醚菌酯对斑马鱼早期生命阶段的慢性毒性效应
Chronic Toxic Effects of Kresoxim-methyl during Zebrafish Early Life Stage
-
摘要: 为探明甲氧基丙烯酸酯类杀菌剂(strobilurins)对水生生物早期生命阶段的慢性毒性,以斑马鱼为模式生物,测定了醚菌酯长期暴露对斑马鱼早期发育的亚致死效应。将斑马鱼胚胎持续暴露于不同浓度醚菌酯(0.000750~0.180 mg·L-1)34 d后,醚菌酯对斑马鱼早期生命阶段的144 h和34 d半致死浓度(LC50)分别为0.141 mg·L-1和0.0106 mg·L-1。研究发现,醚菌酯暴露34 d后,0.00460、0.0115和0.0288 mg·L-1醚菌酯可显著降低仔鱼的体质量,0.0115 mg·L-1和0.0288 mg·L-1醚菌酯能够降低仔鱼体长,而0.180 mg·L-1醚菌酯会增加仔鱼的体长和体质量。醚菌酯对斑马鱼早期生命阶段体长的34 d-NOEC为0.00460 mg·L-1,34 d-LOEC为0.0115 mg·L-1,对早期生命阶段体质量的34 d-NOEC为0.00185 mg·L-1,34 d-LOEC为0.00460 mg·L-1。在试验期间,分别于1、3、7、14、21和34 d测定斑马鱼胚胎/仔鱼体内与线粒体能量代谢和氧化应激相关因子的活性和水平。研究发现,醚菌酯长期暴露会导致斑马鱼早期生命阶段过氧化氢酶(CAT)活性升高,过氧化物酶(POD)活性先升高后降低再升高,超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量先降低再升高。此外,醚菌酯长期暴露期间,斑马鱼体内钙离子(Ca2+)水平和钙离子腺苷三磷酸酶(Ca2+-ATP酶)活性受到不同程度的抑制,三磷酸腺苷(ATP)水平先升高后降低。研究表明,醚菌酯长期暴露会对斑马鱼早期生命阶段的生长指标和抗氧化系统产生一定的负面影响,醚菌酯可能通过调控ATP和Ca2+水平、Ca2+-ATP酶活性,干扰线粒体能量代谢进而诱导斑马鱼早期生命阶段产生氧化应激效应。Abstract: In order to investigate the chronic toxicity of strobilurins to the early life stage of aquatic organisms, the sublethal effect of kresoxim-methyl on the early development of zebrafish after long-term exposure was determined. After continuous exposure of zebrafish embryos to different concentrations of kresoxim-methyl (0.000750~0.180 mg·L-1) for 34 d, the median lethal concentrations (LC50) of kresoxim-methyl for 144 h and 34 d of zebrafish early life stage was 0.141 mg·L-1 and 0.0106 mg·L-1, respectively. It was found that 0.00460 mg·L-1, 0.0115 mg·L-1 and 0.0288 mg·L-1 kresoxim-methyl significantly decreased the body weight of larvae after 34 d exposure, 0.0115 mg·L-1 and 0.0288 mg·L-1 kresoxim-methyl decreased the body length of larvae, and 0.180 mg·L-1 kresoxim-methyl increased the body length and body weight of larvae. The 34 d-NOEC and 34 d-LOEC of kresoxim-methyl was 0.00460 mg·L-1 and 0.0115 mg·L-1 for body length, and was 0.00185 mg·L-1 and 0.00460 mg·L-1 for body weight during zebrafish early life development, respectively. During the 34 d exposure, the activities and levels of factors related to mitochondrial energy metabolism and oxidative stress in zebrafish embryos/larvae were measured at 1, 3, 7, 14, 21 and 34 d. Results showed that long-term exposure of kresoxim-methyl could increase the catalase (CAT) activity, the peroxide (POD) activity increased then decreased and then increased, the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content decreased first then increased during zebrafish early life development. It was found that the calcium ion (Ca2+) level and the activity of calcium ion adenosine triphosphatase (Ca2+-ATPase) was inhibited during the 34 d exposure of kresoxim-methyl, and the adenosine triphosphate (ATP) level was increased first then decreased. The results suggested long-term exposure to kresoxim-methyl caused negative effects on the growth indexes and antioxidant system during zebrafish early life development, kresoxim-methyl might interfere with mitochondrial energy metabolism by regulating the ATP and Ca2+ levels, and Ca2+-ATPase activity, then induced oxidative stress during the early life stage of zebrafish.
