-
塑料是现代生产生活中不可或缺的重要材料,全球的塑料年产量约为3.6亿t,大量未得到妥善处理处置的塑料固体废物对全球生态环境安全造成了巨大的冲击[1 − 4]. 据统计,目前废弃塑料的回收率仅约为9%,绝大多数塑料废物经填埋、焚烧处理消纳或直接被丢弃进入到自然环境中,极大地造成了资源的浪费和对环境的破坏[5 − 10].
目前超过99%的回收塑料通过机械回收(Mechanical recycling)方法处理,其再生产物的质量与机械性能往往会出现衰减;其余约1%的回收塑料经热解(Pyrolysis)或气化(Gasification)等方法处理,用于生产热解油中的轻质馏分或 “富氢气体”[3, 11]. 分析表明,现行的塑料回收转化技术难以应对日益严峻的塑料污染危机[12],如何更好地挖掘塑料本身的潜在资源价值,提高转化产物的质量与应用空间,成为当下塑料升级转化技术探索的研究热点[13].
石墨烯与碳纳米管作为研究应用最广泛的两类低维碳纳米材料,得益其优异的化学-热稳定性、机械性能、光电性能与丰富的微结构与孔特征,被广泛用于能源、复合材料、电子器件、环境、检测、催化等领域[14 − 15]. 如图1所示,近年来国内外研究者在借鉴传统低维碳纳米材料制备方法的基础上,开发出一系列基于热解(Pyrolysis)-化学气相沉积方法(chemical vapour deposition, CVD)、等离子体增强化学气相沉积方法(plasma-enhanced CVD)、或热化学方法(激光、焦耳加热、电弧法)的塑料衍生碳纳米材料制备方法,将多种类型的塑料前驱体转化为石墨烯、碳纳米管及其衍生材料,代表了一条重要的塑料升级转化路径[16 − 17].
为更好地系统梳理塑料升级转化制备低维碳纳米材料的合成方法与研究进展,本文以石墨烯与碳纳米管这两类典型低维碳纳米材料为研究对象,分类简要总结了每种材料制备所使用的方法、装置构型、反应条件和材料转化机制. 在此基础上,结合每种特定方法对应终产物的材料特征与物化性能,细化了两类低维碳纳米材料的产物类型,包括层状石墨烯(Layered graphene)、多孔石墨烯(Porous graphene)、粉体石墨烯(Graphene powders)和多壁碳纳米管(Multiwalled carbon nanotubes, MWCNTs),并介绍了各种型材料当前的应用场景及其性能.
塑料升级转化制备低维碳纳米材料的方法及研究进展
Research progress in preparation of low-dimensional carbon nanomaterials derived from plastics
-
摘要: 将塑料转化为具有优异性能的低维碳纳米材料,近年来已经发展成为一支重要的塑料升级转化路径并取得阶段性的研究进展. 热解-化学气相沉积方法、等离子体增强化学气相沉积方法、和基于激光、焦耳加热及电弧法的热化学方法已被开发利用,将多种类型的塑料转化为石墨烯和碳纳米管材料. 为更好地追踪本领域的研究进展,本文梳理了以上两类典型塑料衍生低维碳纳米材料的制备方法、装置构型、反应条件、材料转化机制、产物应用场景及性能,并对当前的机遇及未来的挑战进行了展望.Abstract: In recent years, the conversion of plastics into low-dimensional carbon nanomaterials with exceptional properties has emerged as a pivotal pathway for plastic upcycling, and it has made significant strides. A range of preparation methods, including pyrolysis-chemical vapor deposition, plasma-enhanced chemical vapor deposition, and thermochemical processes induced by laser, Joule heating, and arc discharge, have been developed and utilized to convert various types of plastics into graphene and carbon nanotubes. To better track the research progress, the preparation methods, reactor configurations, reaction conditions, material conversion mechanisms, product application scenarios and performance of the two typical plastic-derived low-dimensional carbon nanomaterials were summarized. Furthermore, we conclude with our perspective on the ongoing challenge and opportunities.
