Processing math: 100%

烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良

贺坤, 童莉, 盛钗, 周纯亮, 陈小华, 孙海燕, 张志国. 烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良[J]. 环境工程学报, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158
引用本文: 贺坤, 童莉, 盛钗, 周纯亮, 陈小华, 孙海燕, 张志国. 烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良[J]. 环境工程学报, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158
HE Kun, TONG Li, SHENG Chai, ZHOU Chunliang, CHEN Xiaohua, SUN Haiyan, ZHANG Zhiguo. Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158
Citation: HE Kun, TONG Li, SHENG Chai, ZHOU Chunliang, CHEN Xiaohua, SUN Haiyan, ZHANG Zhiguo. Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158

烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良

    作者简介: 贺坤(1982—),男,博士,副教授。研究方向:城市生态景观修复。E-mail:hekun@sit.edu.cn
    通讯作者: 张志国(1957—),男,博士,教授。研究方向:园林植物与生态景观修复。E-mail:zgzhang@sit.edu.cn
  • 基金项目:
    上海市科委科技创新行动计划项目(15DZ1203706);上海张江国家自主创新示范区专项发展资金项目(201701-PD-JQ-A5055-007);上海市奉贤区科委社会类科技发展基金项目(201703)
  • 中图分类号: X712

Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost

    Corresponding author: ZHANG Zhiguo, zgzhang@sit.edu.cn
  • 摘要: 为克服烟气脱硫石膏改良盐碱地存在的土壤盐分升高、营养物质降低等不足,通过对不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用,且开展了其对上海南汇滨海盐渍土的改良效应研究。结果表明:2种改良剂混合施用能显著降低滨海盐渍土pH和全盐含量,增加土壤营养物质含量和植物生物量,并提高植物对营养物质的吸收能力;与对照相比,当烟气脱硫石膏施用量为25 g·kg−1时,土壤pH降低了10.9%,EC升高了8.4%,有效磷、有效氮和速效钾含量分别降低了30.1%、40.5%和36.1%,黑麦草发芽率下降了8.0%,植株内全氮、全钾含量均有所升高,但全磷含量减少了25.4%;混合施加不同重量配比的园林废弃物堆肥后,土壤pH降幅为6.8%~13.8%,EC降幅为4.2%~11.6%;土壤有效磷、有效氮和速效钾含量增幅分别为96.0%~182.7%、40.0%~186.7%和71.7%~157.5%;黑麦草发芽率和生物量逐渐增加,在园林废弃物堆肥施用量为40%时,与对照处理相比,此时植物发芽率达到90.0%,总湿重、地上干重、株高和根长等分别增加了154.1%、100.0%、89.2%和103.6%,植株体内氮和钾含量分别增加了139.9%和40.8%,磷的含量则接近对照处理。通过分析可知,烟气脱硫石膏和园林废弃物混合施用可较好地改良滨海盐渍土壤,并为城市固废的适合处置方式和综合利用途径提供了参考。
  • 石化企业是国民经济的支柱产业,给国民带来了极大的能源和经济利润,同时也属于重大的污染源。其中大气污染以无组织排放为主,污染物主要是种类繁多的挥发性有机污染物(VOCs)。挥发性有机污染物(VOCs)是一类常见的大气污染物,是臭氧和二次有机气溶胶的重要前体物[1-2],本身也具有毒理特性,对人体肝脏、血液健康等具有剧烈的生理毒害作用[3-4],部分污染物三氯甲烷、四氯乙烯、苯等对人体甚至有致癌、致畸、致突变作用[5],其污染物排放清单和污染物排放特征研究引起国内外学者的广泛关注。

    储罐是石化企业最常用的生产装置,更是最主要的无组织排放源之一,据统计,我国每年约有千万吨级的VOCs从有机液体储罐挥发到大气中[6];美国2003年的一份调查显示,在美国18家石油公司各项污染源VOCs排放量中,储存过程中VOCs排放量约占总排放量的29%[7]。自储罐产生的无组织排放VOCs,一方面降低了油品质量、造成了资源的大量浪费,另一方面排放的大气污染物严重危害了人们的生命健康和生态环境,并带来了一系列的安全问题[8-10]

    目前世界各国自有其适用的储罐无组织排放VOCs定量方法,或是半经验半理论法,或是纯经验法,比如美国环保署EPA推荐方法、美国石油协会API经验法、日本资源能源厅方法等。我国亦于2015年出台了《石化行业VOCs污染源排查工作指南》,然而工作指南中的核算方法是以EPA推荐方法为基准的,相关参数也是基于美国储罐构造现状推导出的,而由于在原料品质、储罐设计标准和管理水平等方面的差异,并不能完全适用于我国。

    扩散模式反推法,计算精准、需求污染源信息少、示踪气体扩散过程拟合效果好,是工业点源、面源污染物排放量核算的重要方法,在工业无组织排放源强特征研究中应用广泛[11-14]。然而传统的扩散模式反推法,多采用以电化学和气相色谱为主的定点采样分析方法,就其本身而言,具有采样分析过程复杂、耗费人力物力大、测量范围小、只能反映监测区域定时、定点、局部的监测结果,不能实现大范围区域环境监测,无法实现实时在线自动监测,不能满足及时、准确、全面反映环境质量动态和污染源动态变化的需求。

    随着科技的进步,环境监测技术的发展,仪器分析以及计算机技术的广泛应用,各国科技工作者将遥感技术广泛应用于大气环境自动监测系统。本文以遥感FTIR技术为基础,提出了一种针对于石化罐区VOCs源强的核算方法:基于遥感FTIR的扩散模式反推法[15],旨在为我国石化罐区无组织排放VOCs核算方法的构建提供数据、技术支持。

    如果已知污染源下风向某点位的浓度及影响排放的相关信息,根据大气扩散理论,则可以计算出污染源的排放量,这是传统扩散模式反推法的理论基础。与传统的扩散模式反推法相比,本文所建立的源强反演模型的创新点在于以遥感FTIR技术取代了传统的定点监测技术,摆脱了以电化学和气相色谱为代表的定点采样分析方法所带来的局限性问题,并同时保留了遥感FTIR监测技术与扩散模式反推法两者的优势。

