-
滨海土壤盐渍化严重,仅靠降雨淋洗和植物演替进行土壤改良需数10年、甚至更长时间,必须通过技术措施进行改良才能用于绿林建设[1]。近年来,烟气脱硫石膏对盐渍土壤的改良和修复效应得到较好地验证,其被认为是一项成本低、修复速率快的滨海盐渍土壤改良剂[2-4]。烟气脱硫石膏可以有效降低盐渍土壤pH和碱化度[5-7],但也存在一些不足。程镜润等[7]研究发现,烟气脱硫石膏在显著降低pH和碱化度的同时,也会增加土壤含盐量,并降低了土壤有效磷含量;MAO等[8]研究发现烟气脱硫石膏会导致土壤全盐量增加,并降低了土壤有机质和速效磷,影响了黑麦草的发芽率;贺坤等[9]研究发现,烟气脱硫石膏改良滨海盐渍土会使土壤EC有明显增加,土壤速效磷、速效钾含量降低。城市园林废弃物通过堆肥处理和微生物分解会转化形成腐殖质,可增加土壤营养物质含量、促进养分的转化,提高营养物质的有效性[10-11]。张强等[12]和顾兵等[13]研究表明,园林废弃物堆肥可以改善植物生长状况和基质通气性、保水性和养分供应能力,提高土壤有机物质含量和土壤肥力,并对土壤有害阴、阳离子能起到缓冲作用,明显改善土壤物理性状和盐分组成。
为克服烟气脱硫石膏改良滨海盐渍土壤中产生的土壤含盐量增大、营养物质减少等不足的缺点,本研究通过盆栽实验开展了不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用对滨海盐渍土的改良效果研究,分析了混合改良剂对盐渍土壤理化性质和植物生长发育的影响,为滨海盐渍土改良提供技术参考,并为城市固废提供适合的处置方式和综合利用途径。
烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良
Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost
-
摘要: 为克服烟气脱硫石膏改良盐碱地存在的土壤盐分升高、营养物质降低等不足,通过对不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用,且开展了其对上海南汇滨海盐渍土的改良效应研究。结果表明:2种改良剂混合施用能显著降低滨海盐渍土pH和全盐含量,增加土壤营养物质含量和植物生物量,并提高植物对营养物质的吸收能力;与对照相比,当烟气脱硫石膏施用量为25 g·kg−1时,土壤pH降低了10.9%,EC升高了8.4%,有效磷、有效氮和速效钾含量分别降低了30.1%、40.5%和36.1%,黑麦草发芽率下降了8.0%,植株内全氮、全钾含量均有所升高,但全磷含量减少了25.4%;混合施加不同重量配比的园林废弃物堆肥后,土壤pH降幅为6.8%~13.8%,EC降幅为4.2%~11.6%;土壤有效磷、有效氮和速效钾含量增幅分别为96.0%~182.7%、40.0%~186.7%和71.7%~157.5%;黑麦草发芽率和生物量逐渐增加,在园林废弃物堆肥施用量为40%时,与对照处理相比,此时植物发芽率达到90.0%,总湿重、地上干重、株高和根长等分别增加了154.1%、100.0%、89.2%和103.6%,植株体内氮和钾含量分别增加了139.9%和40.8%,磷的含量则接近对照处理。通过分析可知,烟气脱硫石膏和园林废弃物混合施用可较好地改良滨海盐渍土壤,并为城市固废的适合处置方式和综合利用途径提供了参考。Abstract: To overcome the shortcomings of high salinity and nutrients deficiency for flue gas desulfurization gypsum (FGD-gypsum) in improving saline-alkali soil, the mixture of flue gas desulfurization gypsum (FGD-gypsum) and green wastes compost (GWC) with different mass ratios was used to conduct the experiments of saline alkali soil recovery in Nanhui District, Shanghai. The results showed that their mixed-use could significantly reduce the pH and total salt content of saline soil, raise the nutrients content, the biomass of plants and plant absorbing ability for nutrients. Compared with the control group, when the dosage of FGD-gypsum was 25 g·kg−1, pH decreased by 10.9%, EC increased by 8.4%, available phosphorus, hydrolytic nitrogen and potassium contents decreased by 8.4%, 30.1%, 40.5% and 36.1%, respectively, the ryegrass germination decreased by 8.0%, the contents of total nitrogen and potassium increased, and total phosphorus in plant decreased by 25.4%. When different mass ratios of GWC was mixed with FGD-gypsum for soil recovery, soil pH and EC value decreased by 6.8%~13.8% and by 4.2%~11.6%, respectively, while the contents of soil available phosphorus, hydrolytic nitrogen and potassium contents increased by 96.0%~182.7%, 40.0%~186.7% and 71.7%~157.5%, respectively. The germination rate and biomass of ryegrass increased gradually. At GWC mass ratio of 40%, compared with the control group, the germination rate reached 90.0%, the total wet weight, above ground dry weight, plant height and root length increased by 154.1%, 100.0%, 89.2% and 103.6%, respectively. The contents of nitrogen and potassium in plant increased by 139.9% and 40.8%, respectively, and phosphorus content was close to that in the control group. These results indicated that the mixed-use of FGD-gypsum and GWC had a good performance on the saline alkali soil recovery, and provided a reference for the feasible disposal and comprehensive approaches of municipal solid waste.
