-
生物炭特指为生物质在缺氧或有限氧气供应条件下,在相对较低温度下(<700 ℃)热解得到的富碳产物,通过施入土壤进行土壤管理,旨在改良土壤、提升地力、实现碳封存[1],2013年,国际生物炭协会(IBI)再次完善了生物炭的概念和内涵,指出生物炭是生物质在缺氧条件下通过热化学转化得到的固态产物,它可以单独或者作为添加剂使用,能够改良土壤、提高资源利用效率、改善或避免特定的环境污染,以及作为温室气体减排的有效手段。这一概念更侧重于在用途上区分生物炭与其他炭化产物,进一步突出其在农业、环境领域中的作用[2]。生物炭是一种多孔、高比表面积、难降解、含碳丰富的材料[3],在土壤中具有高度的稳定性,可以存在上千百万年[4-6]。研究表明生物炭对污染物具有高吸附性能,在土壤污染修复上具有很大的潜力[7-8]。近十年,研究者高度关注生物炭对土壤中重金属的影响,且多集中于生物炭固定土壤重金属[9]、影响重金属淋溶[10]和吸附-解吸[11]、改变重金属形态以及生物炭对重金属生物有效性影响[12-13]的研究。很多研究结果表明,生物炭可以有效吸附和固定土壤重金属,使重金属从有效态向稳定态转化,降低重金属的生物有效性,其机制有两方面:一方面,生物炭具有高电负性,高阳离子交换量,表面有丰富的官能团(—OH, —COOH, —C=O—和C=N等),并含有矿物质元素[14]。因此,它可以与重金属发生直接的相互作用,比如静电吸引、离子交换、络合、沉淀。另一方面,生物炭通过影响土壤理化性质间接影响土壤中的重金属形态[15],进而影响其生物有效性[16]。在近几年,基于生物炭对土壤重金属影响的大量报道中,有多位学者利用荟萃分析,从不同的角度总结了生物炭对植物吸收重金属的影响[17-19]。重金属形态是影响重金属生物有效性的重要指标,然而迄今为止还缺少生物炭对土壤中重金属形态影响的归纳。因此,我们系统总结了生物炭对土壤重金属形态特征的影响,并分别对生物炭影响土壤和植物中重金属生物有效性及其机制进行了较为详细的阐述,在此基础上提出了未来的研究方向。
生物炭对土壤重金属形态及生物有效性影响的研究进展
Effect of biochar on soil heavy metal speciation and bioavailability: A review
-
摘要:
考察生物炭施入土壤后重金属形态以及生物有效性的变化是土壤学近年来的研究热点。重金属形态变化是衡量其生物有效性的一个较为重要的指标。将生物炭添加到土壤-动植物系统中,并评估重金属生物有效性有利于推进生物炭应用于土壤改良及重金属修复。因此,本文首先收集了大量关于生物炭对土壤重金属形态含量变化的数据。统计发现,生物炭添加下土壤中重金属Cd、Cu、Zn和Pb的不稳定态(可交换态/酸溶态)下降的平均百分率分别为25.6%、36.4%、16.5%和26.1%,稳定态(残渣态)升高的平均百分率分别为35.9%、22.9%、32.8%和46.5%。生物炭的原料、热解温度和土壤质地是影响重金属形态变化的主要因素。探讨了生物炭的添加对土壤重金属形态转化的影响机制。其次,总结了生物炭对土壤和生物体中的重金属生物有效性的影响,以及阐述了相应的影响机制。最后,基于目前的研究现状提出了未来的研究方向。
Abstract:Investigation on the variations of soil heavy metal speciation and bioavailability with the application of biochar is becoming a hot research topic in the field of soil science in recent years. Heavy metal speciation is an important indicator of bioavailability. Evaluation of heavy metal bioavailability with the addition of biochar in soil-animal/plant system is beneficial to promote the application of biochar in soil improvement and soil heavy metal remediation. Therefore, data on the changes of the content of heavy metal speciation induced by biochar were collected. It was found that the mean decrease percentages of labile fraction (exchangeable fraction/acid-soluble fraction) of Cd, Cu, Zn, Pb were 25.6%, 36.4%, 16.5%, and 26.1%, respectively. The mean increase percentages of recalcitrant fraction (residue fraction) were 35.9%, 22.9%, 32.8% and 46.5%, respectively. The effect of biochar on soil heavy metal speciation mainly depended on the feedstock and heating treatment temperature of biochar as well as soil texture. The mechanisms of biochar-induced changes in soil heavy metal speciation were discussed. Then, the influences of biochar on heavy metal bioavailability in soil and animal/plant were summarized and the corresponding mechanisms were stated. Finally, potential research directions in the future were proposed based on current research status.
