-
地下水作为水资源的重要组成部分,在维持生态平衡、保证居民生活和支撑社会经济发展方面发挥着举足轻重的作用[1 − 4]. 而地下水中各种化学成分的浓度和变化对水质及人类身体健康具有重要影响. 因此全面深刻地了解地下水的水化学演化过程显得极为重要[5 − 7].
近年来,伴随着城市化和工业化进程的快速发展,地下水化学受到人类活动的显著影响,如污水排放、农业活动等[8 − 10]. 有学者研究滹沱河流域地下水水化学演化发现,地下水化学组分不仅受到水-岩相互作用、蒸发和阳离子交换的控制,同时生活污水对地下水的化学成分造成影响[11];另有研究发现,在人类活动影响下,HCO3-Cl型、Cl-HCO3型以及硝酸型水频繁出现,使地下水化学类型呈现出多样化和复杂化[12];同时社会经济发展和土地利用的变化对地下水化学的演变也有一定程度的影响[13 − 14]. 综上所述,以往研究主要针对同一时间尺度上地下水水化学演化的影响因素开展研究,针对城市化不同发展阶段对地下水化学演化驱动机制影响的研究尚未见报道.
本研究选择了1个受人类活动影响强烈的且经历了快速城市化地区——滹沱河冲洪积扇石家庄段(我国最大的地下水降落漏斗区)[15]作为研究区,基于收集的30年内19个地下水监测站点的数据,重点分析了城市化发展对地下水组分及水化学类型的影响,辨别自然因素和人类活动对不同城市化阶段地下水化学演化的影响机制. 研究结果可对未经历快速城市化地区的地下水化学演化的研究提供参考,也可为快速城市化地区地下水的保护提供科学依据.
快速城市化进程中地下水化学演化的驱动机制—以石家庄市为例
The driving mechanism of groundwater chemical evolution in the process of rapid urbanization: Taking Shijiazhuang City as an example
-
摘要: 随着城市化的快速发展,地下水化学演化受到人类活动显著的影响. 但是,关于不同城市化发展阶段地下水水化学演化的驱动机制仍然不明确,严重影响了地下水保护工作的开展. 本研究以快速城市化地区——石家庄作为研究对象,通过收集1985—2015年19个地下水监测井长时间序列的水化学数据,应用Piper三线图、Gibbs图、离子比值端元图等水文地球化学方法,研究了地下水水化学演化特征及驱动因素. 结果表明,随着城市化进程的加快,地下水各水化学组分浓度呈现逐渐升高的趋势,特别是TH和NO3−在城市化高级阶段,二者的超标率分别高达23.7%和71.0%,说明随着城市化的发展,地下水化学已经受到人类活动的显著影响. 地下水的水化学类型由城市化初级阶段的HCO3·SO4-Ca·Mg型水向高级阶段的SO4·HCO3-Ca·Mg型水转变. 3个城市化阶段的地下水化学组分主要来自于碳酸盐溶解,水化学作用由城市化初级阶段的溶滤作用主导,转变为城市化高级阶段的溶滤作用和人类活动共同主导. 而人类活动对地下水化学的影响在城市化初级阶段主要以工业活动为主,而在城市化高级阶段农业活动对地下水化学的影响更为显著. 基于上述结论,建议在未来的地下水管理中应该控制农业施肥量、科学施肥以及禁止各类污水不达标排放,同时应该加强对地下水开采的监管力度,以减少城市化发展对地下水化学演化过程的影响.Abstract: With the rapid development of urbanization, the hydrochemical evolution of groundwater was significantly affected by human activities. However, the driving mechanisms of groundwater chemical evolution at different stages of urbanization are still unclear, which seriously affects the implementation of groundwater protection work. In this study, Shijiazhuang, a rapidly urbanizing area, was chosen as the research subject. The long-time series data of 19 groundwater monitoring wells from 1985 to 2015 were collected, and hydrogeochemical methods, such as Piper trilinear diagram, Gibbs diagram, ion ratio end-member diagram, and ion ratio analysis, were applied to study the characteristics and driving factors of groundwater chemical evolution. The results showed that with the acceleration of urbanization, the concentration of each chemical component in groundwater gradually increased. Especially at the advanced stage of urbanization, the excessive rates of TH and NO3-are as high as 23.7% and 71.0%, respectively, indicating that the groundwater chemistry has been significantly influenced by human activities with the development of urbanization. The main water chemistry type changed from HCO3·SO4-Ca·Mg type in the early stage of urbanization to SO4·HCO3-Ca·Mg type in the advanced stage. During the three stages of urbanization, the main source of groundwater chemical composition was carbonate dissolution. The hydrochemical process was dominated by dissolution in the early stage of urbanization, and has transformed into dissolution and human activities in the advanced stage. The impact of Human activities on groundwater chemistry mainly came from industrial activities in the primary urbanization stage and agricultural activities in advanced stages. Based on these conclusions, it is recommended that future groundwater management should control the amount of agricultural fertilization, apply scientific fertilization and prohibit unqualified discharge of various types of sewage. Meanwhile, the supervision of groundwater exploitation should be strengthened to reduce the impact of urbanization development on the process of groundwater chemical evolution.
