of Xinjiang
喀什地区
Kashgar Region博斯腾湖流域
Bosten Lake Basin奎屯垦区
Kuitun Region叶尔羌河流域
Yarkant River Basin焉耆盆地
Yanqi Basin若羌-且末地区
Ruoqiang-Qiemo Basin塔里木盆地南缘
The southern margin
of the Tarim Basin成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 HQingestion As 6.41×10−1 9.55×10−1 — — 19.25 28.67 8.24×10−1 1.23 1.83×10−1 2.73×10−1 9.16×10−2 1.36×10−1 4.57×10−1 6.82×10−1 Cd 1.65×10−1 2.45×10−1 3.85×10−1 5.73×10−1 1.15×10−1 1.72×10−1 5.49×10−2 8.18×10−2 — — — — 1.09 1.64 Cr — — 1.10×10−1 1.64×10−1 1.83×10−2 2.73×10−2 1.83×10−2 2.73×10−2 3.67×10−2 5.45×10−2 2.75×10−2 4.09×10−2 1.83×10−1 2.73×10−2 Cu — — 1.85×10−2 2.76×10−2 1.03×10−3 1.53×10−3 — — — — 6.87×10−4 1.02×10−3 2.06×10−2 3.07×10−2 Ni 8.52×10−2 1.27×10−1 3.02×10−2 4.50×10−2 — — — — — — — — — — Pb — — — — 5.53×10−1 8.24×10−1 1.96×10−2 2.92×10−2 1.96×10−2 2.92×10−2 1.96×10−2 2.92×10−2 7.85×10−2 1.17×10−1 Zn 3.20×10−3 4.77×10−3 5.95×10−3 8.86×10−3 — — 5.95×10−3 8.86×10−3 1.65×10−3 2.45×10−3 9.16×10−5 1.36×10−4 3.66×10−3 5.46×10−3 HQdermal As 1.01×10−5 2.96×10−5 0 0 3.02×10−4 8.89×10−4 1.29×10−5 3.81×10−5 2.88×10−6 8.46×10−6 1.44×10−6 4.23×10−6 7.19×10−6 2.12×10−5 Cd 4.92×10−5 1.45×10−4 1.15×10−4 3.37×10−4 3.44×10−5 1.01×10−4 1.64×10−5 4.82×10−5 — — — — 3.28×10−4 9.64×10−4 Cr — — 1.31×10−4 3.86×10−4 2.19×10−5 6.43×10−5 2.19×10−5 6.43×10−5 4.37×10−5 1.29×10−4 3.28×10−5 9.64×10−5 2.18×10−4 6.43×10−4 Cu — — 9.22×10−7 2.71×10−6 5.12×10−8 1.51×10−7 — — — — 3.41×10−8 1.01×10−7 1.02×10−6 3.01×10−6 Ni 6.35×10−6 1.868×10−5 2.254×10−6 6.63×10−6 — — — — — — — — — — Pb — — — — 2.75×10−6 8.09×10−6 9.76×10−8 2.87×10−7 9.76×10−8 2.87×10−7 9.76×10−8 2.87×10−7 3.90×10−7 1.15×10−6 Zn 1.43×10−7 4.22×10−7 2.66×10−7 7.84×10−7 — — 2.66×10−7 7.84×10−7 7.37×10−8 2.17×10−7 4.10×10−9 1.21×10−8 1.64×10−7 4.82×10−7 HI As 6.41×10−1 9.55×10−1 — — 19.25 28.67 8.24×10−1 1.23 1.83×10−1 2.73×10−1 9.16×10−2 1.36×10−1 4.57×10−1 6.82×10−1 Cd 1.65×10−1 2.46×10−1 3.85×10−1 5.73×10−1 1.15×10−1 1.72×10−1 5.49×10−2 8.18×10−2 — — — — 1.10 1.64 Cr — — 1.10×10−1 1.64×10−1 1.83×10−2 2.73×10−2 1.83×10−2 2.73×10−2 3.67×10−2 5.47×10−2 2.75×10−2 4.10×10−2 1.83×10−1 2.73×10−1 Cu — — 1.85×10−2 2.76×10−2 1.03×10−3 1.53×10−3 — — — — 6.87×10−4 1.02×10−3 2.06×10−2 3.07×10−2 Ni 8.52×10−2 1.27×10−1 3.02×10−2 4.50×10−2 — — — — — — — — — — Pb — — — — 5.53×10−1 8.24×10−1 1.96×10−2 2.92×10−2 1.96×10−2 2.92×10−2 1.96×10−2 2.92×10−2 7.85×10−2 1.17×10−1 Zn 3.21×10−3 4.77×10−3 5.95×10−3 8.86×10−3 — — 5.95×10−3 8.86×10−3 1.65×10−3 2.45×10−3 9.16×10−5 1.36×10−4 3.66×10−3 5.46×10−3 注:表中“—”代表未检出,无法计算相应数据. Note: The“—”represents not detected in the table, and the corresponding data cannot be calculated. -
