交互作用对有机-矿质复合体吸附四环素的影响

卜庆伟, 曹红梅, 贺小凡, 郑泽鹏, 余刚. 交互作用对有机-矿质复合体吸附四环素的影响[J]. 环境化学, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904
引用本文: 卜庆伟, 曹红梅, 贺小凡, 郑泽鹏, 余刚. 交互作用对有机-矿质复合体吸附四环素的影响[J]. 环境化学, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904
BU Qingwei, CAO Hongmei, HE Xiaofan, ZHENG Zepeng, YU Gang. The impact of interaction on organic-mineral complexes adsorb tetracycline[J]. Environmental Chemistry, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904
Citation: BU Qingwei, CAO Hongmei, HE Xiaofan, ZHENG Zepeng, YU Gang. The impact of interaction on organic-mineral complexes adsorb tetracycline[J]. Environmental Chemistry, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904

交互作用对有机-矿质复合体吸附四环素的影响

    通讯作者: 卜庆伟, E-mail: qingwei.bu@cumtb.edu.cn
  • 基金项目:

    国家自然科学基金(21777188,21707010)和中国矿业大学(北京)"越崎青年学者"计划(2017QN15)资助.

The impact of interaction on organic-mineral complexes adsorb tetracycline

    Corresponding author: BU Qingwei, qingwei.bu@cumtb.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21777188, 21707010) and the Yue Qi Young Scholar Project, China University of Mining & Technology, Beijing(2017QN15).
  • 摘要: 为探究有机质与矿物质间交互作用对有机-矿质复合体吸附典型药物的影响,并明确其与有机质含量、制备时间之间的关系,以腐殖酸和高岭土分别代表有机质和矿物质、以四环素(TC)为模式药物进行吸附续批实验研究.结果表明,有机-矿质复合体对TC的吸附符合Langmuir和Freundlich等温线.交互作用对于复合体吸附TC具有显著的抑制作用,且抑制作用的强弱与腐殖酸含量和复合体制备时间有关.当腐殖酸含量从0.5%增至1.0%时,负载于高岭土表面的腐殖酸使复合体表面不光滑,交互作用对复合体吸附TC的抑制强度减弱;当腐殖酸含量从1.0%增至2.0%时,其与TC之间出现竞争吸附,交互作用对复合体吸附TC的抑制强度增强;当腐殖酸含量从2.0%增至5.0%时,腐殖酸的强吸附能力抵消了其对高岭土吸附TC的竞争抑制作用,交互作用对复合体吸附TC的抑制强度减弱.制备时间不同时,交互作用通常会抑制复合体对TC的吸附,并且随制备时间增长呈现先增强后减弱的趋势.
  • 加载中
  • [1] KVMMERER K. Antibiotics in the aquatic environment-A review-Part Ⅰ[J]. Chemosphere, 2009, 75(4):417-434.
    [2] KVMMERER K. Antibiotics in the aquatic environment-A review-Part Ⅱ[J]. Chemosphere, 2009, 75(4):435-441.
    [3] LI Z, SCHULZ L, ACKLEY C, et al. Adsorption of tetracycline on kaolinite with pH-dependent surface charges[J]. Journal of Colloid and Interface Science, 2010, 351(1):254-260.
    [4] KIM K R, OWENS G, KWON S I, et al. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment[J]. Water, Air, & Soil Pollution, 2011, 214:163-174.
    [5] BOUND J, VOULVOULIS N. Pharmaceuticals in the aquatic environment-a comparison of risk assessment strategies[J]. Chemosphere, 2004, 56(11):1143-1155.
    [6] BOXALL A, KOLPIN D, HALLING-S B, JOHANNES T, et al. Peer reviewed:Are veterinary medicines causing environmental risks?[J]. Environmental Science & Technology, 2003, 37(15):286-294.
    [7] ZHAO Y, GU X, GAO S, et al. Adsorption of tetracycline (TC) onto montmorillonite:Cations and humic acid effects[J]. Geoderma, 2012, 183/184:12-18.
    [8] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment:Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(6):907-938.
    [9] 张俊, 杨晓洪, 葛峰, 等. 长期施用四环素残留猪粪对土壤中耐药菌及抗性基因形成的影响[J]. 环境科学, 2014, 35(6):2374-2380.