-
Key words:
- urbanization /
- groundwater chemistry /
- water-rock interaction /
- drivingmechanisms.
-
表 1 各城市化阶段水样指标统计表Table1Statistical of water sample index in each urbanization stage
参数Parameters 范围/(mg·L−1)
Range均值/(mg·L−1)
Mean超标率/%
Over standard rate国标Ⅲ类*
Standard初级阶段
(PSU)中级阶段
(ISU)高级阶段
(ASU)初级阶段
(PSU)中级阶段
(ISU)高级阶段
(ASU)初级阶段
(PSU)中级阶段
(ISU)高级阶段
(ASU)pH 7.10—8.20 7.10—8.00 7.18—8.25 7.56a 7.52a 7.50a 0 0 0 6.50—8.50 K++Na+ 14.0—28.8 22.1—63.7 20.0—56.0 26.1a 33.3b 38.8c 0 0 0 200 Ca2+ 64.0—152 69.0—260 59.0—269 103a 114b 128b — — — — Mg2+ 11.0—50.0 19.8—39.0 19.4—105 27.3a 28.7a 38.1b — — — — Cl− 18.4—88.0 22.0—116 32.6—574 38.1a 46.4a 81.4b 0 0 5.26 250 SO42− 63.0—173 77.0—584 56.1—268 112a 151b 173b 0 7.01 2.63 250 HCO3− 176—440 90.3—342 168—363 291a 256b 261b — — — — NO3− 0.80—65.1 11.2—90.0 35.4—134 15.6a 38.0b 65.1c 0 1.76 23.7 88.6 TDS 406—886 465— 1176 522— 1121 614a 668b 760c 0 1.76 7.90 1000 TH 228—562 279—842 274— 1101 393a 410a 485b 19.0 25.3 71.0 450 注:*为地下水质量标准(GB/T 14848 —2017)中Ⅲ类水标准;各水质参数的单位除pH无量纲外,其余均为mg·L−1;相同字母表示各水化学指标在不同城市化阶段不存在显著性的差异( P>0. 05);“—”表示无值; PSU代表城市化初级阶段,ISU代表城市化中级阶段,ASU代表城市化高级阶段.
Note: * represents the Class III water standard in the Groundwater Quality Standards (GB/T14848 -2017); the units for all water quality parameters are mg·L−1 except for pH, which is dimensionless; the same letter indicates no significant difference (P > 0.05) in various water chemistry indicators in different urbanization stages; "—" indicates no value; PSU: the primary stage of urbanization, ISU : the intermediate stage of urbanization, ASU: the advanced stage of urbanization. -
[1] QIN R J, SONG Q Y, HAO Y H, et al. Groundwater level declines in Tianjin, North China: Climaticvariations and human activities[J]. Environment, Development and Sustainability, 2023, 25(2): 1899-1913. doi: 10.1007/s10668-022-02116-w [2] SACCÒM, BLYTHA J, DOUGLASG, et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: The Australian paradigm[J]. Freshwater Biology, 2022, 67(12): 2007-2023. doi: 10.1111/fwb.13987 [3] PASHAEIFAR M, DEHGHANZADEH R, RAMAZANI M E, et al. Spatial and temporal assessment of groundwater quality and hydrogeochemical processes in Urmia Lake Basin, Iran[J]. Water Supply, 2021, 21(8): 4328-4342. doi: 10.2166/ws.2021.180 [4] 张人权, 梁杏, 靳孟贵. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011. ZHANG R Q, LIANG X, JIN M G. Foundation of hydrogeology[M]. 6th ed. Beijing: Geological Publishing House, 2011(in Chinese).