    FTIR是一种基于光的干涉原理基础上进行了傅里叶变换的红外光谱监测技术,近年来,取得了迅猛的发展[16]。遥感FTIR能够实现大范围的环境监测,具有更强的实用性,在环境监测中具有良好的应用前景[17],但在研究气体组分或颗粒物浓度时,遥感FTIR的测定结果只能获得光路积分浓度数据(path integrated concentrations),不能直接反应待测参数(如气体浓度)在空间的分布,应用受到了限制。

    如果一个模型能够精准的模拟大气污染物的扩散过程,任何可以测量且与大气扩散模型及污染物排放量Q相关的指标都可以用来表征大气污染物排放量Q。光路积分浓度PICs即为一合适指标,既避免了遥感FTIR不能直接反应待测参数(如气体浓度)的难题,又发挥了光路积分浓度的优势,如避免了定点采样分析所带来数据波动性问题,可以进行大范围的现场监测、测量速度快、灵敏度高、反应大范围浓度变化等[18-19]

    扩散模式反推法成功的关键其一便在于选择合适的大气扩散模型,考虑到模型的工程适用性,选择工业上应用最为普遍且经过大量实验验证过的高斯模型。在工程应用中,多将石化罐区简化为面源进行处理,常用的面源模式计算方法主要有两种,即ATDL模式和虚点源模式后置法。相比更适用于城市尺度大范围计算的ATDL模式,后置虚点源法更适用于工业面源。

    反演模型成功的关键其二在于光路积分浓度PICs与排放量Q之间联系的建立。由于高斯模式在数理上具有解析形式,极大的降低了PICs与Q之间关系建立的难度。即基于监测光路与主导风向垂直假设,将点式浓度沿监测光路积分,依托高斯大气扩散模型,则可构建公式(1):

    stringUtils.convertMath(!{formula.content}) (1)

    式中,uH高度处平均风速(m·s−1),σy为水平方向扩散参数(m),σy0为水平方向初始扩散参数(m),σz为垂直方向扩散参数,σz0为垂直方向初始扩散参数(m);CL为受体光路监测浓度(mg·m−3·m),Cb为背景光路监测浓度(mg·m−3·m),x为顺风向距离(m),y为横风向距离(m),H为有效源高(m),QP为污染源监测时段的排放量反算结果(mg·s−1)。

    本研究所选取的20万m3石脑油实验罐区,位于我国北方地区某石化企业烯烃部东南角,罐区北侧和西侧周边有稀疏的建筑物,且高度普遍较低,西北角约500 m处有一污水处理装置,南侧和东侧为开阔荒野地带,无公路以及其它交通设施,车流量极少,其它污染源的影响较小,满足反演模型的应用条件。

    在进行外场监测之前,进行了近一周的气象观测和现场勘查,以确定上下风向的监测点位,气象观测表明主导风向为西风,在该风向条件下,20万m3石脑油罐区的上下风向均有足够的开阔地,以布设OP-FTIR及辅助设备。

    外场监测工作于2017年10月份持续进行了6 d,每天至少进行6 h上下风向连续不间断的光谱数据与气象数据同步采集,其中背景光谱数据采集在主导风向的上风向实施,VOCs排放光谱数据采集在主导风向的下风向进行,气象数据采集主要包括风向、风速、云量、温度、监测时间、大气压强等。外场监测布设详见图1

    图 1  罐区外场监测布设图
    Figure 1.  Arrangement of monitoring sites around the tank area

    在进行现场应用之前,已于我国北方某实验基地进行反演模型准确性验证及边界适用条件探索,研究表明,其监测点位的设置及数据采集分析处理应遵循以下原则:(1)背景监测点位应设置在主导风向的上风向,光路至污染源的监测距离应足够长,以避免污染源自身扩散对背景点位监测的干扰;(2)VOCs排放监测应设置在主导风向的下风向,监测距离需适中,以保证污染物扩散均匀,并满足所选用仪器设备的灵敏度需求,监测极限距离由监测设备与现场地形条件共同决定;(3)根据主导风向布置OP-FTIR主机与角锥反光镜,以保证主导风向与光束路径近似垂直,风向波动角度以小于15°为宜;(4)风速、大气稳定度、数据采集周期等分别以>1 m·s−1、C—E、15—60 min为宜,在本实验中以15 min为一个数据采集周期。

    外场实验在2017年10月份开展,由于进行了6 d连续监测,风速、风向等气象条件也极为相近,具体数据采集状况如表1所示。

    表 1  现场数据采集详细状况
    Table 1.  Detail conditions of VOCs date acquisition
    实验编号Experiment number监测日期Monitoring date风向Wind direction风速/(m·s−1)Wind speed 大气稳定度Atmospheric stability光程长度/mOptical path length
    12017.10.10西3.9—5.7C,C—D205
    22017.10.11西3.7—6.9C,C—D205
    32017.10.12西4.1—6.8C,C—D204
    42017.10.14西4.1—6.5C,C—D205
    52017.10.16西、西-西北3.9—6.3C,C—D205
    62017.10.17西、西-西南4.1—6.9C,C—D205
      C,弱不稳定。C, Less stable. D,中性;D, Neutral.
     | Show Table
    DownLoad: CSV

    经过6 d的外场实验,共计采集光谱及气象数据76组,通过遥感FTIR监测仪对光谱数据进行分析,共计检出14种VOCs化合物,包括7种烷烃、3种烯烃、1种苯系物以及3种醛醚酚等其它化合物,将其浓度之和定义为VOCs。根据监测时间,将监测数据编为实验1—6,其背景点与受体点VOCs浓度如图2所示,实验5、实验6受体点VOCs浓度虽有一定波动,但整体上14种VOCs化合物的光路积分浓度均比较稳定,标准偏差约为0.31,说明20万m3石脑油罐区VOCs无组织排放稳定,适用于源强反演模型进行源强反演,此外受体点与背景点VOCs浓度存在明显差异,显示了罐区无组织排放VOCs对周边环境的显著影响,针对于实验5、实验6受体点VOCs排放浓度的差异性,后续将结合核算结果作进一步分析。

    图 2  监测时段背景点与受体点VOCs浓度值
    Figure 2.  VOCs concentration in receptors and background during monitoring period