[1] LI P Y, QIAN H. Water resources research to support a sustainable China[J]. International Journal of Water Resources Development, 2018, 34(3): 327-336. doi: 10.1080/07900627.2018.1452723 [2] GAO B, GAO L, GAO J J, et al. Simultaneous evaluations of occurrence and probabilistic human health risk associated with trace elements in typical drinking water sources from major river basins in China[J]. Science of the Total Environment, 2019, 666: 139-146. doi: 10.1016/j.scitotenv.2019.02.148 [3] YANG T, LIU J L. Health risk assessment and spatial distribution characteristic on heavy metals pollution of Haihe River Basin[J]. Journal of Environmental & Analytical Toxicology, 2012, 2(6). [4] 朱青青, 王中良. 中国主要水系沉积物中重金属分布特征及来源分析[J]. 地球与环境, 2012, 40(3): 305-313. ZHU Q Q, WANG Z L. Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China[J]. Earth and Environment, 2012, 40(3): 305-313 (in Chinese).
[5] 曹占琪, 苟金明, 邱小琮, 等. 黄河宁夏段水体重金属时空分布特征及健康风险评价[J]. 环境监测管理与技术, 2022, 34(5): 33-38. doi: 10.3969/j.issn.1006-2009.2022.05.007 CAO Z Q, GOU J M, QIU X C, et al. Spatial and temporal distribution characteristics and health risk assessment of heavy metals in water of Ningxia section of the Yellow River[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(5): 33-38 (in Chinese). doi: 10.3969/j.issn.1006-2009.2022.05.007
[6] 苏伟, 刘景双, 李方. 第二松花江干流重金属污染物健康风险评价[J]. 农业环境科学学报, 2006, 25(6): 1611-1615. doi: 10.3321/j.issn:1672-2043.2006.06.042 SU W, LIU J S, LI F. Assessment on health risk of heavy metals in the second Songhua River[J]. Journal of Agro-Environment Science, 2006, 25(6): 1611-1615 (in Chinese). doi: 10.3321/j.issn:1672-2043.2006.06.042
[7] 谢文平, 朱新平, 马丽莎, 等. 珠江三角洲4种淡水养殖鱼类重金属的残留及食用风险评价[J]. 生态毒理学报, 2017, 12(5): 294-303. doi: 10.7524/AJE.1673-5897.20170105001 XIE W P, ZHU X P, MA L S, et al. Residues and safety evaluation of heavy metals in four species of freshwater fish from fish pond of Pearl River Delta[J]. Asian Journal of Ecotoxicology, 2017, 12(5): 294-303 (in Chinese). doi: 10.7524/AJE.1673-5897.20170105001
[8] XIE H L, YANG X, XU J Q, et al. Heavy metals pollution and potential ecological health risk assessment in the Yangtze River reaches[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109489. doi: 10.1016/j.jece.2023.109489 [9] 刘朝发, 冯银炉, 方刘兵, 等. 皖北某矿沉陷区地表水与浅层地下水重金属含量特征及影响因素[J]. 环境科技, 2018, 31(4): 44-49. doi: 10.3969/j.issn.1674-4829.2018.04.009 LIU C F, FENG Y L, FANG L B, et al. Heavy metals characteristics and its influencing factors of surface water and shallow groundwater in mining subsidence area in the northern of Anhui Province[J]. Environmental Science and Technology, 2018, 31(4): 44-49 (in Chinese). doi: 10.3969/j.issn.1674-4829.2018.04.009