[5] ISRAR M, NAZNEEN S, RAZA A, et al. Assessment of municipal solid waste landfilling practices on the groundwater quality and associated health risks: A case study of Mardan-Pakistan[J]. Arabian Journal of Geosciences, 2022, 15(17): 1-11. [6] STANLEY E H, DOYLE M W. A Geomorphic Perspective on Nutrient Retention Following Dam Removal: Geomorphic models provide a means of predicting ecosystem responses to dam removal[J]. BioScience, 2002, 52(8): 693-701. doi: 10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2 [7] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993. SHEN Z L, ZHUW H, ZHONGZS. Hydrogeochemicalbasis[M]. Beijing: Geological Publishing House, 1993(in Chinese).
[8] RAI S C, SAHA A K. Impact of urban sprawl on groundwater quality: A case study of Faridabad city, National Capital Region of Delhi[J]. Arabian Journal of Geosciences, 2015, 8(10): 8039-8045. doi: 10.1007/s12517-015-1811-x [9] GOELP, SAXENAA, SINGHD S, et al. Impact of rapid urbanization on water quality index in groundwater fed Gomati River, Lucknow, India[J]. Current Science, 2018, 114(3): 650. doi: 10.18520/cs/v114/i03/650-654 [10] 吕晓立, 刘景涛, 韩占涛, 等. 城镇化进程中新疆塔城盆地浅层地下水化学演变特征及成因[J]. 环境科学, 2020, 41(3): 1197-1206. LÜ X L, LIU J T, HAN Z T, et al. Chemical evolution of groundwater in the Tacheng Basin of Xinjiang in the process of urbanization[J]. Environmental Science, 2020, 41(3): 1197-1206 (in Chinese).
[11] 张彦鹏. 多元同位素对石家庄地区地下水地球化学环境演化的指示意义[D]. 武汉: 中国地质大学, 2015. ZHANG Y P. Implications of multi-isotopefor geochemical environment evolution of groundwater in Shijiazhuang area[D]. Wuhan: China University of Geosciences, 2015 (in Chinese).
[12] HUANG G X, SUN J C, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of the Total Environment, 2013, 463/464: 209-221. doi: 10.1016/j.scitotenv.2013.05.078 [13] BARRON O V, BARR A D, DONN M J. Evolution of nutrient export under urban development in areas affected by shallow watertable[J]. Science of the Total Environment, 2013, 443: 491-504. doi: 10.1016/j.scitotenv.2012.10.085 [14] ZHANG Q Q, WANG H W. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of North China using a multi-isotope approach[J]. Journal of Environmental Sciences (China), 2020, 89: 9-22. doi: 10.1016/j.jes.2019.09.021 [15] ZHENG C M, LIU J, CAO G L, et al. Can China cope with its water crisis? Perspectives from the North China Plain[J]. Ground Water, 2010, 48(3): 350-354. doi: 10.1111/j.1745-6584.2010.00695_3.x [16] REN C B, ZHANG Q Q, WANG H W, et al. Characteristics and source apportionment of polycyclic aromatic hydrocarbons of groundwater in Hutuo River alluvial-pluvial fan, China, based on PMF model[J]. Environmental Science and Pollution Research International, 2021, 28(8): 9647-9656. doi: 10.1007/s11356-020-11485-6 [17] 王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 2021, 40(12): 3838-3845. doi: 10.7524/j.issn.0254-6108.2020080301 WANG H W, GUO X J, ZHANG Q Q, et al. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin[J]. Environmental Chemistry, 2021, 40(12): 3838-3845 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020080301
[18] 石家庄市统计局, 国家统计局石家庄调查队编. 石家庄统计年鉴[M]. 北京:中国统计出版社,1985-2016. Shijiazhuang City Bureau of Statistics, Shijiazhuang Investigation team of National Bureau of Statistics. Shijiazhuang Statistical Yearbook[M]. Beijing: China Statistics Press, 1985-2016
[19] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. GeneralAdministration of Quality Supervision, Inspectionand Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard for groundwater quality: GB/T14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[20] LIU F, ZOU J W, LIU J R, et al. Factors controlling groundwater chemical evolution with the impact of reduced exploitation[J]. CATENA, 2022, 214: 106261. doi: 10.1016/j.catena.2022.106261 [21] 张千千, 王慧玮, 王龙, 等. 滹沱河冲洪积扇地区地下水硬度升高的机理研究[J]. 环境科学与技术, 2018, 41(增刊2): 62-68. ZHANG Q Q, WANG H W, WANG L, et al. Increasing mechanism of groundwater total hardness(TH)in the hutuo river alluvial-pluvial fan[J]. Environmental Science & Technology, 2018, 41(Sup 2): 62-68 (in Chinese).
