-
挥发性有机物(volatile organic compound,VOCs)是熔点低于室温且沸点为50~260 ℃的挥发性有机化合物的总称[1]。大气中的VOCs会危害人群健康[2],影响空气质量并可造成城市光化学烟雾[3]。研发高效低耗的VOCs治理技术是控制VOCs污染的关键。目前,VOCs治理技术主要分为源头控制与末端治理2类[4-6]。其中,催化燃烧法在金属印刷、绝缘材料、油漆、石油化工等行业高浓度VOCs治理中应用广泛[7-9],但存在催化剂价格昂贵、易失活等问题。
臭氧化VOCs治理技术以催化臭氧化技术为代表。EINAGA等[10]将锰氧化物负载至USY沸石上,可催化臭氧化苯环直至矿化。黄金花等[11]制备了MOx/Y催化剂并用于催化臭氧化甲苯气体,该催化剂具有良好的氧化性能和选择性。目前,微气泡臭氧化技术因其具有传质速率快、氧化能力强、臭氧利用率高等优势,在废水治理[12]、地下水修复[13]、污泥减量化[14]等方面已有应用研究。微气泡臭氧化技术能够强化难溶性甲苯气体吸收-氧化过程,可以获得97%以上的去除率和88%以上的氧化矿化率[15],而微气泡臭氧化技术对易溶性VOCs的吸收-氧化去除过程还有待研究。气态乙酸乙酯(ethyl acetate,EA)在臭氧催化氧化中可分解为乙酸、乙烯等中间产物,而后被彻底氧化矿化[16],但溶解吸收后乙酸乙酯的臭氧化降解过程尚需探究。
本研究以纯水作为吸收-氧化反应介质,以易溶性乙酸乙酯气体作为模型VOCs气体,采用微气泡臭氧化术对模拟高浓度乙酸乙酯气体进行处理;同时,比较了普通气泡和微气泡处理过程对乙酸乙酯气体的处理性能,分析了乙酸乙酯气体在实验条件下的吸收-氧化动力学以及吸收后乙酸乙酯氧化矿化反应过程,以期为微气泡臭氧化技术处理高浓度VOC气体处理提供参考。
微气泡臭氧化强化吸收-氧化处理高浓度乙酸乙酯气体
Treatment of high-concentration ethyl acetate gas by enhanced absorption and oxidation using microbubble and ozonation
-
摘要: 采用微气泡臭氧化处理模拟高浓度乙酸乙酯气体,考察了强化吸收与氧化去除体系的性能、反应动力学及氧化反应的过程。结果表明,微气泡臭氧化能明显提高易溶性乙酸乙酯气体吸收-氧化处理的效率,乙酸乙酯气体整体平均去除率高于96%,氧化矿化率可达到90.22%,高于普通气泡臭氧化过程的63.25%和47.15%。微气泡臭氧化可提高臭氧利用效率,累积臭氧利用率可达到85.5%,高于普通气泡中的58.6%;同时,还可强化·OH氧化反应,提高臭氧化反应效率,反应中臭氧消耗量与乙酸乙酯TOC去除量比值(R)仅为1.04 mg∙mg−1,明显低于普通气泡臭氧化过程的1.53 mg∙mg−1。微气泡臭氧化处理中,乙酸乙酯传质吸收和氧化矿化反应均符合表观零级动力学方程,氧化矿化速率与传质速率基本平衡。以上结果表明,微气泡臭氧化处理可实现长期稳定高效处理乙酸乙酯气体。Abstract: The ethyl acetate removal performance, dynamics and oxidation reaction process in microbubble ozonation enhancing absorption-oxidation process were investigated. Results showed that microbubble ozonation could increase absorption and oxidation efficiency of soluble ethyl acetate gas. The total average removal efficiency of ethyl acetate was higher than 96% and the average mineralization efficiencies of ethyl acetate was 90.22% using microbubble ozonation, which were higher than 63.25% and 47.15% respectively using common bubble ozoantion. The ozone utilization efficiency was increased in microbubble ozoantion and the cumulative ozone utilization efficiency reached to 85.5%, which was higher than 58.6% in common bubble ozoantion. The ozonation reaction efficiency was also improved in microbubble ozonation due to enhanced ·OH oxidation. The ratio of ozone consumption to TOC removal of ethyl acetate was only 1.04 mg∙mg−1, which was lower than 1.53 mg∙mg−1 in common bubble ozonation. Both absorption and oxidation process of ethyl acetate were in accordance with the apparent zero order dynamics in microbubble ozonation. The oxidation mineralization rate of ethyl acetate was almost the same with its absorption rate in microbubble ozonation and this could realize long-term stable and efficient treatment of ethyl acetate gas.