    ZHANG J, YANG X H, GE F, et al. Effects of long-term application of pig manure containing residual tetracycline on the formation of drug-resistant bacteria and resistance genes[J]. Environment Science, 2014, 35(6):2374-2380(in Chinese).

    [10] 张婷. 四环素类抗生素在土壤中的吸附/解吸行为研究[D]. 阜新:辽宁工程技术大学, 2015. ZHANG T. Adsorption/desorption behavior of tetracycline antibiotic in soils[D]. Fuxing:Liaoning Technical University,2015(in Chinese).
    [11] 鲍艳宇. 四环素类抗生素在土壤中的环境行为及生态毒性研究[D]. 天津:南开大学, 2008. BAO Y Y. Environmental behavior and ecotoxicity of tetracycline antibiotics in soils[D]. Tianjin:Nankai University, 2008(in Chinese).
    [12] GU C, KARTHIKEYAN K G, SIBLEY S D, et al. Complexation of the antibiotic tetracycline with humic acid[J]. Chemosphere, 2007, 66(8):1494-1501.
    [13] 吴敏, 宁平, 刘书言. 土壤有机质对诺氟沙星的吸附特征[J]. 环境化学, 2013, 32(1):112-117.

    WU M, NING P, LIU S Y. Adsorption characteristics of norfloxacin in soil organic matter fractions[J]. Environmental Chemistry, 2013,32(1):112-117(in Chinese).

    [14] YOON T H, JOHNSON S B, BROWN G E. Adsorption of organic matter at mineral/water interfaces. IV. adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution[J]. Langmuir, 2005, 21(11):5002-5012.
    [15] KRETZSCHMAR R, STICHER H, HESTERBERG D. Effects of adsorbed humic acid on surface charge and flocculation of kaolinite[J]. Soil Science Society of America Journal, 1997, 61(1):101-108.
    [16] WANG K, XING B. Structural and sorption characteristics of adsorbed humic acid on clay minerals[J]. Journal of Environmental Quality, 2005, 34(1):342-349.
    [17] HUI L, SHENG G, TEPPEN B J, et al. Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes[J]. Soil Science Society of America Journal, 2003, 67(1):122-131.
    [18] GUA C, KARTHIKEYAN K G. Sorption of the antibiotic tetracycline to humic-mineral complexes[J]. Journal of Environmental Quality, 2008, 37(2):704-711.
    [19] 王超, 王迎亚, 陈宁华, 等. 磁性膨润土对四环素的吸附特性[J]. 精细化工, 2017, 34(10):1185-1193.

    WANG C, WANG Y Y, CHEN N H, et al. Adsorption of tetracycline by magnetic bentonite[J]. Fine Chemicals,2017, 34(10):1185-1193(in Chinese).

    [20] PILS J R V, LAIRD D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-Humic complexes[J]. Environmental Science & Technology, 2007, 41(6):1928-1933.
    [21] 彭流月. C/M值对不同环境中有机-矿质复合体形成机制影响[D]. 北京:中国地质大学(北京), 2019. PENG L Y. Formation mechanism of organic-mineral complexes affected by various values of C/M in conditions of different temperature and pressure[D]. Beijing:China University of Geosciences (Beijing), 2019(in Chinese).
    [22] REN X, WANG F, ZHANG P, et.al. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene[J]. Chemosphere, 2018, 206:51-58.
    [23] 王磊, 孙成, 郭会琴. 土壤有机质对疏水性有机污染物的非线性吸附及其影响因素[J]. 土壤, 2012, 44(3):366-373.

    WANG L, SUN C, GUO H Q. Non-linear adsorption of soil organic matter to hydrophobic organic pollutants and its influencing factors[J]. Soils, 2012, 44(3):366-373(in Chinese).

    [24] 许中坚, 刘广深, 刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5):427-433.