[22] 孟瑞芳, 孟舒然. 基于正定矩阵因子分析模型的滹沱河冲洪积扇地下水污染源解析[J]. 环境污染与防治, 2021, 43(5): 586-591. MENG R F, MENG S R. Source analysisof groundwater pollution in Hutuo River alluvial-pluvial fan based on positive matrix factorizationmodel[J]. Environmental Pollution & Control, 2021, 43(5): 586-591 (in Chinese).
[23] MUKATE S, BHOOMINATHAN S, SOLANKY V. Assessment of human health risk arising due to fluoride and nitrate in groundwater: A case study of Bhokardan tehsil of Maharashtra[J]. Human and Ecological Risk Assessment, 2022, 28(5/6): 594-620. [24] 陈飞, 羊艳, 史文龙, 等. 河北省地下水超采综合治理农业措施压采效果与技术经济性分析[J]. 南水北调与水利科技, 2022, 20(5): 1019-1026. CHEN F, YANG Y, SHI W L, et al. Performance analyses and technical economy of groundwater overdraft control measures in Hebei Province[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(5): 1019-1026 (in Chinese).
[25] 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化进程中珠江三角洲硝酸型地下水赋存特征及驱动因素[J]. 环境科学, 2021, 42(10): 4761-4771. LÜ X L, LIU J T, HAN Z T, et al. Geochemical characteristics and driving factors of NO3-type groundwater in therapidly urbanizing Pearl River Delta[J]. Environmental Science, 2021, 42(10): 4761-4771 (in Chinese).
[26] WANG Q M, DONG S N, WANG H, et al. Hydrogeochemical processes and groundwater quality assessment for different aquifers in the Caojiatan coal mine of Ordos Basin, northwestern China[J]. Environmental Earth Sciences, 2020, 79(9): 1-15. [27] RENXH, ZHANGZH, YU RH, et al. Hydrochemical variations and driving mechanisms in a large linked river-irrigation-lake system[J]. Environmental Research, 2023, 225: 115596. doi: 10.1016/j.envres.2023.115596 [28] 苏贺. 地下水化学演化及驱动机制研究[D]. 西安: 西北大学, 2018. SUH. Research on Hydrogeochemistry evolution anddriving mechanism of groundwater: a casestudy from Shenmu County, Northwest China [D]. Xi’an: Northwest University, 2018 (in Chinese).
[29] 吕晓立, 刘景涛, 韩占涛, 等. “引大入秦”灌溉工程对甘肃秦王川盆地地下水化学组分的影响[J]. 农业工程学报, 2020, 36(2): 166-174. doi: 10.11975/j.issn.1002-6819.2020.02.020 LÜ X L, LIU J T, HAN Z T, et al. Effects of Yindaruqin irrigation project on groundwater chemical compositions in Qinwangchuan Basin in Gansu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 166-174 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.02.020
[30] ZHANG Q Q, SUN J C, LIU J T, et al. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of South China[J]. Journal of Contaminant Hydrology, 2015, 182: 221-230. doi: 10.1016/j.jconhyd.2015.09.009 [31] 缪丽萍, 孟瑞芳, 王慧玮, 等. 滹沱河流域地下水硫酸盐污染特征及源解析[J]. 环境科学与技术, 2020, 43(增刊1): 91-97. MIAO L P, MENG R F, WANG H W, et al. Characteristics and source apportionment of groundwater sulfate pollution in hutuo river basin[J]. Environmental Science & Technology, 2020, 43(Sup 1): 91-97 (in Chinese).
[32] 何泽, 宁卓, 黄冠星, 等. 太行山前平原浅层地下水污染的分子生物学响应特征: 以滹沱河流域为例[J]. 中国地质, 2019, 46(2): 290-301. doi: 10.12029/gc20190206 HE Z, NING Z, HUANG G X, et al. The response characteristics of microbial diversity to shallow groundwater contamination in the piedmont of the Taihang Mountains using molecular biotechnologies: A case study of groundwater of Hutuo River Basin[J]. Geology in China, 2019, 46(2): 290-301 (in Chinese). doi: 10.12029/gc20190206