-
Key words:
- biochar /
- soil heavy metals /
- speciation /
- bioavailability
-
图 3 生物炭诱导的土壤重金属Cd不稳定态(a)和稳定态(b)含量随生物炭原料、热解温度、添加量、实验时间、土壤质地、土壤pH和土壤有机碳含量的变化(红线代表平均值)
Figure 3. Changes of the contents of labile (a) and recalcitrant fraction (b) of Cd induced by biochar with feedstock, pyrolysis temperature, addition rate, experiment time, soil texture, soil pH and soil organic carbon content (red line represents the mean value)
图 4 生物炭诱导的土壤重金属Cu不稳定态(a)和稳定态(b)含量随生物炭原料、热解温度、添加量、实验时间、土壤质地、土壤pH和土壤有机碳含量的变化(红线代表平均值)
Figure 4. Changes of the contents of labile (a) and recalcitrant fraction (b) of Cu induced by biochar with feedstock, pyrolysis temperature, addition rate, experiment time, soil texture, soil pH and soil organic carbon content (red line represents the mean value)
图 6 生物炭诱导的土壤重金属Pb不稳定态(a)和稳定态(b)含量随生物炭原料、热解温度、添加量、实验时间、土壤质地、土壤pH和土壤有机碳含量的变化(红线代表平均值)
Figure 6. Changes of the contents of labile (a) and recalcitrant fraction (b) of Pb induced by biochar with feedstock, pyrolysis temperature, addition rate, experiment time, soil texture, soil pH and soil organic carbon content (red line represents the mean value)
图 5 生物炭诱导的土壤重金属Zn不稳定态(a)和稳定态(b)含量随生物炭原料、热解温度、添加量、实验时间、土壤质地、土壤pH和土壤有机碳含量的变化(红线代表平均值)
Figure 5. Changes of the contents of labile (a) and recalcitrant fraction (b) of Zn induced by biochar with feedstock, pyrolysis temperature, addition rate, experiment time, soil texture, soil pH and soil organic carbon content (red line represents the mean value)
表 1 不同类型生物炭对重金属生物有效性影响的研究
Table 1. Studies on the effect of different types of biochar on heavy metal bioavailability
原料
Feedstock热解温度/℃
Heat
treatment
temperature添加量/%
Addition
rate实验时间
Experiment
time重金属
Heavy
metals受试生物
Tested
organisms生物有效性
Bioavailability参考文献
References玉米秸秆 350 2 28 d Cd、Cu、Pb — DTPA萃取Cd、Cu、Pb浓度分别降低11.9%、14.3%和23.8% [74] 鸡粪 500 5 90 d Cu — NH4NO3萃取Cu降低73% [60] 水稻秸秆 500 1、5 1年 Pb、Cd — CaCl2萃取Pb和Cd分别降低29%和17.7% [61] 竹材 750 1、5 1年 Cu — CaCl2萃取Cu降低26.8%、31.9% [61] 竹材 700—800 2 2个月 Cd — DTPA萃取Cd降低13.4% [42] 园林废弃物 400 6 2个月 Pb、Cd、Cu、Zn 芥菜 DTPA萃取Pb、Cd、Cu、Zn分别降低29.56%、46.04%、59.98%和48.29%;芥菜植株中Cd降低87.97% [42] 杏壳、苹果树 500 5、10 50 d Cd、Zn 芥菜 DTPA萃取Zn降低9.1%和11.2%;DTPA萃取Cd降低11.7%和19.1%;芥菜生物量增加29.35%、18.72%;芥菜生物量降低2.84%、4.48% [73] 胡桃壳 350—500 1、2、5 117 d Pb、Zn 水稻 CaCl2萃取Pb、Zn分别降低41.04%—98.66%、17.78%—96.87%;水稻根、茎、果皮和籽粒降低45.63%、86.4%、64.75%和60.32% [33] 南洋缨