    XU Z J,LIU G S,LIU W P. Environmental characteristic and behavior of dissolved organic matter in soils[J]. Environmental Chemistry, 2003, 22(5):427-433(in Chinese).

    [25] POLLARD S J T, SOLLARS C J, R P. A low cost adsorbent from spent bleaching earth. I-the selection of an activation procedure[J]. Journal of Chemical Technology & Biotechnology, 1991, 50(2):265-275.
    [26] 朱晓婧, 何江涛, 苏思慧. 腐殖酸-高岭土复合体形成机制及对三氯乙烯的吸附[J]. 环境科学, 2015, 36(1):227-236.

    ZHU X J, HE J T, SU S H. Forming mechanism of humic Acid-Kaolin complexs and the adsorption of trichloroethylene[J]. Environment Science, 2015, 36(1):227-236(in Chinese).

    [27] 周玲棣, 郭九皋, 袁汉珍, 等. 碱性长石29Si,27Al核磁共振谱研究[J]. 中国科学(B辑化学生命科学地学), 1994, 24(4):434-440. ZHOU L L,GUO J G, YUAN H Z, et al. Study on NMR spectrum of alkaline feldspar 29Si, 27Al[J]. Science In China (series B), 1994, 24(4):434-440(in Chinese).
    [28] 李小红, 江向平, 陈超, 等. 几种不同产地高岭土的漫反射傅里叶红外光谱分析[J]. 光谱学与光谱分析, 2011, 31(1):114-118.

    LI X H, JIANG X P, CHEN C, et al. Fourier transform infrared spectroscopic analysis of kaolin clay from several origins[J]. Spectroscopy and Spectral Analysis, 2011, 31(1):114-118(in Chinese).

    [29] 顾志忙, 王晓蓉, 顾雪元, 等. 傅里叶变换红外光谱和核磁共振法对土壤中腐殖酸的表征[J]. 分析化学, 2000, 28(3):314-317.

    GU Z M, WANG X R, GU X Y, et al. Characterization of humic acid in soil by fourier transform infrared spectroscopy and nuclear magnetic resonance[J]. Chinese Journal of Analytical Chemistry, 2000, 28(3):314-317(in Chinese).

    [30] 苏思慧, 何江涛, 石钰婷, 等. 模拟有机-矿质体中不同吸附域对TCE的吸附影响[J]. 中国环境科学, 2013, 33(2):234-242.

    SU S H, HE J T, SHI Y T, et al. The effects on the trichloroethylene sorption behaviors caused by the interactions between different sorption domains in model organic-mineral complexes[J]. China Environmental Science, 2013, 33(2):234-242(in Chinese).

    [31] SPARKS D L, CHEN C. The role of mineral complexation and metal redox coupling in carbon cycling and stabilization functions of natural organic matter in changing environment[M]. Germany:Springer, Dordrecht, 2013:7-12.
    [32] 张小亮, 何江涛, 石钰婷, 等. C/M及TCE初始浓度对有机-矿物质复合体中有机质的吸附行为影响[J]. 岩石矿物学杂志, 2013, 32(6):809-817.

    ZHANG X L, HE J T, SHI Y T, et al. The influence of C/M and TCE initial concentrations on the organic adsorption behavior in simulated organo-mineral complexes[J]. ACTA Petrolgica Et Mineralogica, 2013, 32(6):809-817(in Chinese).

