-
近年来,伴随着我国养殖业规模化、集约化快速发展,畜禽粪便产量急剧增多,未经处理的禽畜粪便任意排放产生了严重的生态环境问题并引起了广泛关注。据测算,到2020年,我国禽畜粪便年产量将达41×108 t[1-2]。厌氧消化作为固体废弃物(如污泥、餐厨垃圾、禽畜粪便、作物秸秆)处理处置的有效手段,它能够消除有毒有害气体,减少废物中病原体,减轻对化石燃料的依赖,减缓能源危机[3-4],因此已广泛应用于猪粪的处理处置[5]。搅拌能够促进厌氧消化反应器内物料的混合,提高反应器内物理、化学和生物相的均匀性并防止分层和浮渣层形成,从而提升产气率和污染物去除率,是厌氧消化常用的一种技术手段,也是生物处理机制研究的一个主要课题[6-7]。猪粪作为非牛顿流体[8-9],由于其不透明性和流动的复杂性及厌氧发酵罐的密闭性,设计人员往往在不能准确掌握流场流态情况下进行搅拌措施的设计,导致很难获得高效、低耗的厌氧消化工艺[10]。CFD模拟技术作为一种成熟的数值分析工具,可通过计算机数值计算和图像显示,在短时间内以低成本获取流场信息,实现流场分析及反应器的优化设计,已逐渐应用于厌氧消化反应器的流场可视化探究中,显著提高了流场分析的准确性和全面性[11-13]。BRIDGEMAN[14]结合污泥流变特性,研究了一个计算机流体动力学模型,对实验室小试污泥厌氧消化反应器内部流场进行了模拟,从速度和死区角度证明含固率对混合效果有显著影响。WU[11]模拟了不同搅拌方式和不同厌氧消化池形状的混合效果,结果表明机械搅拌方式的带导流筒的蛋形消化池混合效果最好。此外,CFD模拟结果的准确性也已通过现代化的测量手段(粒子图像测速技术和激光多普勒测速仪技术)得到了验证[15]。
本研究分析了猪粪的流变特性,并基于其流变特性对猪粪厌氧消化反应器流场进行了CFD模拟,获取并分析流场的粒子运动轨迹图、速度和死区分布情况,为猪粪厌氧消化工艺设计、运行和在线监控提供参考。
基于猪粪流变特性的厌氧消化反应器内的数值模拟
Numerical simulation in anaerobic digestion reactor based on rheological properties of pig manure
-
摘要: 采用流变仪对不同含固率猪粪的流变性质进行测量,分析其流变特性,将流变数据与非牛顿流体模型进行拟合,得到用于描述猪粪流变特性的最佳流变方程。结果表明:猪粪是一种非牛顿流体,黏度随剪切速率的增加而减小并趋于稳定。基于其流变特性,运用计算流体力学(computational fluid dynamics,CFD)模拟技术,对猪粪厌氧消化反应器内的流场进行研究。模拟结果显示:反应器内速度最大值出现在桨叶末端,猪粪流体在其反应器内的宏观循环运动状态为沿着搅拌轴径向的绕流运动;壁面及顶部和底部区域速度几乎为零,形成死区,容积比率为29.85%。Abstract: The rheological curves of pig manure with different solid contents were measured by a rheometer, and its rheological properties were analyzed. Through fitting the rheological data with the non-newtonian fluid model, the optimal rheological equation describing the rheological characteristics of pig manure was obtained. The results showed that pig manure was a non-Newtonian fluid, and its viscosity decreased with the increase of shear rate and then approached stable. Based on its rheological characteristics, the flow field in anaerobic digestion reactor of pig manure was studied by using computational fluid dynamics. The CFD simulation results displayed that the maximum velocity occurred at the vicinity of blade tip, the state of the macroscopically circulating motion of the swine manure in the reactor was the radial flow around the agitating shaft. The velocities at the wall, the top and bottom regions were almost zero, where the dead zones formed with a volume ratio of 29.85%.