[10] GUO H M, ZHANG B, ZHANG Y. Control of organic and iron colloids on arsenic partition and transport in high arsenic groundwaters in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2011, 26(3): 360-370. doi: 10.1016/j.apgeochem.2010.12.009 [11] BIAN J M, TANG J, ZHANG L S, et al. Arsenic distribution and geological factors in the western Jilin Province, China[J]. Journal of Geochemical Exploration, 2012, 112: 347-356. doi: 10.1016/j.gexplo.2011.10.003 [12] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 2021, 42(9): 4246-4256. SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of Heavy metals in groundwater of Leizhou Peninsula[J]. Environmental Science, 2021, 42(9): 4246-4256 (in Chinese).
[13] HE S, WU J H. Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of huanhe formation in Wuqi County, northwest China[J]. Exposure and Health, 2019, 11(2): 125-137. doi: 10.1007/s12403-018-0289-7 [14] GUO H M, ZHANG D, NI P, et al. On the scalability of hydrogeochemical factors controlling arsenic mobility in three major inland basins of P. R. China[J]. Applied Geochemistry, 2017, 77: 15-23. doi: 10.1016/j.apgeochem.2016.05.006 [15] US EPA, 2012. Edition of the Drinking Water Standards and Health Advisories. U. S. Environmental Protection Agency, Washington DC, USA. [16] 王晓东, 田伟, 张雪艳. 宁夏地区地下水金属元素分布特征及健康风险评价[J]. 环境科学, 2022, 43(1): 329-338. WANG X D, TIAN W, ZHANG X Y. Distribution characteristics and health risk assessment of metal elements for groundwater in the Ningxia region of China[J]. Environmental Science, 2022, 43(1): 329-338 (in Chinese).
[17] 侯珺, 周金龙, 曾妍妍, 等. 新疆石河子地区地下水重(类)金属组分空间分布特征及影响因素[J]. 新疆农业大学学报, 2017, 40(1): 71-78. doi: 10.3969/j.issn.1007-8614.2017.01.012 HOU J, ZHOU J L, ZENG Y Y, et al. Spatial distribution characteristics and influence factors of heavy metal(metalloid)constituents in groundwater in Shihezi area, Xinjiang[J]. Journal of Xinjiang Agricultural University, 2017, 40(1): 71-78 (in Chinese). doi: 10.3969/j.issn.1007-8614.2017.01.012
[18] LIU F Y, HE S H, TONG Y B, et al. Pollution characteristics and risk assessment of heavy metals in the water and surface sediments of Wulungu Lake, Xinjiang China[J]. Soil and Sediment Contamination:an International Journal, 2023, 32(1): 85-104. doi: 10.1080/15320383.2022.2059443 [19] 吴丽娜, 孙从建, 贺强, 等. 中天山典型内陆河流域水化学时空特征分析[J]. 水土保持研究, 2017, 24(5): 149-156. WU L N, SUN C J, HE Q, et al. Analysis of temporal and spatial variation of hydrochemical characteristics of the typical inland river in the middle of Tianshan Mountains[J]. Research of Soil and Water Conservation, 2017, 24(5): 149-156 (in Chinese).
