云南低纬度高原城市大气PM2.5中水溶性离子特征及来源分析

邓靓, 韩新宇, 施择, 闫琨, 李建文, 史建武. 云南低纬度高原城市大气PM2.5中水溶性离子特征及来源分析[J]. 环境化学, 2020, (12): 3306-3317. doi: 10.7524/j.issn.0254-6108.2019082903
引用本文: 邓靓, 韩新宇, 施择, 闫琨, 李建文, 史建武. 云南低纬度高原城市大气PM2.5中水溶性离子特征及来源分析[J]. 环境化学, 2020, (12): 3306-3317. doi: 10.7524/j.issn.0254-6108.2019082903
DENG Liang, HAN Xinyu, SHI Ze, YAN Kun, LI Jianwen, SHI Jianwu. Characteristics and source analysis of water soluble ions in atmospheric PM2.5 in low latitude plateau cities of Yunnan Province[J]. Environmental Chemistry, 2020, (12): 3306-3317. doi: 10.7524/j.issn.0254-6108.2019082903
Citation: DENG Liang, HAN Xinyu, SHI Ze, YAN Kun, LI Jianwen, SHI Jianwu. Characteristics and source analysis of water soluble ions in atmospheric PM2.5 in low latitude plateau cities of Yunnan Province[J]. Environmental Chemistry, 2020, (12): 3306-3317. doi: 10.7524/j.issn.0254-6108.2019082903

云南低纬度高原城市大气PM2.5中水溶性离子特征及来源分析

    通讯作者: 史建武, E-mail: shijianwu2000@sina.com
  • 基金项目:

    国家自然科学基金(21667014,21567012)资助.

Characteristics and source analysis of water soluble ions in atmospheric PM2.5 in low latitude plateau cities of Yunnan Province

    Corresponding author: SHI Jianwu, shijianwu2000@sina.com
  • Fund Project: Supported by the National Natural Science Foundation of China(21667014,21567012).
  • 摘要: 为研究低纬度高原城市大气PM2.5中水溶性离子特征及来源,于2016年春、秋季节在云南省文山市和保山市主城区分别设立3个采样点采集了大气PM2.5样品.利用离子色谱分析9种水溶性离子(F-、CI-、NO3-、SO42-、K+、Na+、Mg2+、Ca2+、NH4+)的质量浓度.结果表明,9种水溶性离子总浓度均值在文山为(13.31±4.61)μg·m-3,保山为(7.75±2.12)μg·m-3,分别占PM2.5质量浓度的29.68%和23.55%.SO42-、NO3-和NH4+等3种离子是大气PM2.5中最主要的二次污染成分,分别占文山和保山总水溶性离子浓度的72.54%和67.42%.观测期间,通过E-AIM-Ⅱ模型表明文山和保山的气溶胶均呈弱酸性,NH4+、SO42-、NO3-在文山主要以(NH42SO4和NH4NO3的形式存在.文山和保山NO3-/SO42-比值分别为0.19、0.51,表明两个城市均以固定源为主,但是移动源在保山秋季的贡献较为明显.来源分析表明,文山和保山大气PM2.5中水溶性离子主要来源于二次反应转化,其次是扬尘、海盐及生物质燃烧.
  • 加载中
  • [1] DENG J, XING Z, ZHUANG B, et al. Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait[J].Atmospheric Research, 2014, 143:266-278.
    [2] FANN N, LAMSON A D, ANENBERG S C, et al. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone[J]. Risk Analysis, 2012, 32(1):81-95.
    [3] HE K, ZHAO Q, MA Y, et al. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities:Insights into the formation of secondary inorganic aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12:1377-1395.
    [4] MANUEL A, LEIVA G, ARAYA M C, et al. Uncertainty estimation of anions and cations measured by ion chromatography in fine urban ambient particles (PM2.5)[J]. Accreditation & Quality Assurance, 2012, 17(1):53-63.
    [5] OCSKAY R, SALMA I, WANG W, et al. Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site[J]. Journal of Environmental Monitoring, 2006, 8(2):300-306.
    [6] ZHOU Y, WANG T, GAO X, et al. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 m a.s.l.) in central-eastern China[J]. Journal of Atmospheric Chemistry, 2009, 64(2):107-127.
    [7] ANDREAE M O, SCHMID O, YANG H, et al. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China[J]. Atmospheric Environment, 2008, 42(25):6335-6350.
    [8] HU G, ZHANG Y, SUN J, et al. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations[J]. Atmospheric Research, 2014, 145/146:1-11.
    [9] LAI S C, ZOU S C, CAO J J, et al. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China[J]. Journal of Environmental Sciences, 2007, 19(8):939-947.
    [10] ZHENG S, POZZER A, CAO C X, et al. Long-term (2001-2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China[J]. Atmospheric Chemistry and Physics, 2015, 15(10):5715-5725.
    [11] 刀谞, 张霖林, 王超, 等. 京津冀冬季和夏季PM2.5/PM10及其水溶性离子组分区域性污染特征分析[J]. 环境化学, 2015, 34(1):60-69.