-
Key words:
- pig manure /
- rheological properties /
- CFD simulate /
- flow field
-
表 1 常见非牛顿流体模型对含固率为20.02%的猪粪流变性质拟合结果
Table 1. Fitting results of the rheological properties of pig manure with a total solid of 20.02% by the common non-Newtonian fluid models
流变模型 拟合方程 参数 ${R^2}$ k n ${\tau _0}$ ${\mu _{\rm{p}}}$ Bingham $\tau = {\tau _0} + {\mu _{\rm{p}}} \cdot \gamma $ — — 22.121 29 0.066 62 0.925 38 Power-law $\tau = k \cdot {\gamma ^n}$ 4.802 35 0.390 60 — — 0.979 42 H-B $\tau = {\tau _0} + k \cdot {\gamma ^n}$ 4.689 51 0.393 62 0.280 68 — 0.979 02 -
[1] 吕杰, 王志刚, 郗凤明, 等. 循环农业中畜禽粪便资源化利用现状、潜力及对策: 以辽中县为例[J]. 生态经济, 2015, 31(4): 107-113. doi: 10.3969/j.issn.1671-4407.2015.04.025 [2] 马永喜, 王颖. 规模化畜牧养殖废弃物处理的环境经济优化研究: 基于生态经济模型的分析[J]. 农业现代化研究, 2014, 35(3): 340-344. [3] GRABDO R L, ANTUNE A M, FONSECA F V, et al. Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development[J]. Renewable & Sustainable Energy Reviews, 2017, 80: 44-53. [4] WU B X. CFD simulation of gas mixing in anaerobic digesters[J]. Computers & Electronics in Agriculture, 2014, 109: 278-286. [5] 盛迎雪, 曹秀芹, 张达飞, 等. 猪粪干式厌氧消化中试试验研究[J]. 中国沼气, 2016, 34(5): 41-46. doi: 10.3969/j.issn.1000-1166.2016.05.009 [6] DEUBLEIN D, STEINHAUSER A. Biogas from Waste and Renewable Resources[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. [7] 余亚琴, 吴义锋. 蓝藻厌氧发酵产沼气机械搅拌工艺优化及中试试验[J]. 农业工程学报, 2014, 30(22): 253-259. doi: 10.3969/j.issn.1002-6819.2014.22.031 [8] 刘刈, 邓良伟, 王智勇. 几种厌氧消化原料的流变特性及其影响因素[J]. 农业工程学报, 2009, 25(8): 204-209. doi: 10.3969/j.issn.1002-6819.2009.08.037 [9] HASHIOMOTO A G, CHEN Y R. Rheology of livestock waste slurries[J]. Transactions of the ASABE, 1976, 19(5): 930-934. doi: 10.13031/2013.36149 [10] 王军, 王子云, 薛庆文, 等. 利用CFD模拟沼气发酵罐内流场形态的计算方法研究综述[J]. 中国沼气, 2018, 36(5): 59-65. doi: 10.3969/j.issn.1000-1166.2018.05.010 [11] WU B X. CFD simulation of mixing in egg-shaped anaerobic digesters[J]. Water Research, 2010, 44(5): 1507-1519. doi: 10.1016/j.watres.2009.10.040 [12] 曹秀芹, 徐国庆, 袁海光, 等. 污泥厌氧消化反应器CFD数值模拟研究进展[J]. 环境工程学报, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001 [13] TRASHIMA M, GOEL R, KOMATSU K, et al. CFD simulation of mixing in anaerobic digesters[J]. Bioresource Technology, 2009, 100(7): 2228-2233. doi: 10.1016/j.biortech.2008.07.069 [14] BRIDGEMAN J. Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester[J]. Advances in Engineering Software, 2012, 44(1): 54-62. doi: 10.1016/j.advengsoft.2011.05.037 [15] 曹秀芹, 赵振东, 杨平, 等. 基于污泥流变特性对厌氧消化反应器的模拟研究[J]. 给水排水, 2016, 52(7): 36-41. doi: 10.3969/j.issn.1002-8471.2016.07.008 [16] 岳晓丽. 帕米尔绿球藻去除猪粪沼液废水中氮磷的效果研究[J]. 大众科技, 2019, 21(1): 4-6. doi: 10.3969/j.issn.1008-1151.2019.01.002 [17] WU B X, CHEN S L. CFD simulation of non-Newtonian fluid flow in anaerobic digesters[J]. Biotechnology and Bioengineering, 2008, 99(3): 700-711. doi: 10.1002/(ISSN)1097-0290 [18] 纪兵兵, 陈金瓶. ANSYS ICEM CFD网格划分技术实例详解[M]. 北京: 中国水利水电出版社, 2012. [19] LIU G J, LIU Y, WANG Z Y, et al. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure[J]. Waste Management, 2015, 38: 449-454. doi: 10.1016/j.wasman.2014.12.015 [20] TANG B, FENG X, HUANG S, et al. Variation in rheological characteristics and microcosmic composition of the sewage sludge after microwave irradiation[J]. Journal of Cleaner Production, 2017, 148: 537-544. doi: 10.1016/j.jclepro.2017.02.020 [21] RUIZ-HERNANDO M, LABANDA J, LLORENS J. Structural model to study the influence of thermal treatment on the thixotropic behaviour of waste activated sludge[J]. Chemical Engineering Journal, 2015, 262: 242-249. doi: 10.1016/j.cej.2014.09.097 [22] 石惠娴, 吕涛, 朱洪光, 等. 猪粪流变特性与表观粘度模型研究[J]. 农业机械学报, 2014, 45(2): 188-193. doi: 10.6041/j.issn.1000-1298.2014.02.031 [23] 曹秀芹, 赵振东, 杨平, 等. 污泥厌氧消化反应器搅拌性能的CFD模拟[J]. 给水排水, 2016, 52(3): 137-141. doi: 10.3969/j.issn.1002-8471.2016.03.035 [24] 郭志. 卧式厌氧发酵搅拌罐三维流场数值模拟与机械特性分析[D]. 南昌: 南昌大学, 2018. [25] 王洁, 袁月明, 崔彦如, 等. 不同桨层搅拌沼气发酵效果对比及其CFD模拟研究[J]. 中国农机化, 2012(5): 126-129. doi: 10.3969/j.issn.1006-7205.2012.05.036 [26] LEBRANCHU A, DELAUNAY S, MARCHAL P, et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters[J]. Bioresource Technology, 2017, 245: 1139-1147. doi: 10.1016/j.biortech.2017.07.113 [27] WU B. CFD Analysis of mechanical mixing in anerobic digesters[J]. Transactions of the ASABE, 2009, 52(4): 1371-1382. doi: 10.13031/2013.27786 [28] MCMAHON K D, STROOT P G, MACKIE R I, et al. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions.Ⅱ: Microbial population dynamics[J]. Water Research, 2001, 35(7): 1817-1827. doi: 10.1016/S0043-1354(00)00438-3 [29] WU BX. Advances in the use of CFD to characterize design and optimize bioenergy systems[J]. Computers and Electronics in Agriculture, 2013, 93: 195-711. doi: 10.1016/j.compag.2012.05.008