[20] 王文栋, 王鑫, 白志强, 等. 天山森林地表水污染及其与土壤重金属含量的关系[J]. 森林与环境学报, 2020, 40(4): 398-405. WANG W D, WANG X, BAI Z Q, et al. Pollution characteristics of forest surface water and the relationship with the soil heavy metal content in Tianshan[J]. Journal of Forest and Environment, 2020, 40(4): 398-405 (in Chinese).
[21] 王楠, 侯珺, 周金龙, 等. 石河子地区地下水重(类)金属污染及健康风险评价[J]. 人民黄河, 2022, 44(2): 94-99. doi: 10.3969/j.issn.1000-1379.2022.02.019 WANG N, HOU J, ZHOU J L, et al. Pollution and health risk assessment of heavy metals(metalloid)in groundwater in Shihezi area[J]. Yellow River, 2022, 44(2): 94-99 (in Chinese). doi: 10.3969/j.issn.1000-1379.2022.02.019
[22] 魏兴, 周金龙, 曾妍妍, 等. 喀什地区西部地下水重金属空间分布特征及成因分析[J]. 环境化学, 2017, 36(8): 1802-1811. doi: 10.7524/j.issn.0254-6108.2016120802shu WEI X, ZHOU J L, ZENG Y Y, et al. Spatial distribution and orign of heavy metals in groundwater in the western Kashgar Prefecture[J]. Environmental Chemistry, 2017, 36(8): 1802-1811 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016120802shu
[23] 韩芹芹, 王涛, 杨永红. 乌鲁木齐市主要饮用水源地水质健康风险评价[J]. 中国环境监测, 2015, 31(1): 57-63. doi: 10.3969/j.issn.1002-6002.2015.01.012 HAN Q Q, WANG T, YANG Y H. Environmental health risk assessment of the main drinking water sources of Urumqi[J]. Environmental Monitoring in China, 2015, 31(1): 57-63 (in Chinese). doi: 10.3969/j.issn.1002-6002.2015.01.012
[24] 李林. 塔里木河流域地表水和地下水的转化关系[J]. 水土保持通报, 2021, 41(6): 23-28. doi: 10.3969/j.issn.1000-288X.2021.6.stbctb202106004 LI L. Transformation relationship between surface water and groundwater in Tarim River Basin[J]. Bulletin of Soil and Water Conservation, 2021, 41(6): 23-28 (in Chinese). doi: 10.3969/j.issn.1000-288X.2021.6.stbctb202106004
[25] FRYER M, COLLINS C D, FERRIER H, et al. Human exposure modelling for chemical risk assessment: A review of current approaches and research and policy implications[J]. Environmental Science & Policy, 2006, 9(3): 261-274. [26] 佟瑞鹏, 杨校毅. 基于蒙特卡罗模拟的土壤环境健康风险评价: 以PAHs为例[J]. 环境科学, 2017, 38(6): 2522-2529. TONG R P, YANG X Y. Environmental health risk assessment of contaminated soil based on Monte Carlo method: A case of PAHs[J]. Environmental Science, 2017, 38(6): 2522-2529 (in Chinese).
[27] HUANG Y N, DANG F, LI M, et al. Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag Mine, China[J]. Science of the Total Environment, 2020, 698: 134326. doi: 10.1016/j.scitotenv.2019.134326 [28] CHEN R H, CHEN H Y, SONG L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils[J]. Science of the Total Environment, 2019, 694: 133819. doi: 10.1016/j.scitotenv.2019.133819 [29] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model[J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629 [30] 周洪华, 李卫红. 新疆博斯腾湖湖水污染源空间分异分析[J]. 中国环境科学学会2016年学术年会, 2016: 918-925. ZHOU H H, LI W B. Situation and development utilization of surface water in Xinjiang [J]. Energy and Energy Conservation, 2016: 918-925 (in Chinese).