-
Key words:
- microbubble /
- ozonation /
- ethyl acetate gas /
- absorption-oxidation dynamics /
- ·OH oxidation reaction
-
-
[1] 郝吉明, 马广大, 王书肖. 大气污染控制工程[M]. 北京: 高等教育出版社, 2010: 414-416. [2] LEE C R, YOO C I, LEE J H, et al. Hematological changes of children exposed to volatile organic compounds containing low levels of benzene[J]. Science of the Total Environment, 2002, 299(1/2/3): 237-245. [3] ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Sciences, 2017, 55(5): 69-75. [4] 吴永文, 李忠, 奚红霞, 等. VOCs污染控制技术与吸附催化材料[J]. 离子交换与吸附, 2003, 19(1): 88-95. doi: 10.3321/j.issn:1001-5493.2003.01.015 [5] 杨一鸣, 崔积山, 童莉, 等. 美国VOCs定义演变历程对我国VOCs环境管控的启示[J]. 环境科学研究, 2017, 30(3): 368-379. [6] 唐其文, 吴艳. 挥发性有机物VOCs监测方法及治理研究[J]. 环境与发展, 2018, 30(6): 159-161. [7] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139. [8] 黎维彬, 龚浩. 催化燃烧去除VOCs污染物的最新进展[J]. 物理化学学报, 2010, 26(4): 885-894. doi: 10.3866/PKU.WHXB20100436 [9] 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. doi: 10.3969/j.issn.1000-6923.2012.11.005 [10] EINAGA H, TERAOKA Y, OGATA A. Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite[J]. Journal of Catalysis, 2013, 305(1): 227-237. [11] 黄金花, 叶丽萍, 罗勇. MOx/Y催化剂常温催化臭氧氧化甲苯的性能[J]. 精细化工, 2019, 36(6): 1132-1137. [12] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589. [13] HU L M, XIA Z R. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials, 2018, 342: 446-453. doi: 10.1016/j.jhazmat.2017.08.030 [14] CHU L B, YAN S T, XING X H, et al. Enhanced sludge solubilization by microbubble ozonation[J]. Chemosphere, 2008, 72(2): 205-212. doi: 10.1016/j.chemosphere.2008.01.054 [15] 刘春, 庞晓克, 高立涛, 等. 水介质中微气泡臭氧化处理高浓度甲苯气体[J]. 环境工程学报, 2019, 13(1): 116-124. doi: 10.12030/j.cjee.201808174 [16] 李珊珊. 纳米MnO2催化臭氧氧化乙酸乙酯研究[D]. 北京: 北京化工大学, 2019. [17] 宋仁元, 张亚杰, 王唯一, 等. 水和废水标准检验法[M]. 北京: 中国建筑工业出版社, 1985: 368-370. [18] BADER H, HOIGNÉ J. Determination of ozone in water by the indigo method[J]. Water Research, 1981, 15(4): 449-456. doi: 10.1016/0043-1354(81)90054-3 [19] FONTMORIN J M, BURGOS Castillo R C. Stability of 5, 5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction[J]. Water Research, 2016, 99(1): 24-32. [20] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Physical Chemistry B, 2007, 111(6): 1343-1347. doi: 10.1021/jp0669254 [21] LI P, TAKAHASHI M, CHIBA K. Degradation of phenol by the collapse of microbubbles[J]. Chemosphere, 2009, 75(10): 1371-1375. doi: 10.1016/j.chemosphere.2009.03.031 [22] LIU Y N, ZHANG H, SUN J H, et al. Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles[J]. Chemical Engineering Journal, 2018, 345: 679-687. doi: 10.1016/j.cej.2018.01.057 [23] 钟理, 张浩, 陈英, 等. 臭氧在水中的自分解动力学及反应机理[J]. 华南理工大学学报(自然科学版), 2002, 30(2): 83-86. [24] 谭桂霞, 陈烨璞, 徐晓萍. 臭氧在气态和水溶液中的分解规律[J]. 上海大学学报(自然科学版), 2005, 11(5): 510-512. [25] KIM M S, CHA D W, LEE K M, et al. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes[J]. Water Research, 2020, 169: 115230. doi: 10.1016/j.watres.2019.115230 [26] TAKAHASHI M, CHIBA K, LI P. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions[J]. Physical Chemistry B, 2007, 111(39): 11443-11446. doi: 10.1021/jp074727m [27] ZHANG J, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201(1): 10-18.