-
Key words:
- plastic waste /
- graphene /
- carbon nanotubes /
- low-dimensional nanomaterials.
-
表 1 单区热解-CVD模式升级转化塑料制备石墨烯材料的反应条件及产物特征
Table 1. Reaction conditions and product properties of single-stage pyrolysis-CVD mode for the preparation of plastics-derived graphene
方法
Method底物
Precursors产物
Products反应条件
Reaction conditions材料特征
Properties应用
Applications文献
Ref.热解-CVD PS 单层石墨烯 装置构型:单室CVD,铜箔衬底,底物质量:0.01 g,温度1050 ℃;压力1.24 kPa;
反应气氛:Ar (500 cm3·min−1),H2 (100 cm3·min−1)
反应时间:15 minIG /2D < 0.56,
ID/G < 0.1;
方阻:1.5–3.0 kΩ·sq−1未报导 [21] 热解-CVD PET 单层石墨烯 装置构型:单室CVD;上方200 μm镍箔 + 底部
10 μm镍箔衬底
底物质量:0.1 g,温度900 ℃;压力101.3 kPa;降温速率5.8 ℃·min−1
反应气氛:N2 (1000 cm3·min−1)
反应时间:5 minIG/2D: ~0.38 未报导 [22] 热解-CVD PE, PP, PET 多层石墨烯 装置构型:单室CVD,衬底:有机改性蒙脱土,纳米膨润土
底物质量:15 g (OMMT/PP);
温度750—945 ℃
反应时间:15—45 min形貌结构:片状石墨,石墨烯层数较多,且多褶皱与缺陷结构,石墨化程度较低 超级电容器,太阳能电池 [23] 热解-CVD PE 三维层状石墨烯 装置构型:单室CVD,镍网衬底,底物过量填充,温度900 ℃;压力 ~1.0 mTorr;降温速率90 ℃·min−1
反应气氛:无外源气体
反应时间:8 min形貌结构:中空多层石墨烯网
层数:6—8
厚度:2.5—3.5 nm;
方阻:< 4.2 Ω·sq−1超级电容器,自清洁纱窗,
油水分离
[24] 表 2 异位热解-CVD模式升级转化塑料制备石墨烯材料的反应条件及产物特征
Table 2. Reaction conditions and product properties for the preparation of plastics-derived graphene via two-stage pyrolysis-CVD mode
方法
Method底物
Precursors产物
Products反应条件
Reaction Conditions材料特征
Properties应用
Applications文献
Ref.热解-CVD PS 单层石墨烯 装置构型:双区热解+CVD系统
热解条件:脉冲加热梯度升温,温度80—280 ℃;压力101.3 kPa;反应气氛:300—600 cm3·min−1 (Ar+H2 (0—10 cm3·min−1));时间30—80 min
CVD条件:温度950—1050 ℃;压力101.3 kPa;时间30—80 min;反应气氛:300—600 cm3·min−1 (Ar+H2 (0—10 cm3·min−1));铜箔衬底石墨烯畴区尺寸1.2 mm 未报导 [22] 热解-CVD PE 86% wt;
PS 14% wt单层石墨烯 装置构型:双区热解+CVD系统
热解条件:温度500 ℃;压力101.3 kPa,时间 90 min;升温速率1.5 ℃·min−1;底物质量30 mg
CVD条件:温度1020 ℃;压力101.3 kPa;时间90 min;降温速率16 ℃ min−1;反应气氛:Ar (98 cm3·min−1),H2 (2.5 cm3·min−1);铜箔衬底六边形或圆形单晶石墨烯,晶畴尺寸90—
100 μm未报导 [43] 裂解-CVD 原生或废弃PET、PE、PVC、PP、PS, 多层石墨烯 装置构型:双区热解+CVD系统
热解条件:温度1050 ℃;
CVD条件:温度1050 ℃;
时间120 min;反应气氛:Ar (150 cm3·min−1),H2 (25 cm3·min−1);镍箔衬底石墨化程度较高的紧密堆叠的多层石墨烯,
ID/G: 0.03—0.65;
电导率: 3824 S·cm−1可折叠锂离子电池柔性电极;柔性电热元器件 [44] 表 3 激光和焦耳加热介导的热化学方法升级转化塑料制备石墨烯材料的反应条件及产物特征
Table 3. Reaction conditions and product properties for the preparation of plastics-derived graphene via laser or Joule heating induced thermochemical processes
方法
Method底物
Precursors产物
Products反应条件
Reaction Conditions材料特征
Properties应用
Applications文献
Ref.激光介导 高温工程塑料,交联热固性塑料 多孔
石墨烯装置构型:计算机控制的CO2脉冲激光系统
激光波长:10.6 μm/9.3 μm
扫速:2—58 cm·s−1
辐照密度:10—1000 p.p.i.
