水环境中天然有机物对纳米颗粒吸附铅和镉的不同作用
The varying roles of natural organic matters on nanoparticles adsorbing Cd2+ and Pb2+ in water environment
-
摘要: 为阐明天然有机物(NOM)在纳米颗粒(NPs)吸附重金属中的作用,研究了蛋白质(牛血清白蛋白,BSA)、碳水化合物(海藻酸钠,NaAlg)和腐殖酸(HA)对二氧化钛纳米颗粒(TNPs)和氧化铈纳米颗粒(CNPs)聚集沉降和吸附Cd2+和Pb2+的影响.结果表明,当Pb2+和Cd2+在20—120 mg·L-1范围内,HA和NaAlg显著促进了TNPs和CNPs对这些金属离子的吸附(P<0.05),而BSA对这些金属吸附的影响甚微.TNPs-HA和TNPs-NaAlg对Pb2+的吸附分别提高了14%—41%和16%—57%,对Cd2+的吸附分别提高了12%—112%和22%—143%.与CNPs相比,CNPs-HA和CNPs-NaAlg对Pb2+的吸附增加了21%—71%和23%—65%,对Cd2+的吸附增加了26%—45%和45%—91%.并且NPs和NPs-NOM对Pb2+和Cd2+的吸附符合Freundlich吸附模型.离子强度的增加抑制了NPs-HA/NaAlg和NPs对Pb2+和Cd2+的吸附,而pH的增加对NPs-HA/NaAlg和NPs吸附Pb2+和Cd2+起促进作用.Abstract: In order to elucidate the role of natural organic matters (NOM) in nanoparticles (NPs) adsorbing heavy metals, current work investigated effects of protein (bovine serum albumin, BSA), carbohydrate (sodium alginate, NaAlg), and humic acid (HA) on the aggregation and sedimentation of TiO2 NPs (TNPs) and CeO2 NPs (CNPs), and on the adsorption of Cd2+ and Pb2+ by TNPs and CNPs. In the range of 20—120 mg·L-1 of Pb2+ and Cd2+, BSA had little effect on the adsorption, whereas HA and NaAlg significantly accelerated these metals adsorption by TNPs and CNPs (P<0.05). In the presence of HA and NaAlg, the adsorption by TNPs increased 14%—41% and 16%—57% for Pb2+, and 12%—112% and 22%—143% for Cd2+, respectively. Compared with CNPs alone, HA and NaAlg increased 21%—71% and 23%—65% for Pb2+, and 26%—45% and 45%—91% for Cd2+, respectively. The adsorption of Pb2+ and Cd2+ by NPs and NPs-NOM was well fitted by Freundlich model. The increase in ionic strength inhibited the adsorption of Pb2+ and Cd2+ by NPs and NPs-HA/NaAlg, and the increase of pH increased the adsorption of Pb2+ and Cd2+ by NPs and NPs-HA/NaAlg.
-
Key words:
- natural organic matters /
- nanoparticles /
- aggregation and sedimentation /
- heavy metal /
- adsorption
-
[1] LIU Y, YANG T, WANG L, et al. Interpreting the effects of natural organic matter on antimicrobial activity of Ag2S nanoparticles with soft particle theory[J]. Water Research, 2018, 145:12-20. [2] 张华.不同来源腐植酸及常见阳离子对二氧化钛纳米颗粒聚沉行为影响的研究[D].南昌:南昌大学, 2019. ZHANG H. Effect of humic acid and cation on suspension behavior of titanate nanoparticles[D]. Nanchang:Nanchang University, 2019(in Chinese). [3] ARVIDSSON R. Risk assessments show engineered nanomaterials to be of low environmental concern[J], Environmental Science & Technology, 2018, 52:2436-2437. [4] HOU J, CI H, WANG P, et al. Nanoparticle tracking analysis versus dynamic light scattering:Case study on the effect of Ca2+ and alginate on the aggregation of cerium oxide nanoparticles[J]. Journal of Hazardous Materials, 2018, 360:319-328. [5] GOSWAMI L, KIM K H, DEEP A, et al. Engineered nano particles:Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2017, 196:297-315. [6] 吴其圣, 杨琛, 胡秀敏,等. 环境因素对纳米二氧化钛颗粒在水体中沉降性能的影响[J]. 环境科学学报, 2012, 32(7):1596-1603. WU Q S,YANG C,HU X M,et al. Influences of environmental factors on aggregation of titanium dioxide nanoparticles[J].Acta Scientiae Circumstantiae, 2012, 32(7):1596-1603(in Chinese).
