纳米颗粒与生物来源有机磷在水环境中的行为研究

刘宇欣, 王飞, 周北海, 陈辉伦, 袁蓉芳. 纳米颗粒与生物来源有机磷在水环境中的行为研究[J]. 环境化学, 2021, (2): 450-458. doi: 10.7524/j.issn.0254-6108.2020090201
引用本文: 刘宇欣, 王飞, 周北海, 陈辉伦, 袁蓉芳. 纳米颗粒与生物来源有机磷在水环境中的行为研究[J]. 环境化学, 2021, (2): 450-458. doi: 10.7524/j.issn.0254-6108.2020090201
LIU Yuxin, WANG Fei, ZHOU Beihai, CHEN Huilun, YUAN Rongfang. Study on the behavior of nanoparticles and biologically-derived organic phosphates in the water environment[J]. Environmental Chemistry, 2021, (2): 450-458. doi: 10.7524/j.issn.0254-6108.2020090201
Citation: LIU Yuxin, WANG Fei, ZHOU Beihai, CHEN Huilun, YUAN Rongfang. Study on the behavior of nanoparticles and biologically-derived organic phosphates in the water environment[J]. Environmental Chemistry, 2021, (2): 450-458. doi: 10.7524/j.issn.0254-6108.2020090201

纳米颗粒与生物来源有机磷在水环境中的行为研究

    通讯作者: 王飞, E-mail: wangfei@ustb.edu.cn
  • 基金项目:

    国家自然科学基金优秀青年项目(41822706),北京市自然科学基金(8182034)和中央高校基本科研业务费专项资金(FRF-TP-19-001C1)资助.

Study on the behavior of nanoparticles and biologically-derived organic phosphates in the water environment

    Corresponding author: WANG Fei, wangfei@ustb.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China Youth Fund(41822706), Beijing Municipal Natural Science Foundation(8182034) and the Fundamental Research Funds for the Central Universities(FRF-TP-19-001C1).
  • 摘要: 随着纳米技术产业的快速发展,各种纳米颗粒(NPs)大规模生产,这不可避免地增加了NPs释放到环境、暴露于生态系统的可能性.有机磷是废水中磷的主要形式之一,是生物有效磷池和水体富营养化的重要组成部分.本文综述了近几年来NPs与生物来源有机磷在水环境中的反应机制、微观结构等方面的研究进展.文中按NPs的分类分别总结了NPs对常见的生物来源有机磷的吸附-解吸,溶解-沉淀等反应特性和微观机制.在水环境中,NPs因其物化特性受水化学条件(pH、天然有机质、温度)等影响,进而影响与有机磷的反应,从而表现出相应不同的环境效应.本文也对此方面的研究进行了讨论和总结.最后分析了目前纳米颗粒与有机磷在水环境研究中的瓶颈问题,并展望了未来需要开展的研究.
  • 加载中
  • [1] NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1):5-22.
    [2] CHENG P, WEN Z, GAO H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments[J]. Nanomaterials, 2017, 7(1):21.
    [3] BUNDSCHUH M, FILSER J, LüDERWALD S, et al. Nanoparticles in the environment:where do we come from, where do we go to?[J]. Environmental Sciences Europe, 2018, 30(1):6.
    [4] RAJPUT V, MINKINA T, BEHAL A, et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms:A review[J]. Environmental Nanotechnology, Monitoring and Management, 2018, 9:76-84.
    [5] VANCE M E, TODD K, VEJERANO E P, et al. Nanotechnology in the real world:Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6:1769-1780.
    [6] 梁文, 何维, 李满林, 等. 金属氧化物纳米颗粒对磷的吸附及回收潜力[J]. 中国环境科学, 2017, 37(7):2557-2565.

    LIANG W, HE W, LI M L, et al. Phosphate adsorption from solution by metal oxide nanoparticles and the potential on phosphate capture[J]. China Environmental Science, 2017, 37(7):2557-2565(in Chinese).