激光占空比:1%—5%电导率:25 S·cm−1
方阻:<15 Ω·sq−1
层间距:0.34 nm
具有较高缺陷:含有大量五元环与七元环空气净化、电催化、能源转化与储能、检测、抗污、微流控 [46, 58] 焦耳加热介导 PP, PET, PE, PS, PVC, PAN 粉体
石墨烯装置构型:交流(120 V, 60 Hz, 8 s)+脉冲直流(60 mF, 110 V, 500 ms)序列焦耳加热系统,低电流(208 V, 0.1—25 A, 50 s)+ 高脉冲电流
(60 mF, 100 V, 250 ms)
导电助剂:质量分数为5 % 炭黑层间距:
0.345—0.351 nm
比表面积:
650—874 m2·g−1储能、电催化、复合材料添加剂 [16, 59] 表 4 CVD及电弧法介导的热化学方法升级转化塑料制备碳纳米管的反应条件及产物特征
Table 4. Reaction conditions and product properties for the preparation of plastics-derived CNTs via CVD or arc-discharge induced thermochemical processes
方法
Method底物
Precursors产物
Products反应条件
Reaction Conditions材料特征
Properties应用
Applications文献Ref. 热解-CVD PP, PE, PS, PVC, PET MWCNTs 装置构型:单室固定床CVD反应器;双段固定床反应器;连续热解流化床-固定催化床CVD反应器;连续热解-连续催化床CVD反应器
热解温度:400—950 ℃
CVD温度:450—1000 ℃产物多为MWCNTs,直径4—338 nm不等,长度0.55—50 μm不等 膜分离、电催化、水处理、能源转化与储能等 [72- 73] 等离子体增强化学气相沉积 PP, PE, PS
MWCNTs 装置构型:单室石英反应腔+微波发生源
案例1:底物与催化剂配置:0.3—0.4 g塑料+同等质量催化剂(FeAlOx);微波功率:1000 W,
3—5 min
案例2:底物与催化剂配置:0.3 g塑料+0.6 g催化剂(Fe/AC);微波功率:700 W,10 min;案例1:WCNTs内径约
6 nm,外径10–20 nm,管壁间距 0.32–0.34 nm.