    受体点和背景点不止在VOCs浓度方面有着明显的区别,更在污染物成分上有着显著差异。在背景点中乙烯、乙烷所占比例最大,特别是乙烯占总体积浓度的30%,而在受体点中,乙烯的体积浓度百分比明显降低,仅占总体积浓度的8.48%,乙烷、庚烷的浓度明显增高,约占总体积浓度的50%。受体点和背景点之间VOCs的浓度差异以及污染物化学成分上的明显差异表明,20万m3石脑油罐区VOCs排放量大,对局地大气环境影响明显,可以使用源强反演模型进行VOCs排放量反演。

    将剔除了背景点浓度的受体点VOCs作为该20万m3石脑油罐区所做的贡献,并以之来组成20万m3石脑油罐区VOCs排放成分谱图,其中14种主要的化合物体积浓度百分比如图3所示,20万m3石脑油罐区排放的VOCs主要成分为乙烯、乙烷、丙烷、异丁烷、己烷、庚烷、甲基叔丁基醚,其体积浓度百分比分别为8.48%、22.73%、10.35%、8.10%、7.11%、24.22%、6.90%。

    图 3  20万m3石脑油罐区VOCs成分谱
    Figure 3.  Chemical profile of VOCs emitted from 200 thousand cubic meters tank area

    表2以10月10日实验1为例进行说明,依据本文提出的源强反演模型对14种主要污染物进行源强反演,以14种污染物之和作为VOCs的主要代表物质,进而计算20万m3石脑油罐区VOCs的排放量Q,其中∆C代表两者的浓度差值。

    表 2  实验1中 14种VOCs化合物推算结果
    Table 2.  Calculation case of 14 species at experiment-1
    污染物CompoundsC/(mg·m−3·m)Q/(g·s−1
    乙烯0.04900.0140
    乙烷0.15690.0460
    丙烷0.11170.0347
    正丁烯0.01270.0054
    异丁烯0.00640.0033
    正丁烷0.04670.0155
    异丁烷0.09300.0267
    戊烷0.01690.0051
    己烷0.13970.0414
    庚烷0.59290.1843
    甲醛0.00930.0027
    乙醛0.02980.0089
    甲基叔丁基醚0.12700.0370
    甲苯酚0.00040.0001
     | Show Table
    DownLoad: CSV

    本研究共计进行了6组实验,获得了76组实验数据,将6组实验的VOCs源强反演数值总结至图4。如图4所示,前4组实验VOCs浓度基本保持稳定,在1.38 mg·m−3·m上下波动,而实验5、实验6 VOCs浓度存在一定差异,分别为1.95 mg·m−3·m和0.98 mg·m−3·m,同时反映到20万m3石脑油罐区VOCs年排放量上也有相似的规律,以前4组实验稳定数据作为20万m3石脑油罐区的核算基准,可得其排放量为0.38—0.42 g·s−1,均值为0.41 g·s−1,而实验5与实验6的核算结果分别为0.55 g·s−1和0.26 g·s−1

    图 4  20万m3石脑油罐区VOCs排放量反演结果
    Figure 4.  Estimate of annual VOCs emission amount by the 200 thousand cubic meters tank area

    对6组实验数据中的异常结果进行分析,实验5,污染物VOCs浓度明显高于其它实验,经与企业工作人员协商,罐区运行状态并无异常,与其它监测时段运行状态一致,下风向受体点污染物VOCs浓度偏高是受到西北侧污水处理单元的影响,而导致监测浓度并不仅仅来源于20万m3石脑油罐区,而是多源的叠加,监测数据明显异常,进而导致源强反演结果明显过大,实验6,参考采集的气象数据,实验6主导风向成西-西南风,而20万m3石脑油罐区西南侧为空旷地带,导致监测数据有所减小,亦使得数据的采集不符合反演模型的适用要求,反算结果误差较大。

    虽然通过源强反演模型对20万m3石脑油罐区无组织排放VOCs进行了源强反演,源强反演结果稳定,但是为了比较反演结果的准确性,仍需要与其它核算方法进行比较分析。

    当下国内外主要的石化罐区无组织排放核算办法可分成两种,一种是半经验半理论方法,主要包括美国EPA推荐方法、中国《石油库节能设计导则》方法、中国石油化工(CPCC)估算法等,另一种是纯经验方法,主要包括美国石油协会(API)经验方法、欧盟排放系数方法[20]等。

    我国亦于2015年出台了《石化行业VOCs污染源排查工作指南》[21],然而工作指南中的核算方法是以EPA推荐方法为基准的,对于罐区的无组织排放VOCs核算亦是如此,相关参数也是基于美国储罐构造现状推导出的,而由于在原料品质、储罐设计标准和管理水平等方面的差异,并不能完全适用于我国。尽管如此,工作指南中的核算方法,仍然是我国目前最主要的VOCs核算方法。如图5所示,模型反演结果与工作指南核算结果有一定差距,其中工作指南核算结果为0.65 t·month−1,计算结果来源于所研究炼化企业根据工作指南的自身核算,而源强反演核算结果为1.07 t·month−1,反演核算结果约比工作指南核算结果高45%。

    图 5  20万m3石脑油罐区10月份VOCs排放量估算结果
    Figure 5.  Estimate of VOCs emission by the 200 thousand cubic meters tank area in October

    综合考虑指南核算方法与源强反演核算方法,从两个角度对图5的结果进行分析,指南核算方法以EPA核算方法为依托,EPA推荐的核算方法,综合考虑了各种储罐和储存物料,计算过程考虑了各种影响因素,并具有缜密的公式推导和实验基础,然而针对于储罐无组织排放的VOCs核算自然是以美国的自身状况为基础,其气候条件、罐体特征、管理方法、控制措施等与我国存在一定的区别,使得该方法在美国适用良好,在我国进行的石化现场核算必然存在一定差距,国外的许多核算方法在我国石化企业直接使用,会造成较大的误差,不宜直接使用。

    基于遥感FTIR-扩散模式反推的源强反演方法,前期通过模拟气体释放实验,已验证该反演模型反演结果稳定可接受,其中模拟误差<15%,然而在现场的实际应用中还存在来自现场监测环境、气象条件以及储罐自身运行状态等因素的影响,以此评估储罐VOCs排放状况,误差范围会进一步扩大,不过,45%的差距仍是难以接受,分析可能与温度等气象条件有关,现场监测的数据采集是在晴朗的白天进行,并以此为基础推算10月份的VOCs排放量,没有考虑到夜晚低温带来的低排放量状况,而导致整体核算结果偏高。