    [33] KAAHWA Y, D'UJANGA F M. Dependence of kaolinite content on particle size distribution in Ugandan kaolin clay[J]. British Ceramic Transactions, 2004, 103(3):143-144.
    [34] SOUZA S O, SILVA M D M, SANTOS J C C, et.al. Evaluation of different fractions of the organic matter of peat on tetracycline retention in environmental conditions:in vitro studies[J]. Journal of Soils and Sediments, 2016, 16(6):1764-1775.
    [35] ILLÉS E, TOMBÁCZ E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid & Interface Science, 2006, 295(1):115-1123.
    [36] BARRIUSO E, BAER U, CALVET R. Dissolved organic matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soils[J]. Journal of Environmental Quality, 1992, 21(3):359-367.
    [37] 吴沙沙. 可溶性腐殖酸对典型粘土矿物吸附诺氟沙星的影响研究[D]. 北京:中国地质大学(北京), 2014. WU S S. Effests of dissolved humic acid on sorption of norfloxacin onto typical clay minerals[D]. Beijing:China University of Geosciences (Beijing), 2014(in Chinese).
    [38] 乔肖翠. 有机质及pH对卡马西平吸附及迁移影响研究[D]. 北京:中国地质大学(北京), 2015. QIAO X C. Influences of DOM and pH on adsorption and migrations of carbamazepine[D]. Beijing:China University of Geosciences (Beijing), 2015(in Chinese).
    [39] 李爱民, 朱燕, 代静玉. 胡敏酸在高岭土上的吸附行为[J]. 岩石矿物学杂志, 2005, 24(2):145-150.

    LI A M, ZHU Y, DAI J Y. The adsorption behavior of humic acid on kaolin[J]. ACTA Petrolgica Et Mineralogica, 2005, 24(2):145-150(in Chinese).

    [40] 吴宏海, 张秋云, 卢平, 等. 土壤和水体环境中矿物-腐殖质交互作用的研究进展[J]. 岩石矿物学杂志, 2003, (4):429-432. WU H H, ZHANG Q Y, LU P, et al. Advances in the study of mineral humus interactions in soils and waters[J]. ACTA Petrolgica Et Mineralogica, 2003

    ,22(4):429-432(in Chinese).

  • 加载中
计量
  • 文章访问数:  1756
  • HTML全文浏览数:  1756
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-29
卜庆伟, 曹红梅, 贺小凡, 郑泽鹏, 余刚. 交互作用对有机-矿质复合体吸附四环素的影响[J]. 环境化学, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904
引用本文: 卜庆伟, 曹红梅, 贺小凡, 郑泽鹏, 余刚. 交互作用对有机-矿质复合体吸附四环素的影响[J]. 环境化学, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904
BU Qingwei, CAO Hongmei, HE Xiaofan, ZHENG Zepeng, YU Gang. The impact of interaction on organic-mineral complexes adsorb tetracycline[J]. Environmental Chemistry, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904
Citation: BU Qingwei, CAO Hongmei, HE Xiaofan, ZHENG Zepeng, YU Gang. The impact of interaction on organic-mineral complexes adsorb tetracycline[J]. Environmental Chemistry, 2020, (12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904

交互作用对有机-矿质复合体吸附四环素的影响

    通讯作者: 卜庆伟, E-mail: qingwei.bu@cumtb.edu.cn
  • 1. 中国矿业大学(北京)化学与环境工程学院, 北京, 100083;
  • 2. 清华大学环境学院, 北京, 100084
基金项目:

国家自然科学基金(21777188,21707010)和中国矿业大学(北京)"越崎青年学者"计划(2017QN15)资助.

摘要: 为探究有机质与矿物质间交互作用对有机-矿质复合体吸附典型药物的影响,并明确其与有机质含量、制备时间之间的关系,以腐殖酸和高岭土分别代表有机质和矿物质、以四环素(TC)为模式药物进行吸附续批实验研究.结果表明,有机-矿质复合体对TC的吸附符合Langmuir和Freundlich等温线.交互作用对于复合体吸附TC具有显著的抑制作用,且抑制作用的强弱与腐殖酸含量和复合体制备时间有关.当腐殖酸含量从0.5%增至1.0%时,负载于高岭土表面的腐殖酸使复合体表面不光滑,交互作用对复合体吸附TC的抑制强度减弱;当腐殖酸含量从1.0%增至2.0%时,其与TC之间出现竞争吸附,交互作用对复合体吸附TC的抑制强度增强;当腐殖酸含量从2.0%增至5.0%时,腐殖酸的强吸附能力抵消了其对高岭土吸附TC的竞争抑制作用,交互作用对复合体吸附TC的抑制强度减弱.制备时间不同时,交互作用通常会抑制复合体对TC的吸附,并且随制备时间增长呈现先增强后减弱的趋势.

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回