(木本植物)900 1、2.5、5 9周 Cr、Ni、Mn 番茄 MgCl2萃取Cr、Ni、Mn降低95%、14%和19%;番茄植株中Cr、Ni、Mn降低83%、89%和67% [93] 竹材 400 0.5、1、1.5 6个月 Cd 卷心菜、玉米 CaCl2萃取Cd降低93.1%、96.77%;DTPA萃取Cd降低24.55%、63.72%;卷心菜植株中Cd变化为34.5%—23.88%、60.21%—44.57%、80.64%—62.63%;玉米植株中Cd变化为16.73%—27.68%、56.73%—38.4%、79.59%—56.31% [94] 苎麻根 350—550 0.5、1 2个月 Pb、Cd 烟草 NH4NO3萃取Pb降低26.09%、54.35%;烟草叶中Pb降低26.12%、7.22%;烟草茎中Pb降低24.03%、30.52%;烟草叶中Cd降低91.72%和87.01% [95] 注:表中列出均为实验室模拟实验. -
[1] LEHMANN J, JOSEPH S. Biochar for environmental management: Science and technology[M]. London: Earthscan, 2009. [2] CHEN W, MENG J, HAN X, et al. Past, present, and future of biochar [J]. Biochar, 2019, 1(1): 75-87. doi: 10.1007/s42773-019-00008-3 [3] MA Z, YANG Y, WU Y, et al. In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin [J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 195-204. doi: 10.1016/j.jaap.2019.03.015 [4] 方婧, 金亮, 程磊磊, 等. 环境中生物质炭稳定性研究进展 [J]. 土壤学报, 2019, .56(5): 1034-1047. doi: 10.11766/trxb201808220426 FANG J, JIN L, CHENG LL, et al. Advancement in research on stability of biochar in the environment [J]. Acta Pedologica Sinica, 2019, .56(5): 1034-1047(in Chinese). doi: 10.11766/trxb201808220426
[5] SINGH B P, COWIE A L, SMERNLK R J. Biochar Carbon Stability in a Clayey Soil As a Function of Feedstock and Pyrolysis Temperature [J]. Environmental Science & Technology, 2012, 46(21): 11770-11778. [6] NGUYEN B T, LEHMANN J, KINYANGI J, et al. Long-term black carbon dynamics in cultivated soil [J]. Biogeochemistry, 2009, 92(1-2): 163-176. doi: 10.1007/s10533-008-9248-x [7] 张莹, 吴萍, 孙庆业, 等. 长期施用生物炭对土壤中Cd吸附及生物有效性的影响 [J]. 农业环境科学学报, 2020, 39(5): 1019-1025. doi: 10.11654/jaes.2020-0056 ZHANG Y, WU P, SUN Q Y, et al. Effect of long-term application of biochar on Cd adsorption and bioavailability in farmland soils [J]. Journal of Agro-Environment Science, 2020, 39(5): 1019-1025(in Chinese). doi: 10.11654/jaes.2020-0056
[8] 李晓娜, 宋洋, 贾明云, 等. 生物质炭对有机污染物的吸附及机理研究进展 [J]. 土壤学报, 2017, 54(6): 1313-1325. LI X N, SONG Y, JIA YM, et al. A review of researches on biochar adsorbing organic contaminantsand its mechanism [J]. Acta Pedologica Sinica, 2017, 54(6): 1313-1325(in Chinese).