    针对于石化罐区无组织排放VOCs,建立了同时具备遥感FTIR和扩散模式反推法两者优势的源强反演模型,摆脱了遥感FTIR在不能直接反映待测参数(如气体浓度)在空间的分布方面的限制,拓宽了遥感FTIR技术的应用范围,亦避免了传统扩散模式反推法在定点采样分析方面的缺陷。

    为了更详尽地检验源强反演模型的实际应用状况,同时为我国石油炼制行业储罐区VOCs排放特征提供参考,为工业面源VOCs排放量计算方法的构建提供数据支撑,在我国北方某石化企业20万m3石脑油罐区进行了现场应用实验。研究表明:(1)监测时段内20万m3石脑油罐区VOCs无组织排放稳定,受体点与背景点在VOCs浓度及化学组分上存在明显差异,20万m3石脑油罐区VOCs排放量大,对局地大气环境存在明显影响;(2)以扣除了背景浓度的受体浓度VOCs作为20万m3石脑油罐区所在的贡献,获得了20万m3石脑油罐区VOCs排放成分谱图;(3)针对20万m3石脑油罐区,分别以源强反演模型和指南公式法对其10月份VOCs排放量进行计算,结果分别为1.07 t·month−1、0.65 t·month−1,两者存在一定差异,分析主要原因是指南公式法在我国应用的不适用以及监测时段的温度条件所致。

    虽构建了针对于罐区无组织排放VOCs的源强反演模型,也通过模拟实验检验了该模型核算结果的准确性,但现场应用条件的复杂性,打破了模拟实验的反演误差,为了准确确定污染源VOCs的排放状况,需进行长期的现场监测,综合考虑环境温度及装置的运行状态,并将排放量与之建立数量关系,以量化反演模型的准确性。

  • 图 1  不同改良处理中土壤pH的变化

    Figure 1.  Changes of soil pH under different soil amendments

    图 2  不同改良处理中土壤EC的变化

    Figure 2.  Changes of soil EC under different soil amendments

    图 3  不同改良处理中土壤有机质含量的变化

    Figure 3.  Changes of soil SOM under different soil amendments

    图 4  不同改良处理中土壤营养物质含量的变化

    Figure 4.  Changes of soil nutrient elements under different soil amendments

    图 5  不同改良处理中黑麦草发芽率的变化

    Figure 5.  Changes of germination rate of Ryegrass under different soil amendments

    图 6  不同改良处理中黑麦草叶片数量的变化

    Figure 6.  Changes of leaf number of ryegrass under different soil amendments

    表 1  实验材料主要理化性质

    Table 1.  Physical and chemical properties of test materials

    实验材料pHEC/(mS·cm−1)有机质/%全氮/(g·kg−1)全磷/(g·kg−1)全钾/(g·kg−1)
    土壤8.71.302.250.41.0512.7
    堆肥7.30.37112.01.362.3110.44
    烟气脱硫石膏7.2<0.001<0.001<0.1
      注:实验植物为黑麦草(Lolium perenne L.),种植前于实验室恒温箱内进行发芽率实验,发芽率约为90.0%。
    实验材料pHEC/(mS·cm−1)有机质/%全氮/(g·kg−1)全磷/(g·kg−1)全钾/(g·kg−1)
    土壤8.71.302.250.41.0512.7
    堆肥7.30.37112.01.362.3110.44
    烟气脱硫石膏7.2<0.001<0.001<0.1
      注:实验植物为黑麦草(Lolium perenne L.),种植前于实验室恒温箱内进行发芽率实验,发芽率约为90.0%。
    下载: 导出CSV

    表 2  不同处理中黑麦草生长特征的变化

    Table 2.  Changes of growth characteristics of ryegrass under different soil amendments

    处理总湿质量/g地上干质量/g地下干质量/g株高/cm根长/cm
    T10.146±0.012a0.021±0.001a0.009±0.001a13.0±1.20a13.8±2.25a
    T20.191±0.052b0.024±0.004a0.010±0.002a14.8±0.52a16.4±2.30a
    T30.201±0.004b0.029±0.001b0.011±0.001a16.8±0.36b19.6±1.52b
    T40.281±0.009c0.030±0.003b0.013±0.001b19.6±0.52c22.0±3.01b
    T50.303±0.041c0.036±0.002c0.014±0.002b21.8±0.07c24.4±2.10c
    T60.371±0.020c0.042±0.002d0.013±0.001b24.6±0.21d28.1±2.10d
    处理总湿质量/g地上干质量/g地下干质量/g株高/cm根长/cm
    T10.146±0.012a0.021±0.001a0.009±0.001a13.0±1.20a13.8±2.25a
    T20.191±0.052b0.024±0.004a0.010±0.002a14.8±0.52a16.4±2.30a
    T30.201±0.004b0.029±0.001b0.011±0.001a16.8±0.36b19.6±1.52b
    T40.281±0.009c0.030±0.003b0.013±0.001b19.6±0.52c22.0±3.01b
    T50.303±0.041c0.036±0.002c0.014±0.002b21.8±0.07c24.4±2.10c
    T60.371±0.020c0.042±0.002d0.013±0.001b24.6±0.21d28.1±2.10d
    下载: 导出CSV

    表 3  不同处理中黑麦草植株内营养物质的变化

    Table 3.  Changes of nutrients in ryegrass under different soil amendments mg·kg−1