    [7] KELLER A, MCFERRAN S, LAZAREVA A, et al. Global life cycle releases of engineered nanomaterials[J]. Journal of Nanoparticle Research, 2013, 15(6):1692.
    [8] HOCHELLA M F, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system[J]. Science, 2019, 363(6434):1414.
    [9] ISWARYA V, PALANIVEL A, CHANDRASEKARAN N, et al. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system[J]. Environmental Science and Pollution Research, 2019, 26(12):11998-12031.
    [10] MAURER-JONES M A, GUNSOLUS I L, MURPHY C J, et al. Toxicity of engineered nanoparticles in the environment[J]. Analytical Chemistry, 2013, 85(6):3036-3049.
    [11] 冯伟莹, 朱元荣, 吴丰昌, 等. 31P-NMR分析湖泊植物和藻类有机磷方法优化及形态研究[J]. 中国环境科学, 2016, 36(2):562-568.

    FENG W Y, ZHU Y R, WU F C, et al. Optimization of extraction and parameters for 31P-NMR analysis of organic phosphorus extracted from aquatic plants and algae[J]. China Environmental Science, 2016, 36(2):562-568(in Chinese).

    [12] DYHRMAN S T, CHAPPELL P D, HALEY S T, et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium[J]. Nature, 2006, 439(7072):68-71.
    [13] PU X, CHENG H, TYSKLIND M, et al. Occurrence of water phosphorus at the water-sediment interface of a freshwater shallow lake:Indications of lake chemistry[J]. Ecological Indicators, 2017, 81(10):443-452.
    [14] JØRGENSEN C, JENSEN H S, ANDERSEN F, et al. Occurrence of orthophosphate monoesters in lake sediments:Significance of myo- and scyllo-inositol hexakisphosphate[J]. Journal of Environmental Monitoring, 2011, 13(8):2328-2334.
    [15] 吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013, 45(8):42-44.

    JI R. Research summary on phosphate dissolution of phosphate solubilizing microorganisms[J]. Gansu Agricultural Science and Technology, 2013, 45(8):42-44(in Chinese).

    [16] 李晶, 胡霞林, 陈启晴, 等. 纳米材料对水生生物的生态毒理效应研究进展[J]. 环境化学, 2011, 30(12):1993-2002.

    LI J, HU X L, CHEN Q Q, et al. Ecotoxicology of nanomaterials on aquatic organisms[J].Environmental Chemistry, 2011, 30(12):1993-2002(in Chinese).