[31] 李梅英, 徐俊荣, 史志文. 浅析新疆巩乃斯河重金属时空分异特征[J]. 环境化学, 2009, 28(5): 716-720. doi: 10.3321/j.issn:0254-6108.2009.05.021 LI M Y, XU J R, SHI Z W. Seasonal and spatial distribution of heavy metals in kunes river, Xinjiang[J]. Environmental Chemistry, 2009, 28(5): 716-720 (in Chinese). doi: 10.3321/j.issn:0254-6108.2009.05.021
[32] 王钢, 王灵, 郑春霞, 等. 乌鲁木齐乌拉泊水库水体中重金属健康风险评价[J]. 干旱环境监测, 2010, 24(1): 22-26,30. doi: 10.3969/j.issn.1007-1504.2010.01.006 WANG G, WANG L, ZHENG C X, et al. Health risk assessment of water quality at wulabo reservoir in Urumqi city[J]. Arid Environmental Monitoring, 2010, 24(1): 22-26,30 (in Chinese). doi: 10.3969/j.issn.1007-1504.2010.01.006
[33] 张兆永, 吉力力·阿不都外力, 姜逢清, 等. 天山地表水重金属的赋存特征和来源分析[J]. 中国环境科学, 2012, 32(10): 1799-1806. doi: 10.3969/j.issn.1000-6923.2012.10.011 ZHANG Z Y, ABUDUWAILI J, JIANG F Q, et al. Contents and sources of heavy metals in surface water in the Tianshan Mountain[J]. China Environmental Science, 2012, 32(10): 1799-1806 (in Chinese). doi: 10.3969/j.issn.1000-6923.2012.10.011
[34] 张兆永, 吉力力·阿不都外力, 姜逢清. 博尔塔拉河河水、表层底泥及河岸土壤重金属的污染和潜在危害评价[J]. 环境科学, 2015, 36(7): 2422-2429. ZHANG Z Y, JILILI A, JIANG F Q. Pollution and potential ecology risk evaluation of heavy metals in river water, top sediments on bed and soils along banks of Bortala River, northwest China[J]. Environmental Science, 2015, 36(7): 2422-2429 (in Chinese).
[35] TURDI M, YANG L S. Trace elements contamination and human health risk assessment in drinking water from the agricultural and pastoral areas of Bay County, Xinjiang, China[J]. International Journal of Environmental Research and Public Health, 2016, 13(10): 938. doi: 10.3390/ijerph13100938 [36] XIAO J, JIN Z D, WANG J. Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China[J]. Journal of Geochemical Exploration, 2014, 136: 118-126. doi: 10.1016/j.gexplo.2013.10.013 [37] WU T, LI X P, YANG T, et al. Multi-elements in source water (drinking and surface water) within five cities from the semi-arid and arid region, NW China: Occurrence, spatial distribution and risk assessment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1168. doi: 10.3390/ijerph14101168 [38] REIMAN J H, XU Y J, HE S J, et al. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico[J]. Chemosphere, 2018, 205: 559-569. doi: 10.1016/j.chemosphere.2018.04.094 [39] ELBAZ-POULICHET F, SEIDEL J L, CASIOT C, et al. Short-term variability of dissolved trace element concentrations in the Marne and Seine Rivers near Paris[J]. Science of the Total Environment, 2006, 367(1): 278-287. doi: 10.1016/j.scitotenv.2005.11.009 [40] DEKOV V M, KOMY Z, ARAÚJO F, et al. Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse)[J]. Science of the Total Environment, 1997, 201(3): 195-210. doi: 10.1016/S0048-9697(97)84057-0 [41] VAROL M, GÖKOT B, BEKLEYEN A. Dissolved heavy metals in the Tigris River (Turkey): Spatial and temporal variations[J]. Environmental Science and Pollution Research, 2013, 20(9): 6096-6108. doi: 10.1007/s11356-013-1627-8 [42] PHAN K, KIM K W. Health risk assessment of trace elements in the Tonle Sap Great Lake and the Tonle Sap River in Cambodia during the rainy season[J]. Journal of Water and Health, 2023, 21(5): 547-559. doi: 10.2166/wh.2023.222 [43] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environmental Science Press, 2002(in Chinese).