-
表 1 实验材料主要理化性质
Table 1. Physical and chemical properties of test materials
实验材料 pH EC/(mS·cm−1) 有机质/% 全氮/(g·kg−1) 全磷/(g·kg−1) 全钾/(g·kg−1) 土壤 8.7 1.30 2.25 0.4 1.05 12.7 堆肥 7.3 0.37 112.0 1.36 2.31 10.44 烟气脱硫石膏 7.2 — — <0.001 <0.001 <0.1 注:实验植物为黑麦草(Lolium perenne L.),种植前于实验室恒温箱内进行发芽率实验,发芽率约为90.0%。 表 2 不同处理中黑麦草生长特征的变化
Table 2. Changes of growth characteristics of ryegrass under different soil amendments
处理 总湿质量/g 地上干质量/g 地下干质量/g 株高/cm 根长/cm T1 0.146±0.012a 0.021±0.001a 0.009±0.001a 13.0±1.20a 13.8±2.25a T2 0.191±0.052b 0.024±0.004a 0.010±0.002a 14.8±0.52a 16.4±2.30a T3 0.201±0.004b 0.029±0.001b 0.011±0.001a 16.8±0.36b 19.6±1.52b T4 0.281±0.009c 0.030±0.003b 0.013±0.001b 19.6±0.52c 22.0±3.01b T5 0.303±0.041c 0.036±0.002c 0.014±0.002b 21.8±0.07c 24.4±2.10c T6 0.371±0.020c 0.042±0.002d 0.013±0.001b 24.6±0.21d 28.1±2.10d 表 3 不同处理中黑麦草植株内营养物质的变化
Table 3. Changes of nutrients in ryegrass under different soil amendments
mg·kg−1 处理 全氮 全磷 全钾 T1 4.268±0.232a 0.206±0.015a 5.200±0.192a T2 5.584±0.158b 0.154±0.015b 5.641±0.067b T3 6.957±0.176c 0.159±0.020b 6.000±0.307c T4 8.662±0.337d 0.166±0.013b 6.041±0.232c T5 9.333±0.197d 0.191±0.004a 6.803±0.081d T6 10.238±0.348e 0.207±0.017a 7.324±1.263d -
[1] 李小平, 刘晓臣, 毛玉梅, 等. 烟气脱硫石膏对围垦滩涂土壤的脱盐作用[J]. 环境工程技术学报, 2014, 4(6): 502-507. doi: 10.3969/j.issn.1674-991X.2014.06.079 [2] AIKEN G E, POTE D H, et al. Amendment effects on soil test phosphorus[J]. Journal of Environmental Quality, 2005, 34(5): 1682-1686. doi: 10.2134/jeq2004.0373 [3] CHEN L M, KOST D, DICK W A. Flue gas desulfurization products as sulfur sources for corn[J]. Soil Science Society of America Journal, 2008, 72(5): 1464-1470. doi: 10.2136/sssaj2007.0221 [4] 肖国举, 罗成科, 张峰举, 等. 燃煤电厂脱硫石膏改良碱化土壤的施用量[J]. 环境科学研究, 2010, 23(6): 762-767. [5] CHEN L M, DICK W A. Gypsum as an agricultural amendment: general use guidelines[R]. The Ohio State University Extension Service, Columbus, 2011: 1-5. [6] FAVARETTO N, NORTON L D, JOHNSTON C T, et al. Nitrogen and phosphorus leaching as affected by gypsum amendment and exchangeable calcium and magnesium[J]. Soil Science Society of America Journal, 2012, 76(2): 575-585. doi: 10.2136/sssaj2011.0223 [7] 程镜润, 陈小华, 刘振鸿, 等. 脱硫石膏改良滨海土的脱盐过程与效果试验研究[J]. 中国环境科学, 2014, 34(6): 1505-1513. [8] MAO Y M, LI X P, DICK W A, et al. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China[J]. Journal of Environmental Sciences, 2016, 45(7): 224-230. [9] 贺坤, 李小平, 徐晨, 等. 