案例2: WCNTs(内径约5.4 nm,外径约13.9 nm)未报导 [71, 74] 电弧法 PET MWCNTs
混合物热解条件:815 ℃,20 min
底物:10 g, 10×10 cm2
反应气氛:N2, 10 kPa
电弧法条件:DC电源
100 A, 36 V;1 min
阳极:150 mm中空石墨棒(99%纯度,8 mm内径,12 mm外径);旋转阴极:
底物:5 g PET裂解产物粉末
反应气氛:N2, 500 Torr阴极沉积产物:20 nm MWCNTs与其他纳米碳材料(富勒烯,多面体纳米颗粒等)的混合物;
阳极产物:高温区
(2600 ℃)为纳米通道超细碳管与MWCNTs(约95 nm)混合物,相对阴极产物石墨化较低未报导 [75] -
[1] SARDON H, DOVE A P. Plastics recycling with a difference[J]. Science, 2018, 360(6387): 380-381. doi: 10.1126/science.aat4997 [2] JAMBECK J R, GEYER R, WILCOX C, et al. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. doi: 10.1126/science.1260352 [3] GIBB B C. Plastics are forever[J]. Nature Chemistry, 2019, 11(5): 394-395. doi: 10.1038/s41557-019-0260-7 [4] MIN K, CUIFFI J D, MATHERS R T. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure[J]. Nature Communications, 2020, 11: 727. doi: 10.1038/s41467-020-14538-z [5] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782 [6] MU J L, ZHANG S F, QU L, et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea[J]. Marine Pollution Bulletin, 2019, 143: 58-65. doi: 10.1016/j.marpolbul.2019.04.023 [7] SCHWAB F, ROTHEN-RUTISHAUSER B, PETRI-FINK A. When plants and plastic interact[J]. Nature Nanotechnology, 2020, 15(9): 729-730. doi: 10.1038/s41565-020-0762-x [8] PEEKEN I, PRIMPKE S, BEYER B, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic[J]. Nature Communications, 2018, 9: 1505. doi: 10.1038/s41467-018-03825-5 [9] ISOBE A, IWASAKI S, UCHIDA K, et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066[J]. Nature Communications, 2019, 10: 417. doi: 10.1038/s41467-019-08316-9 [10] LEBRETON L C M, van der ZWET J, DAMSTEEG J W, et al. River plastic emissions to the world’s oceans[J]. Nature Communications, 2017, 8: 15611. doi: 10.1038/ncomms15611 [11] GARCIA J M, ROBERTSON M L. The future of plastics recycling[J]. Science, 2017, 358(6365): 870-872. doi: 10.1126/science.aaq0324 [12] LAU W W Y, SHIRAN Y, BAILEY R M, et al. Evaluating scenarios toward zero plastic pollution[J]. Science, 2020, 369(6510): 1455-1461. doi: 10.1126/science.aba9475 [13] ZHENG J J, SUH S. Strategies to reduce the global carbon footprint of plastics[J]. Nature Climate Change, 2019, 9(5): 374-378. doi: 10.1038/s41558-019-0459-z [14] YADAV T P, AWASTHI K. Carbon nanomaterials: Fullerene to graphene[J]. Transactions of the Indian National Academy of Engineering, 2022, 7(3): 715-737. doi: 10.1007/s41403-022-00348-w [15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 [16] LUONG D X, BETS K V, ALI ALGOZEEB W, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651. doi: 10.1038/s41586-020-1938-0 [17] HOU Q D, ZHEN M N, QIAN H L, et al. Upcycling and catalytic degradation of plastic wastes[J]. Cell Reports Physical Science, 2021, 2(8): 100514. doi: 10.1016/j.xcrp.2021.100514 [18] NOVOSELOV K S, FAL′KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. doi: 10.1038/nature11458 [19] SUN Z X, FANG S Y, HU Y H. 3D graphene materials: From understanding to design and synthesis control[J]. Chemical Reviews, 2020, 120(18): 10336-10453. doi: 10.1021/acs.chemrev.0c00083 [20] SUN L Z, YUAN G W, GAO L B, et al. Chemical vapour deposition[J]. Nature Reviews Methods Primers, 2021, 1: 5. doi: 10.1038/s43586-020-00005-y [21] RUAN G D, SUN Z Z, PENG Z W, et al. Growth of graphene from food, insects, and waste[J]. ACS Nano, 2011, 5(9): 7601-7607. doi: 10.1021/nn202625c [22] YOU Y, MAYYAS M, XU S, et al. Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method[J]. Green Chemistry, 2017, 19(23): 5599-5607. doi: 10.1039/C7GC02523H [23] GONG J A, LIU J E, WEN X, et al. Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4173-4181. [24] NGUYEN D D, HSIEH P Y, TSAI M T, et al. Hollow few-layer graphene-based structures from parafilm waste for flexible transparent supercapacitors and oil spill cleanup[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40645-40654. [25] WU T R, DING G Q, SHEN H L, et al. Triggering the continuous growth of graphene toward millimeter-sized grains[J]. Advanced Functional Materials, 2013, 23(2): 198-203. doi: 10.1002/adfm.201201577 [26] WANG Y L, HU P, YANG J, et al. C—H bond activation in light alkanes: A theoretical perspective[J]. Chemical Society Reviews, 2021, 50(7): 4299-4358. doi: 10.1039/D0CS01262A [27] LIN L, DENG B, SUN J Y, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Reviews, 2018, 118(18): 9281-9343. doi: 10.1021/acs.chemrev.8b00325 [28] SHU H B, TAO X M, DING F. What are the active carbon species during graphene chemical vapor deposition growth?[J]. Nanoscale, 2015, 7(5): 1627-1634. doi: 10.1039/C4NR05590J [29] CHEN S S, CAI W W, PINER R D, et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils[J]. Nano Letters, 2011, 11(9): 3519-3525. doi: 10.1021/nl201699j [30] LIAN Y M, UTETIWABO W, ZHOU Y D, et al. From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 557: 55-64. doi: 10.1016/j.jcis.2019.09.003 [31] PANDEY S, KARAKOTI M, SURANA K, et al. Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors[J]. Scientific Reports, 2021, 11: 3916. doi: 10.1038/s41598-021-83483-8 [32] XU Y X, LIN Z Y, ZHONG X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: 4554. doi: 10.1038/ncomms5554 [33] WU D Y, ZHU C, SHI Y T, et al. Biomass-derived multilayer-graphene-encapsulated cobalt nanoparticles as efficient electrocatalyst for versatile renewable energy applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1137-1145. [34] XIA J S, ZHANG N, CHONG S K, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chemistry, 2018, 20(3): 694-700. doi: 10.1039/C7GC03426A [35] MAHMOUDIAN L, RASHIDI A, DEHGHANI H, et al. Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption[J]. Chemical Engineering Journal, 2016, 304: 784-792. doi: 10.1016/j.cej.2016.07.015 [36] HE Y M, CHEN W J, LI X D, et al. Freestanding three-dimensional graphene/MnO2 composite networks As ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1): 174-182. doi: 10.1021/nn304833s [37] WANG X B, ZHANG Y J, ZHI C Y, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4: 2905. doi: 10.1038/ncomms3905 [38] ZHENG X J, WU J, CAO X C, et al. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes[J]. Applied Catalysis B: Environmental, 2019, 241: 442-451. doi: 10.1016/j.apcatb.2018.09.054 [39] JIANG X F, WANG X B, DAI P C, et al. High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors[J]. Nano Energy, 2015, 16: 81-90. doi: 10.1016/j.nanoen.2015.06.008 [40] YOON J C, LEE J S, KIM S I, et al. Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition[J]. Scientific Reports, 2013, 3: 1788. doi: 10.1038/srep01788 [41] LI X S, MAGNUSON C W, VENUGOPAL A, et al. Graphene films with large domain size by a two-step chemical vapor deposition process[J]. Nano Letters, 2010, 10(11): 4328-4334. doi: 10.1021/nl101629g [42] YU Q K, JAUREGUI L A, WU W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 443-449. doi: 10.1038/nmat3010 [43] SHARMA S, KALITA G, HIRANO R, et al. Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition[J]. Carbon, 2014, 72: 66-73. doi: 10.1016/j.carbon.2014.01.051 [44] CUI L F, WANG X P, CHEN N, et al. Trash to treasure: Converting plastic waste into a useful graphene foil[J]. Nanoscale, 2017, 9(26): 9089-9094. doi: 10.1039/C7NR03580B [45] FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147-163. doi: 10.1016/j.carbon.2017.11.065 [46] LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5714. doi: 10.1038/ncomms6714 [47] YE R Q, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621. doi: 10.1002/adma.201803621 [48] STANFORD M G, LI J T, CHEN Y D, et al. Self-sterilizing laser-induced graphene bacterial air filter[J]. ACS Nano, 2019, 13(10): 11912-11920. doi: 10.1021/acsnano.9b05983 [49] ZHANG J B, ZHANG C H, SHA J W, et al. Efficient water-splitting electrodes based on laser-induced graphene[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26840-26847. [50] SONG W X, ZHU J X, GAN B H, et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small, 2018, 14(1): 1702249. doi: 10.1002/smll.201702249 [51] CLERICI F, FONTANA M, BIANCO S, et al. in situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10459-10465. [52] ZHANG Z C, SONG M M, HAO J X, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 2018, 127: 287-296. doi: 10.1016/j.carbon.2017.11.014 [53] TAO L Q, TIAN H, LIU Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 2017, 8: 14579. doi: 10.1038/ncomms14579 [54] FENZL C, NAYAK P, HIRSCH T, et al. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sensors, 2017, 2(5): 616-620. doi: 10.1021/acssensors.7b00066 [55] NAYAK P, KURRA N, XIA C, et al. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications[J]. Advanced Electronic Materials, 2016, 2(10): 1600185. doi: 10.1002/aelm.201600185 [56] SINGH S P, LI Y L, BE’ER A, et al. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18238-18247. [57] TAN K W, JUNG B, WERNER J, et al. Transient laser heating induced hierarchical porous structures from block copolymer–directed self-assembly[J]. Science, 2015, 349: 54-58. doi: 10.1126/science.aab0492 [58] CHYAN Y, YE R Q, LI Y L, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. doi: 10.1021/acsnano.7b08539 [59] ALGOZEEB W A, SAVAS P E, LUONG D X, et al. Flash graphene from plastic waste[J]. ACS Nano, 2020, 14(11): 15595-15604. doi: 10.1021/acsnano.0c06328 [60] BECKHAM J L, LI J T, STANFORD M G, et al. High-resolution laser-induced graphene from photoresist[J]. ACS Nano, 2021, 15(5): 8976-8983. doi: 10.1021/acsnano.1c01843 [61] LI J T, STANFORD M G, CHEN W Y, et al. Laminated laser-induced graphene composites[J]. ACS Nano, 2020, 14(7): 7911-7919. doi: 10.1021/acsnano.0c02835 [62] WYSS K M, de KLEINE R D, COUVREUR R L, et al. Upcycling end-of-life vehicle waste plastic into flash graphene[J]. Communications Engineering, 2022, 1: 3. doi: 10.1038/s44172-022-00006-7 [63] WYSS K M, BECKHAM J L, CHEN W Y, et al. Converting plastic waste pyrolysis ash into flash graphene[J]. Carbon, 2021, 174: 430-438. doi: 10.1016/j.carbon.2020.12.063 [64] STANFORD M G, BETS K V, LUONG D X, et al. Flash graphene morphologies[J]. ACS Nano, 2020, 14(10): 13691-13699. doi: 10.1021/acsnano.0c05900 [65] CHEN W Y, LI J T, WANG Z, et al. Ultrafast and controllable phase evolution by flash joule heating[J]. ACS Nano, 2021, 15(7): 11158-11167. doi: 10.1021/acsnano.1c03536 [66] WYSS K M, CHEN W Y, BECKHAM J L, et al. Holey and wrinkled flash graphene from mixed plastic waste[J]. ACS Nano, 2022, 16(5): 7804-7815. doi: 10.1021/acsnano.2c00379 [67] BARBHUIYA N H, KUMAR A, SINGH A, et al. The future of flash graphene for the sustainable management of solid waste[J]. ACS Nano, 2021, 15(10): 15461-15470. doi: 10.1021/acsnano.1c07571 [68] ZHANG Y S, ZHU H L, YAO D D, et al. Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: A review[J]. Sustainable Energy & Fuels, 2021, 5(17): 4173-4208. [69] ZHANG R F, ZHANG Y Y, WEI F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications[J]. Chemical Society Reviews, 2017, 46(12): 3661-3715. doi: 10.1039/C7CS00104E [70] KUKOVITSKII E F, CHERNOZATONSKII L A, L'VOV S G, et al. Carbon nanotubes of polyethylene[J]. Chemical Physics Letters, 1997, 266(3/4): 323-328. [71] ZHANG P, LIANG C, WU M D, et al. High-efficient microwave plasma discharging initiated conversion of waste plastics into hydrogen and carbon nanotubes[J]. Energy Conversion and Management, 2022, 268: 116017. doi: 10.1016/j.enconman.2022.116017 [72] DAI L L, KARAKAS O, CHENG Y L, et al. A review on carbon materials production from plastic wastes[J]. Chemical Engineering Journal, 2023, 453: 139725. doi: 10.1016/j.cej.2022.139725 [73] PENG Y J, WANG Y P, KE L Y, et al. A review on catalytic pyrolysis of plastic wastes to high-value products[J]. Energy Conversion and Management, 2022, 254: 115243. doi: 10.1016/j.enconman.2022.115243 [74] JIE X Y, LI W S, SLOCOMBE D, et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons[J]. Nature Catalysis, 2020, 3(11): 902-912. doi: 10.1038/s41929-020-00518-5 [75] JOSEPH BERKMANS A, JAGANNATHAM M, PRIYANKA S, et al. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method[J]. Waste Management, 2014, 34(11): 2139-2145. doi: 10.1016/j.wasman.2014.07.004 [76] LIU B L, REN W C, GAO L B, et al. Metal-catalyst-free growth of single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2009, 131(6): 2082-2083. doi: 10.1021/ja8093907 [77] KANG L X, HU Y E, LIU L L, et al. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts[J]. Nano Letters, 2015, 15(1): 403-409. doi: 10.1021/nl5037325 [78] YAO Y G, FENG C Q, ZHANG J, et al. “cloning” of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Letters, 2009, 9(4): 1673-1677. doi: 10.1021/nl900207v [79] POUDEL Y R, LI W Z. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review[J]. Materials Today Physics, 2018, 7: 7-34. doi: 10.1016/j.mtphys.2018.10.002 [80] YAGLIOGLU O, CAO A Y, HART A J, et al. Wide range control of microstructure and mechanical properties of carbon nanotube forests: A comparison between fixed and floating catalyst CVD techniques[J]. Advanced Functional Materials, 2012, 22(23): 5028-5037. doi: 10.1002/adfm.201200852 [81] TANG T, CHEN X C, MENG X Y, et al. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene[J]. Angewandte Chemie International Edition, 2005, 44(10): 1517-1520. doi: 10.1002/anie.200461506 [82] GUL O T. Decoupling the catalyst reduction and annealing for suppressing Ostwald ripening in carbon nanotube growth[J]. Applied Physics A, 2021, 127(10): 1-11. [83] AZARA A, BELBESSAI S, ABATZOGLOU N. A review of filamentous carbon nanomaterial synthesis via catalytic conversion of waste plastic pyrolysis products[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107049. doi: 10.1016/j.jece.2021.107049 [84] OSTRIKOV K K, MEHDIPOUR H. Thin single-walled carbon nanotubes with narrow chirality distribution: Constructive interplay of plasma and gibbs–thomson effects[J]. ACS Nano, 2011, 5(10): 8372-8382. doi: 10.1021/nn2030989 [85] GHORANNEVIS Z, KATO T, KANEKO T, et al. Narrow-chirality distributed single-walled carbon nanotube growth from nonmagnetic catalyst[J]. Journal of the American Chemical Society, 2010, 132(28): 9570-9572. doi: 10.1021/ja103362j [86] NEYTS E C, OSTRIKOV K K, SUNKARA M K, et al. Plasma catalysis: Synergistic effects at the nanoscale[J]. Chemical Reviews, 2015, 115(24): 13408-13446. doi: 10.1021/acs.chemrev.5b00362