    DAO X, ZHANG L L, WANG C, et al. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei area, China[J]. Environmental Chemistry, 2015, 34(1):60-69(in Chinese).

    [12] 蔡敏, 严明良, 包云轩, 等. 苏州市大气PM (2.5)中水溶性无机离子的源解析及其气象因子分析[J]. 气象科学, 2018, 38(5):87-97.

    CAI M, YAN M Y, BAO Y X, et al. Source resolution of water-soluble inorganic ions in PM2.5 in atmosphere of Suzhou City and impact of meteorological factors on their concentration change[J]. Meteorological Sciences, 2018, 38(5):87-97(in Chinese).

    [13] 张棕巍, 胡恭任, 于瑞莲, 等. 厦门市大气PM2.5中水溶性离子污染特征及来源解析[J]. 中国环境科学, 2016, 36(7):1947-1954.

    ZHANG Z W, HU G R, YU R L, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 of Xiamen City[J]. China Environmental Science, 2016, 36(7):1947-1954(in Chinese).

    [14] 李建文, 毕丽玫, 韩新宇, 等. 昆明市PM2.5中水溶性无机离子时空变化特征及来源分析[J]. 云南大学学报(自然科学版), 2017, 39(1):63-70. LI J W, BI L M, HAN X Y, et al. Temporal and spatial variation characteristics and source analysis of water-soluble inorganic ions in PM2.5 of Kunming City[J]. Journal of Yunnan University (Natural Sciences Edition), 2017, 39(1):63-70(in Chinese).
    [15] 吴江, 王浩. 西部大开发中的生态环境建设问题与对策研究[J]. 经济问题探索, 2002,7(1):19-22.

    WU J, WANG H. Research on the problem and the countermeasure to protect zoology and environment during the great western exploitation of China[J]. Inquiry Into Economic Issues, 2002, 7(1):19-22(in Chinese).

    [16] SUN Y, ZHUANG G, YING W, et al. The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources[J]. Atmospheric Environment, 2004, 35(38):5991-6004.
    [17] 杨懂艳, 刘保献, 张大伟, 等. 2012-2013年间北京市PM2.5中水溶性离子时空分布规律及相关性分析[J]. 环境科学, 2015, 3(36):768-773.

    YANG D Y, LIU B X, ZHANG D W, et al. Correlation, seasonal and temporal variation of water-soluble ions of PM2.5 in Beijing during 2012-2013[J]. Environmental Science, 2015, 3(36):768-773(in Chinese).

    [18] HONG L W, JUN L A, MENG T C, et al. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China:Sources, seasonal and diurnal variations[J]. Chemosphere, 2016, 148:526-536.
    [19] 刘俊卿, 杨勇杰, 周瑞, 等. 西藏日喀则地区夏、冬季大气颗粒物水溶性离子粒径分布特征[J]. 环境化学, 2015, 34(6):1103-1108.