[44] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2022[S]. 北京: 中国标准出版社, 2022. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Standards for drinking water quality: GB 5749—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
[45] World Health Organization, 2011. Guidelines for Drinking-water quality. Fourth edition. World Health Organization, Geneva, Switzerland. [46] 张伟燕, 马龙, 吉力力·阿不都外力, 等. 博尔塔拉河地表水重金属来源分析及其污染评价[J]. 干旱区资源与环境, 2019, 33(7): 100-106. ZHANG W Y, MA L, JILILI A, et al. Source analysis and pollution assessment of heavy metals in surface water of Bortala River, Northwest China[J]. Journal of Arid Land Resources and Environment, 2019, 33(7): 100-106 (in Chinese).
[47] 杜恒文. 基于氢氧同位素技术对博斯腾湖流域水体补给关系分析[D]. 乌鲁木齐: 新疆师范大学, 2020. DU H W. Analysis of water supply relationship in the Bosten Lake basin based on hydrogen and oxygen isotopes[D]. Urumqi: Xinjiang Normal University, 2020 (in Chinese).
[48] 林丽, 范薇, 周金龙, 等. 喀什地区浅层地下水重金属污染健康风险评价[J]. 节水灌溉, 2020(5): 93-98. doi: 10.3969/j.issn.1007-4929.2020.05.018 LIN L, FAN W, ZHOU J L, et al. Health risk assessment of heavy metals in shallow groundwater in Kashgar region of Xinjiang[J]. Water Saving Irrigation, 2020(5): 93-98 (in Chinese). doi: 10.3969/j.issn.1007-4929.2020.05.018
[49] 艾提业古丽·热西提, 麦麦提吐尔逊·艾则孜, 王维维, 等. 博斯腾湖流域地下水重金属污染的人体健康风险评估[J]. 生态毒理学报, 2019, 14(2): 251-259. doi: 10.7524/AJE.1673-5897.20180718001 ATIYAGUL R, MAMATTURSUN E, WANG W W, et al. The human health risk assessment of heavy metal pollution of groundwater in Bosten Lake basin[J]. Asian Journal of Ecotoxicology, 2019, 14(2): 251-259 (in Chinese). doi: 10.7524/AJE.1673-5897.20180718001
[50] 罗艳丽, 郑春霞, 余艳华, 等. 新疆奎屯垦区地下水重金属污染健康风险初步评价[J]. 陕西农业科学, 2011, 57(3): 93-96. LUO Y L, ZHENG C X, YU Y H, et al. Preliminary assessment of health risk of heavy metal pollution in groundwater in Kuitun reclamation area of Xinjiang[J]. Shaanxi Journal of Agricultural Sciences, 2011, 57(3): 93-96 (in Chinese).
[51] 曾妍妍, 周殷竹, 周金龙, 等. 新疆南部典型地区地下水重金属空间分布特征[J]. 环境化学, 2015, 34(12): 2310-2312. doi: 10.7524/j.issn.0254-6108.2015.12.2015073002 ZENG Y Y, ZHOU Y Z, ZHOU J L, et al. Spatial distribution characteristics of heavy metals in groundwater in typical areas of southern Xinjiang[J]. Environmental Chemistry, 2015, 34(12): 2310-2312 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.12.2015073002
[52] FAN W, ZHOU J L, ZHOU Y Z, et al. Water quality and health risk assessment of shallow groundwater in the southern margin of the Tarim Basin in Xinjiang, P. R. China[J]. Human and Ecological Risk Assessment:an International Journal, 2021, 27(2): 483-503. doi: 10.1080/10807039.2020.1731680 [53] Di DUCA F, MONTUORI P, TRAMA U, et al. Health risk assessment of PAHs from estuarine sediments in the south of Italy[J]. Toxics, 2023, 11(2): 172. doi: 10.3390/toxics11020172 [54] SARWAR T, SHAHID M, Natasha, et al. Quantification and risk assessment of heavy metal build-up in soil-plant system after irrigation with untreated city wastewater in Vehari, Pakistan[J]. Environmental Geochemistry and Health, 2020, 42(12): 4281-4297. doi: 10.1007/s10653-019-00358-8 [55] SHARMA S, NAGPAL A K, KAUR I. Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs[J]. Chemosphere, 2019, 227: 179-190. doi: 10.1016/j.chemosphere.2019.04.009 [56] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[57] 戴志鹏, 罗艳丽, 王翔. 新疆奎屯河流域高砷、高氟地下水的分布特征[J]. 环境保护科学, 2019, 45(4): 81-86. DAI Z P, LUO Y L, WANG X. Distribution characteristics of high arsenic and fluorine in groundwater of Kuitun River Basin in Xinjiang[J]. Environmental Protection Science, 2019, 45(4): 81-86 (in Chinese).