烟气脱硫石膏对滨海盐渍土的改良效果[J]. 环境科学研究, 2018, 31(3): 547-554. [10] 吕子文, 方海兰, 黄彩娣. 美国园林植物废弃物的处置及对我国的启示[J]. 中国园林, 2007, 23(8): 90-92. doi: 10.3969/j.issn.1000-6664.2007.08.018 [11] 崔萌, 李素艳, 杨田, 等. 园林绿化废弃物堆肥对公园绿地土壤的改良研究[J]. 中国农学通报, 2016, 32(17): 106-110. doi: 10.11924/j.issn.1000-6850.casb15120064 [12] 张强, 孙向阳, 任忠秀, 等. 园林绿化废弃物堆肥用作花卉栽培基质的效果评价[J]. 中南林业科技大学学报: 自然科学版, 2011, 31(9): 7-13. [13] 顾兵, 吕子文, 方海兰, 等. 绿化植物废弃物堆肥对城市绿地土壤的改良效果[J]. 土壤, 2009, 41(6): 940-946. doi: 10.3321/j.issn:0253-9829.2009.06.016 [14] 杨军, 孙兆军, 刘吉利, 等. 脱硫石膏糠醛渣对新垦龟裂碱土的改良洗盐效果[J]. 农业工程学报, 2015, 31(17): 128-135. doi: 10.11975/j.issn.1002-6819.2015.17.017 [15] 国家林业局. 中华人民共和国林业行业标准: 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999. [16] FAVARETTO N, NORTON L D, JOEM B C, et al. Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff[J]. Soil Science Society of America Journal, 2006, 70(5): 1788-1796. doi: 10.2136/sssaj2005.0228 [17] 温国昌, 徐彦虎, 林启美, 等. 草木樨与脱硫石膏对内蒙古盐渍化土壤的改良培肥作用与效果[J]. 干旱地区农业研究, 2016, 34(1): 81-86. doi: 10.7606/j.issn.1000-7601.2016.01.13 [18] 贺坤, 李小平, 周纯亮, 等. 烟气脱硫石膏对滨海农耕土壤磷素形态组成的影响[J]. 生态学报, 2017, 37(9): 2935-2942. [19] 陈浩天, 张地方, 张宝莉, 等. 园林废弃物不同处理方式的环境影响及其产物还田效应[J]. 农业工程学报, 2018, 34(21): 239-244. doi: 10.11975/j.issn.1002-6819.2018.21.030 [20] 李春越, 王益, PHILIP B, 等. pH对土壤微生物C/P比的影响[J]. 中国农业科学, 2013, 46(13): 2709-2716. doi: 10.3864/j.issn.0578-1752.2013.13.009 [21] 郭晓博. 脱硫石膏对堆肥中氮素转化和腐殖化特征影响的研究[D]. 南宁: 广西大学, 2016. [22] CLARK R B, RITCHEY K D, BALIGAR V C. Benefits and constraints for use of FGD products on agricultural land[J]. Fuel, 2001, 80(6): 821-828. doi: 10.1016/S0016-2361(00)00162-9 [23] 毛玉梅, 李小平. 烟气脱硫石膏对滨海滩涂盐碱地的改良效果研究[J]. 中国环境科学, 2016, 36(1): 225-231. doi: 10.3969/j.issn.1000-6923.2016.01.038 [24] 邹璐, 范秀华, 孙兆军, 等. 盐碱地施用脱硫石膏对土壤养分及油葵光合特性的影响[J]. 应用与环境生物学报, 2012, 18(4): 575-581. [25] 徐秋桐, 孔樟良, 章明奎. 不同有机废弃物改良新复垦耕地的综合效果评价[J]. 应用生态学报, 2016, 27(2): 567-576. [26] 李万才, 张丽蓉, 马海林. 城市固体废弃物堆肥与化肥对不同土壤植物生长的影响研究[J]. 中国生态农业学报, 2006, 14(2): 107-110. [27] 龚小强. 园林绿化废弃物堆肥产品改良及用作花卉栽培代用基质研究[D]. 北京: 北京林业大学, 2013. [28] 包立, 刘惠见, 邓洪, 等. 玉米秸秆生物炭对滇池流域大棚土壤磷素利用和小白菜生长的影响[J]. 土壤学报, 2018, 55(4): 815-824. doi: 10.11766/trxb201709210394 [29] TISDALE S L, NELSON W L, BEATON J D 著. 土壤肥力与肥料[M]// 金继运, 刘荣乐, 译. 北京: 中国农业科技出版社, 1998: 163-211. [30] 刘雅辉, 王秀萍, 李强, 等. 淤泥质滨海重盐土低成本快速脱盐技术研究[J]. 水土保持研究, 2015, 22(1): 168-171.