    LIU J Q, YANG Y J, ZHOU R, et al. Size distributions of water-soluble inorganic ions in atmospheric particulate matter in Shigatse[J]. Environmental Chemistry, 2015, 34(6):1103-1108(in Chinese).

    [20] FENG J, YU H, MI K, et al. One year study of PM2.5 in Xinxiang City, North China:Seasonal characteristics, climate impact and source[J]. Ecotoxicology & Environmental Safety, 2018, 154:75-83.
    [21] 高晓梅, 王韬, 周杨, 等. 泰山春、夏两季大气颗粒物及其水溶性无机离子的粒径分布特征[J]. 环境化学, 2011,30(3):686-692.

    GAO X M, WANG T, ZHOU Y, et al. Particle size distribution of atmospheric particulates and water soluble inorganic ions in the spring and summer seasons in Taishan[J]. Environmental Chemistry, 2011, 30(3):686-692(in Chinese).

    [22] HEALD C L, COLLETT J L, LEE T, et al. Atmospheric ammonia and particulate inorganic nitrogen over the United States[J]. Atmospheric Chemistry and Physics, 2012, 12(21):10295-10312.
    [23] WANG Y, ZHUANG G, ZHANG X, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40(16):2935-2952.
    [24] ZHAO Y, GAO Y. Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast[J]. Atmospheric Environment, 2008, 42(18):4063-4078.
    [25] KUMAR A, SARIN M M, SUDHEER A K, et al. Mineral and anthropogenic aerosols in Arabian Sea-atmospheric boundary layer:Sources and spatial variability[J]. Atmospheric Environment, 2008, 42(21):5169-5181.
    [26] 蒋燕, 贺光艳, 罗彬, 等. 成都平原大气颗粒物中无机水溶性离子污染特征[J]. 环境科学, 2016, 37(8):2863-2870.

    JIANG Y, HE G Y, LUO B, et al. Pollution characteristics of inorganic water-soluble ions in atmospheric particulate matter in Chengdu Plain[J]. Environmental Science, 2016, 37(8):2863-2870(in Chinese).

    [27] BEHERA S N, SHARMA M. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment[J]. Science of the Total Environment, 2010, 408(17):3569-3575.
    [28] SHEN Z, CAO J, ARIMOTO R, et al. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China[J]. Atmospheric Environment, 2009, 43(18):2911-2918.
    [29] ZHANG T, CAO J J, TIE X X, et al. Water-soluble ions in atmospheric aerosols measured in Xi an, China:Seasonal variations and sources[J]. Atmospheric Research, 2011, 102(1/2):110-119.
    [30] LARSEN R K, BAKER J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:A comparison of three methods[J]. Environmental Science & Technology, 2003, 37(9):1873-1881.
    [31] TAN J H, DUAN J C, CHEN D H, et al. Chemical characteristics of haze during summer and winter in Guangzhou[J]. Atmospheric Research, 2009, 94(2):238-245.
    [32] CAO J, SHEN Z, CHOW J C, et al. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China[J]. China Particuology, 2009, 7(3):161-168.
    [33] GAO J, TIAN H, CHENG K, et al. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China[J]. Atmospheric Environment, 2015, 107:1-8.
    [34] SUN Y L, ZHUANG G S, TANG A H, et al. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J]. Environmental Science & Technology, 2006, 40(10):3148-3155.
    [35] YAO X H, FANG M, CADLE S, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China[J]. Atmospheric Environment, 2002, 36(26):4223-4234.
    [36] YAO X, LING T Y, FANG M, et al. Comparison of thermodynamic predictions for in situ pH in PM2.5[J]. Atmospheric Environment, 2006, 40(16):2835-2844.
    [37] CHENG S H, YANG L X, ZHOU X H, et al. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China[J]. Atmospheric Environment, 2011, 45(27):4631-4640.
    [38] 黄丹丹, 周敏, 余传冠, 等. 长三角淳安地区二次颗粒物污染形成机制[J]. 环境科学, 2018, 39(12):5308-5314.