    处理全氮全磷全钾
    T14.268±0.232a0.206±0.015a5.200±0.192a
    T25.584±0.158b0.154±0.015b5.641±0.067b
    T36.957±0.176c0.159±0.020b6.000±0.307c
    T48.662±0.337d0.166±0.013b6.041±0.232c
    T59.333±0.197d0.191±0.004a6.803±0.081d
    T610.238±0.348e0.207±0.017a7.324±1.263d
    处理全氮全磷全钾
    T14.268±0.232a0.206±0.015a5.200±0.192a
    T25.584±0.158b0.154±0.015b5.641±0.067b
    T36.957±0.176c0.159±0.020b6.000±0.307c
    T48.662±0.337d0.166±0.013b6.041±0.232c
    T59.333±0.197d0.191±0.004a6.803±0.081d
    T610.238±0.348e0.207±0.017a7.324±1.263d
    下载: 导出CSV
  • [1] 李小平, 刘晓臣, 毛玉梅, 等. 烟气脱硫石膏对围垦滩涂土壤的脱盐作用[J]. 环境工程技术学报, 2014, 4(6): 502-507. doi: 10.3969/j.issn.1674-991X.2014.06.079
    [2] AIKEN G E, POTE D H, et al. Amendment effects on soil test phosphorus[J]. Journal of Environmental Quality, 2005, 34(5): 1682-1686. doi: 10.2134/jeq2004.0373
    [3] CHEN L M, KOST D, DICK W A. Flue gas desulfurization products as sulfur sources for corn[J]. Soil Science Society of America Journal, 2008, 72(5): 1464-1470. doi: 10.2136/sssaj2007.0221
    [4] 肖国举, 罗成科, 张峰举, 等. 燃煤电厂脱硫石膏改良碱化土壤的施用量[J]. 环境科学研究, 2010, 23(6): 762-767.
    [5] CHEN L M, DICK W A. Gypsum as an agricultural amendment: general use guidelines[R]. The Ohio State University Extension Service, Columbus, 2011: 1-5.
    [6] FAVARETTO N, NORTON L D, JOHNSTON C T, et al. Nitrogen and phosphorus leaching as affected by gypsum amendment and exchangeable calcium and magnesium[J]. Soil Science Society of America Journal, 2012, 76(2): 575-585. doi: 10.2136/sssaj2011.0223
    [7] 程镜润, 陈小华, 刘振鸿, 等. 脱硫石膏改良滨海土的脱盐过程与效果试验研究[J]. 中国环境科学, 2014, 34(6): 1505-1513.
    [8] MAO Y M, LI X P, DICK W A, et al. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China[J]. Journal of Environmental Sciences, 2016, 45(7): 224-230.
    [9] 贺坤, 李小平, 徐晨, 等. 烟气脱硫石膏对滨海盐渍土的改良效果[J]. 环境科学研究, 2018, 31(3): 547-554.
    [10] 吕子文, 方海兰, 黄彩娣. 美国园林植物废弃物的处置及对我国的启示[J]. 中国园林, 2007, 23(8): 90-92. doi: 10.3969/j.issn.1000-6664.2007.08.018
    [11] 崔萌, 李素艳, 杨田, 等. 园林绿化废弃物堆肥对公园绿地土壤的改良研究[J]. 中国农学通报, 2016, 32(17): 106-110. doi: 10.11924/j.issn.1000-6850.casb15120064
    [12] 张强, 孙向阳, 任忠秀, 等. 园林绿化废弃物堆肥用作花卉栽培基质的效果评价[J]. 中南林业科技大学学报: 自然科学版, 2011, 31(9): 7-13.
    [13] 顾兵, 吕子文, 方海兰, 等. 绿化植物废弃物堆肥对城市绿地土壤的改良效果[J]. 土壤, 2009, 41(6): 940-946. doi: 10.3321/j.issn:0253-9829.2009.06.016
    [14] 杨军, 孙兆军, 刘吉利, 等. 脱硫石膏糠醛渣对新垦龟裂碱土的改良洗盐效果[J]. 农业工程学报, 2015, 31(17): 128-135. doi: 10.11975/j.issn.1002-6819.2015.17.017
    [15] 国家林业局. 中华人民共和国林业行业标准: 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999.
    [16] FAVARETTO N, NORTON L D, JOEM B C, et al. Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff[J]. Soil Science Society of America Journal, 2006, 70(5): 1788-1796. doi: 10.2136/sssaj2005.0228
    [17] 温国昌, 徐彦虎, 林启美, 等. 草木樨与脱硫石膏对内蒙古盐渍化土壤的改良培肥作用与效果[J]. 干旱地区农业研究, 2016, 34(1): 81-86. doi: 10.7606/j.issn.1000-7601.2016.01.13
    [18] 贺坤, 李小平, 周纯亮, 等. 烟气脱硫石膏对滨海农耕土壤磷素形态组成的影响[J]. 生态学报, 2017, 37(9): 2935-2942.
    [19] 陈浩天, 张地方, 张宝莉, 等. 园林废弃物不同处理方式的环境影响及其产物还田效应[J]. 农业工程学报, 2018, 34(21): 239-244. doi: 10.11975/j.issn.1002-6819.2018.21.030
    [20] 李春越, 王益, PHILIP B, 等. pH对土壤微生物C/P比的影响[J]. 中国农业科学, 2013, 46(13): 2709-2716. doi: 10.3864/j.issn.0578-1752.2013.13.009
    [21] 郭晓博. 脱硫石膏对堆肥中氮素转化和腐殖化特征影响的研究[D]. 南宁: 广西大学, 2016.
    [22] CLARK R B, RITCHEY K D, BALIGAR V C. Benefits and constraints for use of FGD products on agricultural land[J]. Fuel, 2001, 80(6): 821-828. doi: 10.1016/S0016-2361(00)00162-9
    [23] 毛玉梅, 李小平. 烟气脱硫石膏对滨海滩涂盐碱地的改良效果研究[J]. 中国环境科学, 2016, 36(1): 225-231. doi: 10.3969/j.issn.1000-6923.2016.01.038
    [24] 邹璐, 范秀华, 孙兆军, 等. 盐碱地施用脱硫石膏对土壤养分及油葵光合特性的影响[J]. 应用与环境生物学报, 2012, 18(4): 575-581.
    [25] 徐秋桐, 孔樟良, 章明奎. 不同有机废弃物改良新复垦耕地的综合效果评价[J]. 应用生态学报, 2016, 27(2): 567-576.
    [26] 李万才, 张丽蓉, 马海林. 城市固体废弃物堆肥与化肥对不同土壤植物生长的影响研究[J]. 中国生态农业学报, 2006, 14(2): 107-110.
    [27] 龚小强. 园林绿化废弃物堆肥产品改良及用作花卉栽培代用基质研究[D]. 北京: 北京林业大学, 2013.
    [28] 包立, 刘惠见, 邓洪, 等. 玉米秸秆生物炭对滇池流域大棚土壤磷素利用和小白菜生长的影响[J]. 土壤学报, 2018, 55(4): 815-824. doi: 10.11766/trxb201709210394
    [29] TISDALE S L, NELSON W L, BEATON J D 著. 土壤肥力与肥料[M]// 金继运, 刘荣乐, 译. 北京: 中国农业科技出版社, 1998: 163-211.
    [30] 刘雅辉, 王秀萍, 李强, 等. 淤泥质滨海重盐土低成本快速脱盐技术研究[J]. 水土保持研究, 2015, 22(1): 168-171.
  • 加载中
图( 6) 表( 3)
计量
  • 文章访问数:  3867
  • HTML全文浏览数:  3867
  • PDF下载数:  72
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-26
  • 录用日期:  2019-10-14
  • 刊出日期:  2020-02-01
贺坤, 童莉, 盛钗, 周纯亮, 陈小华, 孙海燕, 张志国. 烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良[J]. 环境工程学报, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158
引用本文: 贺坤, 童莉, 盛钗, 周纯亮, 陈小华, 孙海燕, 张志国. 烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良[J]. 环境工程学报, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158
HE Kun, TONG Li, SHENG Chai, ZHOU Chunliang, CHEN Xiaohua, SUN Haiyan, ZHANG Zhiguo. Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158
Citation: HE Kun, TONG Li, SHENG Chai, ZHOU Chunliang, CHEN Xiaohua, SUN Haiyan, ZHANG Zhiguo. Coastal saline soil remediation by mixed-use of flue gas desulfurization gypsum and green wastes compost[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 552-559. doi: 10.12030/j.cjee.201904158