[7] KELLER A A, WANG H, ZHOU D, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J]. Environmental Science & Technology, 2010, 44(6):1962-1967. [8] BRUNELLI A, POJANA G, CALLEGARO S, et al. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters[J]. Journal of Nanoparticle Research, 2015, 15:1684-1694. [9] LIU X, CHEN G, SU C. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase[J]. Journal of Colloid and Interface Science, 2011, 363:84-91. [10] LIU J, LEGROS S, MA G, et al. Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles[J]. Chemosphere, 2012, 87:918-924. [11] ERHAVEM M, SOHN M, Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles[J]. Science of the Total Environment, 2014, 470/471:92-98. [12] KAVOK N, GRYGOROVA G, KLOCHKOV V, et al. The role of serum proteins in the stabilization of colloidal LnVO4:Eu3+ (Ln=La, Gd, Y) and CeO2 nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 529:594-599. [13] SUN W, YIN K, YU X. Effect of natural aquatic colloids on Cu(Ⅱ) and Pb(Ⅱ) adsorption by Al2O3 nanoparticles[J]. Chemical Engineering Journal, 2013, 225:464-473. [14] WILKE C M, TONG T, GAILLARD J F, et al. Attenuation of microbial stress due to nano-Ag and nano-TiO2 interactions under dark conditions[J]. Environmental Science & Technology, 2016, 50:11302-11310. [15] ZHENG T, WANG T, MA R, et al. Influences of isolated fractions of natural organic matter on adsorption of Cu(Ⅱ) by titanate nanotubes[J]. Science of the Total Environment, 2019, 650:1412-1418. [16] CHEN Q, YIN D, ZHU S, et al. Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide[J]. Journal of Colloid and Interface Science, 2012, 367:241-248. [17] JIANG L, LIU Y, LIU S, et al. Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading:Comparison to carbon nanotube, biochar and activated carbon[J]. Environmental Science & Technology, 2017, 51:6352-6359. [18] CHEN C, WEI J, LI J, et al. Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments[J]. Environmental Pollution, 2019, 252:1892-1901. [19] ESMAEILI A, KHOSHNEVISAN N. Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles[J]. Bioresource Technology, 2016, 218:650-658. [20] VIKESLAND P J, REBODOS R L, BOTTERO J Y, et al. Aggregation and sedimentation of magnetite nanoparticle clusters[J]. Environmental Science-Nano, 2016, 3:567-577. [21] SHENG A, LIU F, XIE N, et al. Impact of proteins on aggregation kinetics and adsorption ability of hematite nanoparticles in aqueous dispersions[J]. Environmental Science & Technology, 2016, 50:2228-2235. [22] BOZORGPOUR F, RAMANDI H F, JAFARI P, et al. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent:Comparison with chitosan/Al2O3/Fe3O4 beads[J]. International Journal of Biological Macromolecules, 2016, 93:557-565. [23] YANG D, PAUL B, XU W, et al. Alumina nanofibers grafted with functional groups:A new design in efficient sorbents for removal of toxic contaminants from water[J]. Water Research, 2010, 44:741-750. [24] GIVENS B E, XU Z, FIEGEL J, et al. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH:A tale of two nano-bio surface interactions[J]. Journal of Colloid and Interface Science, 2017, 493:334-341. [25] MAHDAVI S, MOLODI P, ZARABI M. Functionalized MgO, CeO2 and ZnO nanoparticles with humic acid for the study of nitrate adsorption efficiency from water[J]. Research on Chemical Intermediates, 2018, 44:5043-5062. [26] ZHANG P, XU X Y, CHEN Y P, et al. Protein corona between nanoparticles and bacterial proteins in activated sludge:Characterization and effect on nanoparticle aggregation[J]. Bioresource Technology, 2017, 250:10-16. [27] COMTE S, GUIBAUD G, BAUDU M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties[J]. Enzyme and Microbial Technology, 2006, 38:237-245. [28] LIN D, STORY S D, WALKER S L, et al. Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles[J]. Water Research, 2016, 104:381-388. [29] KUMKE M U, SPECHT C H, BRINKMANN T, et al. Alkaline hydrolysisof humic substances-spectroscopic and chromatographic investigationsm[J]. Chemosphere, 2001, 45:1023-1031. [30] KOETSEM F V, WOLDETSADIK G S, FOLENS K, et al. Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability[J]. Chemosphere, 2018, 200:471-480. [31] TOMBACZ E, FILIPCSEI G, SZEKERES M, et al. Particle aggregation in complex aquatic systems, Colloid Surface A, 1999, 151(1):233-244. [32] JAYALATH S, WU H, LARSEN S C, et al. Surface adsorption of Suwannee River humic acid on TiO2 nanoparticles:A study of pH and particle size[J]. Langmuir, 2018, 34:3136-3145. [33] LU J, LIU D, YANG X, et al. Sedimentation of TiO2 nanoparticles in aqueous solutions:Influence of pH, ionic strength, and adsorption of humic acid[J]. Desalination & Water Treatment, 2015, 57(40):1-8. [34] KAI L C, ELIMELECH M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1):126-134. [35] QU X, ALVAREZ P J J, LI Q. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60)[J]. Environmental Science & Technology, 2012, 46(24):13455-13462. [36] THIO B J, ZHOU D, KELLER A A. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles[J]. Journal of Hazardous Materials, 2011, 189(1/2):556-563. [37] BUFFLE J, WILKINSON K J, STOLL S, et al. A generalized description of aquatic colloidal interactions:The three-colloidal component approach[J]. Environmental Science & Technology, 1998, 32:2887-2899. [38] WEI L, LI J, XUE M, et al. Adsorption behaviors of Cu2+, Zn2+ and Cd2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS:Sorption properties and mechanisms[J]. Bioresource Technology, 2019, 291:121868. [39] MIAO W, ZHU B, XIAO X, et al. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae[J]. Aquatic Toxicology, 2015, 161:117-126. [40] WANG P, NING Q, AO Y, et al. Effect of light-active nanomaterials on the behavior of cadmium(Ⅱ) in the presence of humic acid:the case of titanium dioxide[J]. Desalination & Water Treatment, 2016, 57:1-12. [41] DEVATHA C P, SHIVANI S. Novel application of maghemite nanoparticles coated bacteria for the removal of cadmium from aqueous solution[J]. Journal of Environmental Management, 2020, 258:110038. [42] RANGEL-MENDEZ J R, MONROY-ZEPEDA R, LEYVA-RAMOS E, et al. Chitosan selectivity for removing cadmium (Ⅱ), copper (Ⅱ), and lead (Ⅱ) from aqueous phase:pH and organic matter effect[J]. Journal of Hazardous Materials, 2009, 162(1):503-511. [43] WANG T, LIU W, XIONG L, et al. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) onto titanate nanotubes[J]. Chemical Engineering Journal, 2013, 215-216:366-374. [44] WANG J, ZHENG S, SHAO Y, et al. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal[J]. Journal of Colloid and Interface Science, 2010, 349(1):293-299. [45] LOOSLI F, COUSTUMER P L, STOLL S. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability[J]. Water Research, 2013, 47:6052-6063. [46] HE S, LI Y, WENG L, et al. Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone:Influence of pH, ionic strength and natural organic matters[J]. Science of the Total Environment, 2018, 637-638:69-78. [47] FILIUS J D, LUMSDON D G, MEEUSEN J C L, et al. Adsorption of fulvic acid on goethite[J]. Geochim Et Cosmochim Acta, 2000, 64(1):51-60. [48] MARTINA M, AFONSO M D S, LUCRECIA F. Cadmium toxicity in tadpoles of Rhinella arenarum in relation to calcium and humic acids[J]. Ecotoxicology, 2011, 20(6):1225-1232. [49] 辛明.典型污泥EPS对重金属及相应纳米颗粒的吸附[D].哈尔滨:哈尔滨工业大学, 2015. XIN M. Adsorption of heavy metals and corresponding nanoparticles with the EPS in typical sludges[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese). [50] LI W W, YU H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresource Technology, 2014, 160:15-23.
计量
- 文章访问数: 1868
- HTML全文浏览数: 1868
- PDF下载数: 51
- 施引文献: 0