    HUANG D D, ZHOU M, YU C G, et al. Physiochemical properties of the aerosol particles and their impacts on secondary aerosol formation at the background site of the Yangtze River Delta[J]. Environmental Science, 2018, 39(12):5308-5314(in Chinese).

    [39] TIAN M, WANG H B, CHEN Y, et al. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5, in a humid and acidic mega city in Sichuan Basin, China[J]. Science of the Total Environment, 2017, 580:224-234.
    [40] ZHOU Y, XUE L, WANG T, et al. Characterization of aerosol acidity at a high mountain site in central eastern China[J]. Atmospheric Environment, 2012, 51:11-20.
    [41] PÖSCHL U. Atmospheric aerosols:Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46):7520-7540.
    [42] PATHAK R K, YAO X, LAU A K H, et al. Acidity and concentrations of ionic species of PM2.5 in Hong Kong[J]. Atmospheric Environment, 2003, 37(8):1113-1124.
    [43] 戴永立, 陶俊, 林泽健, 等. 2006-2009年我国超大城市霾天气特征及影响因子分析[J]. 环境科学, 2013, 34(8):2925-2932.

    DAI Y L, TAO J, LIN Z J, et al. Characteristics of haze and its impact factors in four megacities in China during 2006-2009[J]. Environmental Science, 2013, 34(8):2925-2932(in Chinese).

    [44] KANG C M, LEE H S, KANG B W, et al. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea[J]. Atmospheric Environment, 2004, 38(28):4749-4760.
    [45] KHODER M I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area[J]. Chemosphere, 2002, 49(6):675-684.
    [46] WATSON J G, CHOW J C, HOUCK J E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995[J]. Chemosphere, 2001, 43(8):1141-1151.
    [47] PERNIGOTTI D, BELIS C A, SPANò L. SPECIEUROPE:The european data base for PM source profiles[J]. Atmospheric Pollution Research, 2016, 7(2):307-314.
  • 加载中
计量
  • 文章访问数:  1721
  • HTML全文浏览数:  1721
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-29

云南低纬度高原城市大气PM2.5中水溶性离子特征及来源分析

    通讯作者: 史建武, E-mail: shijianwu2000@sina.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2. 云南省环境监测中心站, 昆明, 650500;
  • 3. 昆明理工大学建筑工程学院, 昆明, 650500
基金项目:

国家自然科学基金(21667014,21567012)资助.

摘要: 为研究低纬度高原城市大气PM2.5中水溶性离子特征及来源,于2016年春、秋季节在云南省文山市和保山市主城区分别设立3个采样点采集了大气PM2.5样品.利用离子色谱分析9种水溶性离子(F-、CI-、NO3-、SO42-、K+、Na+、Mg2+、Ca2+、NH4+)的质量浓度.结果表明,9种水溶性离子总浓度均值在文山为(13.31±4.61)μg·m-3,保山为(7.75±2.12)μg·m-3,分别占PM2.5质量浓度的29.68%和23.55%.SO42-、NO3-和NH4+等3种离子是大气PM2.5中最主要的二次污染成分,分别占文山和保山总水溶性离子浓度的72.54%和67.42%.观测期间,通过E-AIM-Ⅱ模型表明文山和保山的气溶胶均呈弱酸性,NH4+、SO42-、NO3-在文山主要以(NH42SO4和NH4NO3的形式存在.文山和保山NO3-/SO42-比值分别为0.19、0.51,表明两个城市均以固定源为主,但是移动源在保山秋季的贡献较为明显.来源分析表明,文山和保山大气PM2.5中水溶性离子主要来源于二次反应转化,其次是扬尘、海盐及生物质燃烧.

English Abstract

参考文献 (47)

目录

/

返回文章
返回