烟气脱硫石膏和园林废弃物堆肥混合施用对滨海盐渍土壤的改良

    通讯作者: 张志国(1957—),男,博士,教授。研究方向:园林植物与生态景观修复。E-mail:zgzhang@sit.edu.cn
    作者简介: 贺坤(1982—),男,博士,副教授。研究方向:城市生态景观修复。E-mail:hekun@sit.edu.cn
  • 1. 上海应用技术大学生态技术与工程学院,上海 201418
  • 2. 上海市环境科学研究院,上海 200233
基金项目:
上海市科委科技创新行动计划项目(15DZ1203706);上海张江国家自主创新示范区专项发展资金项目(201701-PD-JQ-A5055-007);上海市奉贤区科委社会类科技发展基金项目(201703)

摘要: 为克服烟气脱硫石膏改良盐碱地存在的土壤盐分升高、营养物质降低等不足,通过对不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用,且开展了其对上海南汇滨海盐渍土的改良效应研究。结果表明:2种改良剂混合施用能显著降低滨海盐渍土pH和全盐含量,增加土壤营养物质含量和植物生物量,并提高植物对营养物质的吸收能力;与对照相比,当烟气脱硫石膏施用量为25 g·kg−1时,土壤pH降低了10.9%,EC升高了8.4%,有效磷、有效氮和速效钾含量分别降低了30.1%、40.5%和36.1%,黑麦草发芽率下降了8.0%,植株内全氮、全钾含量均有所升高,但全磷含量减少了25.4%;混合施加不同重量配比的园林废弃物堆肥后,土壤pH降幅为6.8%~13.8%,EC降幅为4.2%~11.6%;土壤有效磷、有效氮和速效钾含量增幅分别为96.0%~182.7%、40.0%~186.7%和71.7%~157.5%;黑麦草发芽率和生物量逐渐增加,在园林废弃物堆肥施用量为40%时,与对照处理相比,此时植物发芽率达到90.0%,总湿重、地上干重、株高和根长等分别增加了154.1%、100.0%、89.2%和103.6%,植株体内氮和钾含量分别增加了139.9%和40.8%,磷的含量则接近对照处理。通过分析可知,烟气脱硫石膏和园林废弃物混合施用可较好地改良滨海盐渍土壤,并为城市固废的适合处置方式和综合利用途径提供了参考。

English Abstract

  • 滨海土壤盐渍化严重,仅靠降雨淋洗和植物演替进行土壤改良需数10年、甚至更长时间,必须通过技术措施进行改良才能用于绿林建设[1]。近年来,烟气脱硫石膏对盐渍土壤的改良和修复效应得到较好地验证,其被认为是一项成本低、修复速率快的滨海盐渍土壤改良剂[2-4]。烟气脱硫石膏可以有效降低盐渍土壤pH和碱化度[5-7],但也存在一些不足。程镜润等[7]研究发现,烟气脱硫石膏在显著降低pH和碱化度的同时,也会增加土壤含盐量,并降低了土壤有效磷含量;MAO等[8]研究发现烟气脱硫石膏会导致土壤全盐量增加,并降低了土壤有机质和速效磷,影响了黑麦草的发芽率;贺坤等[9]研究发现,烟气脱硫石膏改良滨海盐渍土会使土壤EC有明显增加,土壤速效磷、速效钾含量降低。城市园林废弃物通过堆肥处理和微生物分解会转化形成腐殖质,可增加土壤营养物质含量、促进养分的转化,提高营养物质的有效性[10-11]。张强等[12]和顾兵等[13]研究表明,园林废弃物堆肥可以改善植物生长状况和基质通气性、保水性和养分供应能力,提高土壤有机物质含量和土壤肥力,并对土壤有害阴、阳离子能起到缓冲作用,明显改善土壤物理性状和盐分组成。

    为克服烟气脱硫石膏改良滨海盐渍土壤中产生的土壤含盐量增大、营养物质减少等不足的缺点,本研究通过盆栽实验开展了不同重量配比的园林废弃物堆肥与适量烟气脱硫石膏混合施用对滨海盐渍土的改良效果研究,分析了混合改良剂对盐渍土壤理化性质和植物生长发育的影响,为滨海盐渍土改良提供技术参考,并为城市固废提供适合的处置方式和综合利用途径。

  • 实验土样取自上海南汇东滩的表层盐渍土,自然风干后磨碎过2 mm筛作为原土备用;园林废弃物堆肥取自上海植物园,主要原料是植物树枝及落叶等;烟气脱硫石膏取自上海外高桥电厂,主要成分为CaSO4·2H2O (CaSO4占含量的90.0%),营养物质含量较少,主要实验材料的理化性质见表1