-
Key words:
- kresoxim-methyl /
- zebrafish /
- chronic toxic effect /
- early life stage /
- oxidative stress
-
-
李慧, 曹芳杰, 邱立红. 甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展[J]. 农药学学报, 2019, 21(S1): 831-840 Li H, Cao F J, Qiu L H. Research progress on ecotoxicology of methoxyacrylate fungicides to aquatic organisms[J]. Chinese Journal of Pesticide Science, 2019, 21(S1): 831-840(in Chinese)
Bartlett D W, Clough J M, Godwin J R, et al. The strobilurin fungicides[J]. Pest Management Science, 2002, 58(7): 649-662 Balba H. Review of strobilurin fungicide chemicals[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42(4): 441-451 Wightwick A M, Bui A D, Zhang P, et al. Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia[J]. Archives of Environmental Contamination and Toxicology, 2012, 62(3): 380-390 Cao M C, Li S Y, Wang Q S, et al. Track of fate and primary metabolism of trifloxystrobin in rice paddy ecosystem[J]. The Science of the Total Environment, 2015, 518-519: 417-423 Wang X H, Li X Y, Wang Y, et al. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model[J]. Environmental Pollution, 2021, 275: 116671 Mao L G, Jia W, Zhang L, et al. Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin[J]. The Science of the Total Environment, 2020, 729: 139031 Li H, Cao F J, Zhao F, et al. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos[J]. Chemosphere, 2018, 207: 781-790 Zhang C, Wang J, Zhang S, et al. Acute and subchronic toxicity of pyraclostrobin in zebrafish (Danio rerio)[J]. Chemosphere, 2017, 188: 510-516 Liu L, Zhu B, Wang G X. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris[J]. Environmental Science and Pollution Research, 2015, 22(10): 7766-7775 Cao F J, Zhu L Z, Li H, et al. Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio)[J]. Environmental Pollution, 2016, 219: 1109-1121 Wang Y H, Dai D J, Yu Y J, et al. Evaluation of joint effects of cyprodinil and kresoxim-methyl on zebrafish, Danio rerio[J]. Journal of Hazardous Materials, 2018, 352: 80-91 Cui F, Chai T T, Liu X X, et al. Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna[J]. Environmental Toxicology and Chemistry, 2017, 36(1): 182-189 Liu L, Jiang C, Wu Z Q, et al. Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles[J]. Ecotoxicology and Environmental Safety, 2013, 98: 297-302 Li H, Hu S, Wang X Y, et al. Toxicological differences of trifloxystrobin and kresoxim-methyl on zebrafish in various levels of exposure routes, organs, cells and biochemical indicators[J]. Chemosphere, 2022, 306: 135495 Fang N, Zhang C P, Hu H Z, et al. Histology and metabonomics reveal the toxic effects of kresoxim-methyl on adult zebrafish[J]. Chemosphere, 2022, 309(Pt 2): 136739 Jiang J H, Wu S G, Lv L, et al. Mitochondrial dysfunction,apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages[J]. Environmental Pollution, 2019, 253: 722-730 Jiang J H, Lv L, Wu S G, et al. Developmental toxicity of kresoxim-methyl during zebrafish (Danio rerio) larval development[J]. Chemosphere, 2019, 219: 517-525 Howe K, Clark M D, Torroja C F, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446): 498-503 Mu X Y, Pang S, Sun X Z, et al. Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays[J]. Environmental Pollution, 2013, 175: 147-157 Jiang J H, Chen L Z, Wu S G, et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 265(Pt A): 114844 中华人民共和国农业农村部. 化学农药鱼类早期生活阶段毒性试验准则: NY/T 4186—2022[S]. 北京: 中国农业出版社, 2022 Zhang C, Wang J, Zhang S, et al. Acute and subchronic toxicity of pyraclostrobin in zebrafish (Danio rerio)[J]. Chemosphere, 2017, 188: 510-516 李祥英, 李志鸿, 张宏涛, 等. 吡唑醚菌酯对不同阶段斑马鱼的毒性效应评价[J]. 生态毒理学报, 2017, 12(4): 234-241 Li X Y, Li Z H, Zhang H T, et al. Evaluation of toxicity effects of pyraclostrobin via multiple stage zebrafish assays[J]. Asian Journal of Ecotoxicology, 2017, 12(4): 234-241(in Chinese)
Teng M M, Qi S Z, Zhu W T, et al. Sex-specific effects of difenoconazole on the growth hormone endocrine axis in adult zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 144: 402-408 Wang Y H, Jin C Y, Wang D, et al. Effects of chlorothalonil, prochloraz and the combination on intestinal barrier function and glucolipid metabolism in the liver of mice[J]. Journal of Hazardous Materials, 2021, 410: 124639 Liess M, Von Der Ohe P C. Analyzing effects of pesticides on invertebrate communities in streams[J]. Environmental Toxicology and Chemistry, 2005, 24(4): 954-965 Alturfan A A, Tozan-Beceren A, Sehirli A O, et al. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats[J]. Molecular Biology Reports, 2012, 39(4): 4589-4596 Maharajan K, Muthulakshmi S, Nataraj B, et al. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study[J]. Aquatic Toxicology, 2018, 196: 132-145 Murphy M P. How mitochondria produce reactive oxygen species[J]. The Biochemical Journal, 2009, 417(1): 1-13 Green D R, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684): 626-629 Li X Y, Qin Y J, Wang Y, et al. Relative comparison of strobilurin fungicides at environmental levels: Focus on mitochondrial function and larval activity in early staged zebrafish (Danio rerio)[J]. Toxicology, 2021, 452: 152706 Kumar V, Santhosh Kumar T R, Kartha C C. Mitochondrial membrane transporters and metabolic switch in heart failure[J]. Heart Failure Reviews, 2019, 24(2): 255-267 Hu H J, Song M K. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets[J]. Journal of Stroke and Cerebrovascular Diseases, 2017, 26(12): 2706-2719 Flampouri E, Mavrikou S, Mouzaki-Paxinou A C, et al. Alterations of cellular redox homeostasis incultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl[J]. Biochemical Pharmacology, 2016, 113: 97-109 Nunes P, Demaurex N. The role of calcium signaling in phagocytosis[J]. Journal of Leukocyte Biology, 2010, 88(1): 57-68 Zhu B R, Wang Z N, Lei L, et al. Transcriptome reveals overview of Ca2+ dose-dependent metabolism disorders in zebrafish larvae after Cd2+ exposure[J]. Journal of Environmental Sciences (China), 2023, 125: 480-491 -

计量
- 文章访问数: 1462
- HTML全文浏览数: 1462
- PDF下载数: 221
- 施引文献: 0