    [17] YAN Y, LIU F, LI W, et al. Sorption and desorption characteristics of organic phosphates of different structures on aluminum (oxyhydr)oxides[J]. European Journal of Soil Science, 2014, 65(2):308-317.
    [18] RUTTENBERG K C, SULAK D J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4095-4112.
    [19] LV J, ZHANG S, LUO L, et al. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate[J]. Environmental Science & Technology, 2012, 46(13):7215-7221.
    [20] STAROń P, PSZCZółKA K, CHWASTOWSKI J, et al. Sorption behavior of Arachis hypogaea shells against Ag+ ions and assessment of antimicrobial properties of the product[J]. Environmental Science and Pollution Research, 2020, 27(16):19530-19542.
    [21] ILINA S M, OLLIVIER P, SLOMBERG D, et al. Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments[J]. Environmental Science Nano, 2017, 4:2055-2065.
    [22] WAN B, YAN Y, LIU F, et al. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension:A comparative study with orthophosphate[J]. Science of The Total Environment, 2016, 544:134-142.
    [23] RAJPUT V, MINKINA T, SUSHKOVA S, et al. ZnO and CuO nanoparticles:A threat to soil organisms, plants, and human health[J]. Environmental Geochemistry and Health, 2020, 42(1):147-158.
    [24] MARCELINO P, MOREIRA M, LACERDA T, et al. Zinc and silver nanoparticles:Properties, applications and impact to the aquatic environment[J]. Nanomaterials:Ecotoxicity, Safety, and Public Perception, 2018,9:167-190.
    [25] FENG X, YAN Y, WAN B, et al. Enhanced dissolution and transformation of ZnO nanoparticles:The role of inositol hexakisphosphate[J]. Environmental Science & Technology, 2016, 50(11):5651-5660.
    [26] WAN B, YAN Y, FAN L, et al. Effects of myo -inositol hexakisphosphate and orthophosphate adsorption on aggregation of CeO2 nanoparticles:Roles of pH and surface coverage[J]. Environmental Chemistry, 2015, 13(1):34-42.
    [27] YAN Y, KOOPAL K L, LI W et al. Size-dependent sorption of myo-inositol hexakisphosphate and orthophosphate on nano-γ-Al2O3[J]. Journal of Colloid and Interface Science, 2015, 451:85-92.
    [28] WU J, PRAJWAL P, SUN M, et al. Mechanisms and pathways of phytate degradation:Evidence from oxygen isotope ratios of phosphate, HPLC, and phosphorus-31 NMR spectroscopy[J]. Soil Science Society of America Journal, 2015, 79(6):1615-1628.
    [29] XU C Y, LI J Y, XU R K, et al. Sorption of organic phosphates and its effects on aggregation of hematite nanoparticles in monovalent and bivalent solutions[J]. Environmental Science and Pollution Research, 2017, 24(8):7197-7207.
    [30] OGNALAGA M, FROSSARD E, THOMAS F. Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite[J]. Soil Science Society of America Journal, 1994, 58(2):332.
    [31] CELI L, PRESTA M, AJMORE-MARSAN F, et al. Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite[J]. Soil Science Society of America Journal, 2001, 65(3):753-760.
    [32] JOHNSON B B, QUILL E, ANGOVE M J. An investigation of the mode of sorption of inositol hexaphosphate to goethite[J]. Journal of Colloid and Interface Science, 2012, 367(1):436-442.
    [33] MARTIN M, CELI L, BARBERIS E. Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite[J]. Soil Science, 2004, 169(2):115-124.
    [34] YAN Y, KOOPAL L, LIU F, et al. Desorption of myo-inositol hexakisphosphate and phosphate from goethite by different reagents[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(6):878-887.
    [35] YAN Y, WAN B, FENG X, et al. Adsorption-desorption of myo-Inositol hexakisphosphate on hematite[J]. Soil Science, 2014, 179(10/11):476-485.
    [36] 谭凌艳, 杨柳燕, 缪爱军. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报:自然科学版, 2016, 52(4):582-589.

    TAN L Y, YANG L Y, LIAO A J. Engineered nanoparticle effects on heavy metal bioaccumulation and toxicity in aquatic ecosystem[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(4):582-589(in Chinese).

    [37] PETTIBONE J M, CWIERTNY D M, SCHERER M, et al. Adsorption of organic acids on TiO2 nanoparticles:Effects of pH, nanoparticle size, and nanoparticle aggregation[J]. Langmuir the Acs Journal of Surfaces and Colloids, 2008, 24(13):6659-6667.
    [38] MADDEN A S, HOCHELLA M F, LUXTON T P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption[J]. Geochimica et Cosmochimica Acta, 2006, 70(16):4095-4104.
    [39] ZENG H, SINGH A, BASAK S, et al. Nanoscale size effects on Uranium(Ⅵ) adsorption to hematite[J]. Environmental Science & Technology, 2009, 43(5):1373-1378.
    [40] RATHNAYAKE S, UNRINE J M, JUDY J, et al. Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles[J]. Environmental Science & Technology, 2014, 48(9):4757-4764.
    [41] LI H, WAN B, YAN Y, et al. Adsorption of glycerophosphate on goethite (α-FeOOH):A macroscopic and infrared spectroscopic study[J]. Journal of Plant Nutrition & Soil Science, 2018, 181(3):557-565.
    [42] LV C, YAN D, HE J, et al. Environmental geochemistry significance of organic phosphorus:An insight from its adsorption on iron oxides[J]. Applied Geochemistry, 2017, 84:52-60.
    [43] SÄRKKÄ H, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter (NOM) removal by electrochemical methods-A review[J]. Journal of Electroanalytical Chemistry, 2015, 755:100-108.
    [44] BHATNAGAR A, SILLANPÄÄ M. Removal of natural organic matter (NOM) and its constituents from water by adsorption-A review[J]. Chemosphere, 2017, 166:497-510.
    [45] 程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展[J]. 环境化学, 2018, 37(1):10-18.