  • 根据程镜润等[7]和MAO等[8]的实验结果,25 g·kg−1是该区域盐渍土改良剂的适宜施用量,因此,本研究中烟气脱硫石膏施加量为固定的25 g·kg−1。实验于上海应用技术大学玻璃温室内进行,设6个水平的处理,分别为:T1处理(原土,空白对照)、T2处理(原土+烟气脱硫石膏)、T3处理(原土+烟气脱硫石膏+5%堆肥)、T4处理(原土+烟气脱硫石膏+10%堆肥)、T5处理(原土+烟气脱硫石膏+20%堆肥)、T6处理(原土+烟气脱硫石膏+40%堆肥),其中堆肥百分比均为重量配比,每个处理的土壤重量均为2.0 kg,各5次重复。

    首先将50 g烟气脱硫石膏与原土混合(T1处理除外),然后将堆肥按不同重量配比,分别加入制成样品装盆。实验过程中保持良好的温度和湿度条件,不断浇水以保持土壤湿度,保证改良剂与土壤充分反应,并通过浇灌排出土壤盐分。60 d后种植黑麦草,每个样盆放入20颗黑麦草种子,种植期间,浇水量以盆底刚刚渗出水为宜,各样盆统一浇水和管理措施,种植20 d后统计黑麦草发芽情况,50 d左右盆栽实验结束。

  • 盆栽实验结束后,选取10株长势相近的黑麦草植株冲洗干净,分别测定地上、地下部分长度以及总重;然后将植株放置于烘箱内以85 ℃进行12 h烘干,取出后分别测定地上、地下部分干重。最后将植株样品研磨成粉末状,过1 mm筛后,采用H2SO4-H2O2消煮,测定全氮、全磷和全钾含量。实验结束后,收集土壤样品,风干后,过1 mm筛,以测试理化性质。土壤pH采用酸度计实测,土壤电导率值采用电导仪[14]测定;土壤有机质、有效磷、有效氮、速效钾的含量测定依照《森林土壤分析方法》[15]

  • 实验结果统计与分析采用Excel 2015和SPSS 17.0软件处理。土壤理化性质、养分含量、植物生长指标等均以实验重复平均值显示,不同处理间指标的差异采用Duncan法检验。

  • 图1为改良剂对土壤pH的影响。施加烟气脱硫石膏后土壤pH明显低于对照处理,由8.61降至7.67,降幅为10.9%,结果与已有研究[2, 6-7]的结果一致。烟气脱硫石膏施用量固定的情况下,混合施用园林废弃物堆肥,随着堆肥施用量的增加,pH呈现逐步降低的趋势,降幅为6.8%~13.8%;当堆肥重量配比在15%~20%时,盐渍土壤的pH下降最为明显。各处理下土壤pH均降到8.0以下,符合多数植物的生长要求。

    园林废弃物堆肥混合施用后,堆肥中的腐解酸能够与土壤碱性物质发生中和反应,致使土壤pH进一步降低。堆肥腐解酸还可以保持土壤水分和提高微生物活性[13],也会降低土壤pH。腐殖酸类物质也可以结合烟气脱硫石膏中的钙离子,减少钙离子对钠离子的置换,因此,在大量使用堆肥的情况下土壤pH能够较快地趋于稳定。

    图2为改良剂对土壤EC的影响。在盐渍土壤中加入烟气脱硫石膏后EC显著升高,增幅可高达8.4%,其原因是烟气脱硫石膏是一种中等溶解度盐,可以连续释放硫酸根离子和钙离子[16]。在烟气脱硫石膏施用量固定的情况下,进一步增施堆肥可以降低土壤EC,堆肥重量配比20%~40%时,对比T2处理,EC降低了11.6%,对比T1处理,EC也降低了4.2%左右。这说明混合改良剂可以降低土壤全盐含量,堆肥增加了土壤孔隙度,提高了土壤渗透性,随着时间的推移,土壤中随水运移速度较快的盐离子会被进一步淋洗掉。

  • 图3是改良剂对土壤有机质含量的影响。施加烟气脱硫石膏后盐渍土壤有机质含量下降21.6%左右。施加不同重量配比的堆肥后,土壤有机质含量随堆肥施用量增加逐步升高,T6处理时,盐渍土壤有机质含量比对照处理高出171.6%。在施加烟气脱硫石膏后,土壤有机质含量下降的主要原因是土壤pH的降低减少了有机质在水中的溶解,降低了水溶性有机质的含量[17]。园林废弃物堆肥中的有机质含量很高,增施到盐渍土壤后可使土壤有机质含量有较大程度的增加。

    图4为改良剂对土壤营养物质含量的影响。施加烟气脱硫石膏后盐渍土壤有效磷、有效氮和速效钾含量均有所降低,降幅分别为30.1%、40.5%和36.1%。相对于T2处理,施加堆肥后盐渍土壤中有效磷、有效氮和速效钾含量均有明显增加,增幅分别为96.0%~182.7%,40.0%~186.7%和71.7%~157.5%。

    烟气脱硫石膏中的钙离子在交换盐渍土壤胶体上的钠离子后,仍会以交换态形式留在土壤中吸附土壤中富集的磷酸根离子[18],或置换土壤中的铵离子和交换性钾离子,并随水流出而降低了土壤营养物质含量[8-9]。由于堆肥的主要原料来源于植物枝条和落叶等,可促进土壤中小团聚体向大团聚体转化,提高土壤中毛管孔隙度和饱和导水率,可以显著提高氮、磷、钾含量[19]。此外,随着土壤pH的降低,土壤微生物活性增大,这可能将部分磷转化为易于被植物吸收的形态,从而导致土壤有效磷的明显增加[20]。而有效氮的增加还可能与烟气脱硫石膏促进了堆肥中的有机氮释放有关[21],吕子文等[10]的研究结果则表明堆肥可以促进土壤中钾的活性,增加了土壤速效钾的含量。

  • 改良剂对植物发芽率和叶片数量的影响见图5图6。由图5可知,黑麦草在盐渍土壤条件下的发芽率仅有50.0%,施加烟气脱硫石膏后,发芽率降至42.0%左右,这说明烟气脱硫石膏虽能降低土壤碱化度,但短时间内过量施用会导致盐分过量积累,以致土壤含盐浓度超过植物正常的耐受力,从而影响了黑麦草发芽率,该结果与CLARK等[22]和毛玉梅等[23]的研究结果一致。施加园林废弃物堆肥后,土壤孔隙度增大,土壤pH降低,均可促进植物种子萌发和发芽率的提升。结果表明,随着堆肥施用量的增加,黑麦草发芽率也逐渐增加,当堆肥重量配比为40%时,发芽率达到90.0%左右。