[9] YOUNIS U, DANISH S, MALIK S A, et al. Role of cotton sticks biochar in immobilization of nickel under induced toxicity condition and growth indices of Trigonella corniculata L. [J]. Environmental Science and Pollution Research, 2020, 27(2): 1752-1761. doi: 10.1007/s11356-019-06466-3 [10] PENG Z, WEN J, LIU Y, et al. Heavy metal leachability in soil amended with zeolite- or biochar-modified contaminated sediment [J]. Environmental Monitoring and Assessment, 2018, 190(12): 751. doi: 10.1007/s10661-018-7124-2 [11] BOGUSZ A, OLESZCZUK P, DOBROWOLSKI R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil [J]. Environmental Geochemistry and Health, 2019, 41(4SI): 1663-1674. [12] BASHIR S, RIZWAN M S, SALAM A, et al. Cadmium Immobilization Potential of Rice Straw-Derived Biochar, Zeolite and Rock Phosphate: Extraction Techniques and Adsorption Mechanism [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(5): 727-732. doi: 10.1007/s00128-018-2310-z [13] JANUS A, WATERLOT C, HEYMANS S, et al. Do biochars influence the availability and human oral bioaccessibility of Cd, Pb, and Zn in a contaminated slightly alkaline soil? [J]. Environmental Monitoring and Assessment, 2018, 190(4): 218. doi: 10.1007/s10661-018-6592-8 [14] LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [15] HE L, ZHONG H, LIU G, et al. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China [J]. Environmental Pollution, 2019, 252(A): 846-855. [16] DAI S, LI H, YANG Z, et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil [J]. Human and Ecological Risk Assessment, 2018, 24(7): 1887-1900. doi: 10.1080/10807039.2018.1429250 [17] ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis [J]. Science of the Total Environment, 2021, 755: 142582. doi: 10.1016/j.scitotenv.2020.142582 [18] CHEN D, LIU X, BIAN R, et al. Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis [J]. Journal of Environmental Management, 2018, 222: 76-85. [19] PENG X, DENG Y, PENG Y, et al. Effects of biochar addition on toxic element concentrations in plants: A meta-analysis [J]. Science of the Total Environment, 2018, 616-617: 970-977. doi: 10.1016/j.scitotenv.2017.10.222 [20] TESSIER A, CAMPBELLl P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry (Washington), 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [21] ZHANG R, LI Z, LIU X, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar [J]. Ecological Engineering, 2017, 98: 183-188. doi: 10.1016/j.ecoleng.2016.10.057 [22] RIZWAN M S, IMTIAZ M, HUANG G, et al. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar [J]. Environmental Science and Pollution Research, 2016, 23(15): 15532-15543. doi: 10.1007/s11356-016-6695-0 [23] RAURET G, LOPEZ-SANCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. J Environ Monit, 1999, 1(1): 57-61. doi: 10.1039/a807854h [24] BOGUSZ A, OLESZCZUK P. Effect of biochar addition to sewage sludge on cadmium, copper and lead speciation in sewage sludge-amended soil [J]. Chemosphere, 2020, 239: 124719. doi: 10.1016/j.chemosphere.2019.124719 [25] MENG J, TAO M, WANG L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure [J]. Science of the Total Environment, 2018, 633: 300-307. doi: 10.1016/j.scitotenv.2018.03.199 [26] SHEN Z, ZHANG Y, JIN F, et al. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars [J]. Science of the Total Environment, 2017, 609: 1401-1410. doi: 10.1016/j.scitotenv.2017.08.008 [27] ZHU Q, WU J, WANG L, et al. Effect of biochar on heavy metal speciation of paddy soil [J]. Water, Air, & Soil Pollution, 2015, 226(12): 429. [28] UCHIMIYA M, CHANG S, KLASSON K T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups [J]. Journal of Hazardous Materials, 2011, 190(1-3): 432-441. doi: 10.1016/j.jhazmat.2011.03.063 [29] BASHIR S, SHAABAN M, HUSSAIN Q, et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil [J]. Journal of Soils and Sediments, 2018, 18(9): 2948-2959. doi: 10.1007/s11368-018-1981-8 [30] RIZWAN M S, IMTIAZ M, CHHAJRO M A, et al. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil [J]. Environmental Technology, 2016, 37(21): 2679-2686. doi: 10.1080/09593330.2016.1158870 [31] MUJTABA MUNIR M A, LIU G, YOUSAF B, et al. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil [J]. Environmental Pollution, 2020, 265: 114816. doi: 10.1016/j.envpol.2020.114816 [32] LEI S, SHI Y, QIU Y, et al. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals [J]. Science of the Total Environment, 2019, 646: 1281-1289. doi: 10.1016/j.scitotenv.2018.07.374 [33] CHAO X, QIAN X., ZHU H H , et al Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil [J]. Ecotoxicology and Environmental Safety, 2018, 164: 554-561. doi: 10.1016/j.ecoenv.2018.08.057 [34] XU C, CHEN H, XIANG Q, et al. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil–rice (Oryza sativa L.) system [J]. Environmental Science and Pollution Research, 2018, 25(2): 1147-1156. doi: 10.1007/s11356-017-0495-z [35] YANG X, LU K, MCGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs [J]. Journal of Soils and Sediments, 2017, 17(3): 751-762. doi: 10.1007/s11368-015-1326-9 [36] QIAN T, WANG Y, FAN T, et al. A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash [J]. Scientific Reports, 2016, 6(1): 33630. [37] PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals [J]. Plant and Soil, 2011, 348(1-2): 439-451. doi: 10.1007/s11104-011-0948-y [38] XU C, ZHAO J, YANG W, et al. Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil [J]. Environmental Pollution, 2020, 261: 114133. doi: 10.1016/j.envpol.2020.114133 [39] WU J, HSU F C, CUNNINGHAM S D. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints [J]. Environmental Science & Technology, 1999, 33(11): 1898-1904. [40] GONG X, HUANG D, LIU Y, et al. Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111510. doi: 10.1016/j.ecoenv.2020.111510 [41] LU K, YANG X, SHEN J, et al. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola [J]. Agriculture, Ecosystems & Environment, 2014, 191: 124-132. [42] AWAD M, MOUSTAFA-FARAG M, WEI L, et al. Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil [J]. Arabian Journal of Geosciences, 2020, 13(12): 439. doi: 10.1007/s12517-020-05376-w [43] HAN L, ZHAO X, JIN J, et al. Using sequential extraction and DGT techniques to assess the efficacy of plant- and manure-derived hydrochar and pyrochar for alleviating the bioavailability of Cd in soils [J]. Science of the Total Environment, 2019, 678: 543-550. doi: 10.1016/j.scitotenv.2019.05.039 [44] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071 [45] BEESLEY L, DICKINSON N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris [J]. Soil Biology and Biochemistry, 2011, 43(1): 188-196. doi: 10.1016/j.soilbio.2010.09.035 [46] HAN L, SUN K, YANG Y, et al. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon [J]. Geoderma, 2020, 364: 114184. doi: 10.1016/j.geoderma.2020.114184 [47] BURTON E D, PHILLIPS I R, HAWKER D W, et al. Copper behaviour in a podosol. 1. pH-dependent sorption - desorption, sorption isotherm analysis, and aqueous speciation modelling [J]. Soil Research, 2005, 43(4): 491. doi: 10.1071/SR04117 [48] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? [J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018 [49] GUSIATIN Z M, KURKOWSKI R, BRYM S, et al. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil [J]. Environmental Science and Pollution Research, 2016, 23(21): 21249-21261. doi: 10.1007/s11356-016-7335-4 [50] CAO R X, MA L Q, CHEN M, et al. Phosphate-induced metal immobilization in a contaminated site [J]. Environmental pollution (1987), 2003, 122(1): 19-28. doi: 10.1016/S0269-7491(02)00283-X [51] UCHIMIYA M, BANNON D I, WARTELLE L H, et al. Lead retention by broiler litter biochars in small arms range soil: Impact of pyrolysis temperature [J]. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5035-5044. doi: 10.1021/jf300825n [52] ZHAO B, XU R, MA F, et al. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil [J]. Journal of Environmental Management, 2016, 184: 569-574. doi: 10.1016/j.jenvman.2016.10.020 [53] HUA L, ZHANG H, WEI T, et al. Effect of biochar on fraction and species of antimony in contaminated soil [J]. Journal of Soils and Sediments, 2019, 19(6): 2836-2849. doi: 10.1007/s11368-019-02251-4 [54] AHMAD M, LEE S S, LEE S E, et al. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils [J]. Journal of Soils and Sediments, 2017, 17(3): 717-730. doi: 10.1007/s11368-015-1339-4 [55] BRADL H B. Adsorption of heavy metal ions on soils and soils constituents [J]. Journal of Colloid and Interface Science, 2004, 277(1): 1-18. doi: 10.1016/j.jcis.2004.04.005 [56] LIU B, HUANG Q, SU Y, et al. Rice busk biochar treatment to cobalt-polluted fluvo-aquic soil: Speciation and enzyme activities [J]. Ecotoxicology, 2019, 28(10): 1220-1231. doi: 10.1007/s10646-019-02134-x [57] CUI H, OU Y, WANG L, et al. The passivation effect of heavy metals during biochar-amended composting: Emphasize on bacterial communities [J]. Waste Management, 2020, 118: 360-368. doi: 10.1016/j.wasman.2020.08.043 [58] ISO17402.2008. Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. Geneva, Switzerland. [59] 窦磊, 周永章, 高全洲, 等. 土壤环境中重金属生物有效性评价方法及其环境学意义 [J]. 土壤通报, 2007(3): 576-583. doi: 10.3321/j.issn:0564-3945.2007.03.034 DOU L, ZHOU Y Z, GAO Q Z, et al. Methods and environmental implications of measuring bioavailability of heavy metals in soil environment [J]. Chinese Journal of Soil Science, 2007(3): 576-583(in Chinese). doi: 10.3321/j.issn:0564-3945.2007.03.034
[60] MEIER S, CURAQUEO G, KHAN N, et al. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil [J]. Journal of Soils and Sediments, 2017, 17(3): 741-750. doi: 10.1007/s11368-015-1256-6 [61] YANG X, LIU J, MCGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil [J]. Environmental Science and Pollution Research, 2016, 23(2): 974-984. doi: 10.1007/s11356-015-4233-0 [62] ARABYARMOHAMMADI H, DARBAN A K, ABDOLLAHY M, et al. Simultaneous immobilization of heavy metals in soil environment by pulp and paper derived nanoporous biochars [J]. Journal of Environmental Health Science and Engineering, 2018, 16(2): 109-119. doi: 10.1007/s40201-018-0294-6 [63] ZHAO M, DAI Y, ZHANG M, et al. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies [J]. Science of the Total Environment, 2020, 717: 136894. doi: 10.1016/j.scitotenv.2020.136894 [64] ZHANG G, GUO X, ZHAO Z, et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil [J]. Environmental Pollution, 2016, 218: 513-522. doi: 10.1016/j.envpol.2016.07.031 [65] TANG J, CAO C, GAO F, et al. Effects of biochar amendment on the availability of trace elements and the properties of dissolved organic matter in contaminated soils [J]. Environmental Technology & Innovation, 2019, 16: 100492. [66] PUGA A P, MELO L C A, de ABREU C A, et al. Leaching and fractionation of heavy metals in mining soils amended with biochar [J]. Soil and Tillage Research, 2016, 164: 25-33. doi: 10.1016/j.still.2016.01.008 [67] QU C, CHEN W, HU X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors [J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995 [68] DANG V M, JOSEPH S, Van H T, et al. Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces [J]. Environmental Technology, 2019, 40(24): 3200-3215. doi: 10.1080/09593330.2018.1468487 [69] HE E, YANG Y, XU Z, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars [J]. Science of the Total Environment, 2019, 673: 245-253. doi: 10.1016/j.scitotenv.2019.04.037 [70] XU W, HOU S, LI Y, et al. Bioavailability and speciation of heavy metals in polluted Soil as alleviated by different types of biochars [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 484-488. doi: 10.1007/s00128-020-02804-1 [71] KABIRI P, MOTAGHIAN H, HOSSEINPUR A. Effects of walnut leaves biochars on lead and zinc fractionation and phytotoxicity in a naturally calcareous highly contaminated soil [J]. Water, Air, & Soil Pollution, 2019, 230(11): 263. [72] MEIER S, MOORE F, GONZÁLEZ M, et al. Effects of three biochars on copper immobilization and soil microbial communities in a metal-contaminated soil using a metallophyte and two agricultural plants [J]. Environmental Geochemistry and Health, 2019: 1-16. [73] ALI A, SHAHEEN S M, GUO D, et al. Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil [J]. Environmental Pollution, 2020, 264: 114773. doi: 10.1016/j.envpol.2020.114773 [74] HUANG C, WANG W, YUE S, et al. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness [J]. Environmental Pollution, 2020, 263: 114586. doi: 10.1016/j.envpol.2020.114586 [75] CHEN X, HE H, CHEN G, et al. Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil [J]. Scientific Reports, 2020, 10(1): 9528. doi: 10.1038/s41598-020-65631-8 [76] MUNIR M A M, LIU G, YOUSAF B, et al. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110244. doi: 10.1016/j.ecoenv.2020.110244 [77] ZHENG R, CAI C, LIANG J, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings [J]. Chemosphere, 2012, 89(7): 856-862. doi: 10.1016/j.chemosphere.2012.05.008 [78] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil [J]. Environmental Pollution, 2010, 158(6): 2282-2287. doi: 10.1016/j.envpol.2010.02.003 [79] KARAMI N, CLEMENTE R, MORENO-JIMÉNEZ E, et al. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass [J]. Journal of Hazardous Materials, 2011, 191(1-3): 41-48. doi: 10.1016/j.jhazmat.2011.04.025 [80] BEESLEY L, MARMIROLI M, PAGANO L, et al. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.) [J]. Science of the Total Environment, 2013, 454-455: 598-603. doi: 10.1016/j.scitotenv.2013.02.047 [81] WANG R, WEI S, JIA P, et al. Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils [J]. Science of the Total Environment, 2019, 676: 627-638. doi: 10.1016/j.scitotenv.2019.04.133 [82] 谭凤娇. 生物炭及外生菌根真菌群落对森林土壤有机碳分解的作用[D]. 济南, 济南大学,2017. TAN F J. The effects of biochar and ectomycorrhizal fungi on the decomposition of forest soil organic carbon [D]. Jinan: University of Jinan, 2017 (in Chinese).
[83] TANG Y, SHI L, ZHONG K, et al. Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals [J]. Chemosphere (Oxford), 2019, 215: 115-123. doi: 10.1016/j.chemosphere.2018.09.143 [84] TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil [J]. Environment International, 2020, 137: 105576. doi: 10.1016/j.envint.2020.105576 [85] KHAN M A, MAHMOOD-UR-RAHMAN, RAMZANI P M A, et al. Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety [J]. Science of The Total Environment, 2020, 710: 136294. doi: 10.1016/j.scitotenv.2019.136294 [86] QIAO Y, CROWLEY D, WANG K, et al. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil [J]. Environmental Pollution, 2015, 206: 636-643. doi: 10.1016/j.envpol.2015.08.029 [87] LI H, LIU Y, CHEN Y, et al. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability [J]. Scientific Reports, 2016, 6(1): 31616. doi: 10.1038/srep31616 [88] GJORGIEVA ACKOVA D. Heavy metals and their general toxicity for plants [J]. Plant Science Today, 2018, 5(1): 14-18. doi: 10.14719/pst.2018.5.1.355 [89] DUBEY S, SHRI M, GUPTA A, et al. Toxicity and detoxification of heavy metals during plant growth and metabolism [J]. Environmental Chemistry Letters, 2018, 16(4): 1169-1192. doi: 10.1007/s10311-018-0741-8 [90] SHEN Z, CHEN Y, XU D, et al. Interactions between heavy metals and other mineral elements from soil to medicinal plant Fengdan (Paeonia ostii) in a copper mining area, China [J]. Environmental Science and Pollution Research, 2020, 27(27): 33743-33752. doi: 10.1007/s11356-020-09358-z [91] ODINGA, E S, WAIGI, M G, GUDDA, F O, et al. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars [J]. Environment International, 2020, 134: 105172. doi: 10.1016/j.envint.2019.105172 [92] RUAN X, SUN Y, DU W, et al. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review [J]. Bioresource Technology, 2019, 281: 457-468. doi: 10.1016/j.biortech.2019.02.105 [93] HERATH I, KUMARATHILAKA P, NAVARATNE A, et al. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar [J]. Journal of Soils and Sediments, 2015, 15(1): 126-138. doi: 10.1007/s11368-014-0967-4 [94] MOHAMED I, ZHANG G, LI Z, et al. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application [J]. Ecological Engineering, 2015, 84: 67-76. doi: 10.1016/j.ecoleng.2015.07.009 [95] SHEN X, HUANG D, REN X, et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil [J]. Journal of Environmental Management, 2016, 168: 245-251.