[58] 袁翰卿, 李巧, 陶洪飞, 等. 新疆奎屯河流域地下水砷富集因素[J]. 环境化学, 2020, 39(2): 524-530. doi: 10.7524/j.issn.0254-6108.2019051403 YUAN H Q, LI Q, TAO H F, et al. Groundwater arsenic enrichment factors of Kuitun River Basin, Xinjiang[J]. Environmental Chemistry, 2020, 39(2): 524-530 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019051403
[59] 罗艳丽, 李晶, 蒋平安, 等. 新疆奎屯原生高砷地下水的分布、类型及成因分析[J]. 环境科学学报, 2017, 37(8): 2897-2903. LUO Y L, LI J, JIANG P A, et al. Distribution, classification and cause analysis of geogenic high-arsenic groundwater in Kuitun, Xinjiang[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2897-2903 (in Chinese).
[60] 钱建平, 李伟, 张力, 等. 地下水中重金属污染来源及研究方法综析[J]. 地球与环境, 2018, 46(6): 613-620. QIAN J P, LI W, ZHANG L, et al. Source and research status of heavy metal pollution in groundwater: A review[J]. Earth and Environment, 2018, 46(6): 613-620 (in Chinese).
[61] 任丽江, 张妍, 张鑫, 等. 渭河流域关中段地表水重金属的污染特征与健康风险评价[J]. 生态环境学报, 2022, 31(1): 131-141. REN L J, ZHANG Y, ZHANG X, et al. Pollution characteristics and health risk assessment of heavy metals in surface water in Guanzhong section of the Weihe River Basin[J]. Ecology and Environmental Sciences, 2022, 31(1): 131-141 (in Chinese).
[62] 刘昭, 周宏, 刘伟, 等. 清江流域地下水重金属含量特征及健康风险初步评价[J]. 环境工程, 2021, 39(5): 196-203. LIU Z, ZHOU H, LIU W, et al. Heavy metal concentration properties analysis and primary health risk assessment in groundwater in the Qingjiang River[J]. Environmental Engineering, 2021, 39(5): 196-203 (in Chinese).
[63] 尹伊梦, 赵委托, 黄庭, 等. 电子垃圾拆解区土壤-水稻系统重金属分布特征及健康风险评价[J]. 环境科学, 2018, 39(2): 916-926. YIN Y M, ZHAO W T, HUANG T, et al. Distribution characteristics and health risk assessment of heavy metals in a soil-rice system in an E-waste dismantling area[J]. Environmental Science, 2018, 39(2): 916-926 (in Chinese).
[64] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5 [65] ZHOU Y Z, ZENG Y Y, ZHOU J L, et al. Distribution of groundwater arsenic in Xinjiang, P. R. China[J]. Applied Geochemistry, 2017, 77: 116-125. doi: 10.1016/j.apgeochem.2016.09.005 [66] JIA Y F, XI B D, JIANG Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of the Total Environment, 2018, 643: 967-993. doi: 10.1016/j.scitotenv.2018.06.201