    CHENG Q, ZHUANG W E, YANG L Y. Priming effect of dissolved organic matter in aquatic ecosystems:A review[J]. Environmental Chemistry, 2018, 37(1):10-18(in Chinese).

    [46] ANTELO J, ARCE F, AVENA M, et al. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate[J]. Geoderma, 2007, 138(1/2):1-19.
    [47] 谢发之, 李振宇, 李海滨, 等. 水合氧化铁负载D418树脂对磷的吸附性能研究[J]. 环境污染与防治, 2019, 41(2):175-179.
    [48] RUYTER-HOOLEY M, MORTON D W, JOHNSON B B, et al. The effect of humic acid on the sorption and desorption of myo-inositol hexaphosphate to gibbsite and kaolinite[J]. European Journal of Soil Science, 2016, 67(3):285-293.
    [49] MEZENNER N Y, BENSMAILI A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste[J]. Chemical Engineering Journal, 2009, 147(2/3):87-96.
    [50] PAN B, WU J, PAN B, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water Research, 2009, 43(17):4421-4429.
    [51] YOON S Y, LEE C G,PARK G A, et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles[J]. Chemical Engineering Journal, 2014, 236, 341-347.
    [52] GEORGE T, GILES C, MENEZES-BLACKBURN D, et al. Organic phosphorus in the terrestrial environment:A perspective on the state of the art and future priorities[J]. Plant and Soil, 2017, 427:191-208.
    [53] HOECKE K V, SCHAMPHELAERE K A C D, MEEREN P V D, et al. Aggregation and ecotoxicity of CeO nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength[J]. Environmental Pollution, 2011, 159(4):970-976.
    [54] BIAN S W, MUDUNKOTUWA I A, RUPASINGHE T, et al. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:Influence of pH, ionic strength, size, and adsorption of humic acid[J]. Langmuir, 2011, 27(10):6059-6068.
    [55] VICENTE I D, JENSEN H S, ANDERSEN F Ø. Factors affecting phosphate adsorption to aluminum in lake water:Implications for lake restoration[J]. Science of the Total Environment, 2008, 389(1):29-36.
    [56] XU T, CATALANO J. Effects of ionic strength on arsenate adsorption at aluminum hydroxide-water interfaces[J]. Soil Systems, 2018, 2(1):314-327.
  • 加载中
计量
  • 文章访问数:  1936
  • HTML全文浏览数:  1936
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-02

纳米颗粒与生物来源有机磷在水环境中的行为研究

    通讯作者: 王飞, E-mail: wangfei@ustb.edu.cn
  • 北京科技大学能源与环境工程学院, 北京, 100083
基金项目:

国家自然科学基金优秀青年项目(41822706),北京市自然科学基金(8182034)和中央高校基本科研业务费专项资金(FRF-TP-19-001C1)资助.

摘要: 随着纳米技术产业的快速发展,各种纳米颗粒(NPs)大规模生产,这不可避免地增加了NPs释放到环境、暴露于生态系统的可能性.有机磷是废水中磷的主要形式之一,是生物有效磷池和水体富营养化的重要组成部分.本文综述了近几年来NPs与生物来源有机磷在水环境中的反应机制、微观结构等方面的研究进展.文中按NPs的分类分别总结了NPs对常见的生物来源有机磷的吸附-解吸,溶解-沉淀等反应特性和微观机制.在水环境中,NPs因其物化特性受水化学条件(pH、天然有机质、温度)等影响,进而影响与有机磷的反应,从而表现出相应不同的环境效应.本文也对此方面的研究进行了讨论和总结.最后分析了目前纳米颗粒与有机磷在水环境研究中的瓶颈问题,并展望了未来需要开展的研究.

English Abstract

参考文献 (56)

目录

/

返回文章
返回