    图6可知,施加烟气脱硫石膏后的黑麦草叶片分蘖数大于对照处理,但差异不显著。随着堆肥施用量的增加,黑麦草叶片分蘖数也逐步增加,但堆肥重量配比为20%~40%时,差异并不显著。

  • 表2为改良剂对黑麦草生长特征变化的影响结果。施加烟气脱硫石膏后黑麦草的重量和高度均比对照处理有所增加,但差异并不显著。混合园林废弃物堆肥后,黑麦草重量和高度等指标均随堆肥施用量增加而呈现逐渐增加的趋势。T6处理时,黑麦草总湿质量、地上干质量、株高和根长等均达到最大值,分别较对照处理增加了154.1%、100.0%、89.2%和103.6%,比单一施加烟气脱硫石膏的处理增加了94.2%、75.0%、66.2%和71.3%。

    烟气脱硫石膏中所含高价离子可降低土壤胶体表面由负电荷相互排斥而产生的电位势,促进土壤胶体的凝聚,从而利于土壤团粒结构形成,改善作物根系的生长环境,促进作物的生长和发育[1, 7-8, 24]。烟气脱硫石膏中大量的钙和硫等营养物质也会促进植物的生长[7],因此部分土壤营养物质的减少并没有影响到植物生物量的增加。混合改良剂施用后,由于土壤pH、全盐的降低以及土壤有机质、营养物质的增加,进一步促进了黑麦草的生长。园林废弃物堆肥不仅进改善了盐渍土壤的容重与孔隙度[25],提高了土壤养分含量,而且烟气脱硫石膏经过一段时间的灌溉溶解后脱盐程度也会逐步增大[9],两者混合施用对盐碱地植物的根系生长更加有利[26]

  • 表3是改良剂对黑麦草植株内营养物质变化的影响。施加烟气脱硫石膏后植株全氮、全钾含量均有所升高。混合施用园林废弃物堆肥后,植株全氮、全钾含量再度升高,且随堆肥施加量增加而呈现上升的趋势,与T1和T2处理相比差异显著。T6处理时,植株全氮、全钾含量增加效果最为明显,分别较对照处理增加了139.9%和40.8%,比单一施加烟气脱硫石膏的处理增加了83.3%和29.8%。植株全磷含量在施加烟气脱硫石膏后有所下降,降幅为25.4%。混合施加园林废弃物堆肥后,随着堆肥施加量的增加,植株全磷含量也逐渐增加,T6处理时略高于对照处理。结果表明,烟气脱硫石膏抑制了植物对土壤有效磷的吸收,施用肥后土壤有效磷增加,植物吸收磷的数量也增加,与龚小强[27]的研究结果一致。

    施加烟气脱硫石膏或者2种改良剂混合施用,植物体内的全氮、全钾含量均有所增加,说明烟气脱硫石膏的施用虽然降低了土壤营养物质含量,但并未影响到植物对氮、钾2种营养物质的吸收,其原因应该是由于土壤孔隙度的增大和pH的降低促进了植物的根系生长(植物的根系长度和地下重量均增加),而植物根系对养分的生物有效性有重要作用。

    烟气脱硫石膏施用后植株的全磷含量有明显下降,这说明烟气脱硫石膏抑制了植物对磷的吸收。相关研究表明,土壤中的磷大部分都是迟效性的,植物生长对磷的利用率本来就比较低,一般为5%~15%,因此,土壤有效磷的含量直接影响植物体内的磷含量[28-29],烟气脱硫石膏减少了土壤有效磷含量,也就降低了植株中的全磷含量。混合园林废弃物堆肥后,植物体内全磷含量逐步增加,这说明堆肥能将自身磷转换成易被植物吸收的有效磷[13],植株全磷含量相应增加。

  • 研究结果表明,烟气脱硫石膏施用量固定的情况下,园林废弃物堆肥占比越高,植物生长越旺盛。但张强等等[12]的研究结果表明,过高的比例会影响植物生长,对花卉生长和品质的影响效果出现降低趋势,园林废弃物堆肥的添加比例以30%~50%为宜[11, 13]。根据本研究的结果,推荐使用25 g·kg−1作为烟气脱硫石膏最佳施用量,以及20%~40%作为园林废弃物堆肥的最佳重量比,在此条件下即可取得较好的盐渍土改良效果。目前,上海地区烟气脱硫石膏出厂费用大约60元·t−1,而园林废弃物堆肥的生产成本约为100元·t−1,因此,按照改良10 000 m2(翻深30 cm,土壤容重1.40 g·cm−3)盐渍土壤计算,需要105 kg的烟气脱硫石膏和840 kg的园林废弃物堆肥,合计成本费用大约仅需要90.3元。目前,滨海盐渍土改良普遍采用灌溉压盐、埋管排盐等方法,轻、中度碱化盐土的改良多在一定灌排条件下结合农业生物措施改良,重碱化盐土的改良则主要是配合化学改良剂[30],以上方法无论是时间和成本都相对较高。本研究中2种改良剂的施用成本相对于传统的工程措施和材料而言都相对较低,还能够降低城市固体废弃物的处理成本。

  • 1)烟气脱硫石膏能显著降低滨海盐渍土壤pH,但增加了土壤全盐含量。混合园林废弃物堆肥后,土壤pH进一步降低,同时增加了土壤盐离子的流失,进而降低了土壤全盐含量。

    2)烟气脱硫石膏和园林废弃物堆肥2种改良剂的混合施用,能够显著增加盐渍土壤营养物质的含量,从而改善了单独施用烟气脱硫石膏改良盐碱土所造成的土壤营养物质降低的不足。

    3)烟气脱硫石膏混合园林废弃物堆肥一起施用可以提高盐渍土壤植物发芽率,有效改善土壤的理化性质,增加土壤和植物体内的营养物质含量,最终增加植物的生物量。

    4)相对于传统的工程措施和改良材料,烟气脱硫石膏混合园林废弃物堆肥施用成本较低,还可以作为城市固体废弃物处理的有效手段,降低固废处理成本,一举两得。

参考文献 (30)

返回顶部

目录

/

返回文章
返回