-
人类社会在快速发展工业和农业的同时也带来了严重的土壤重金属污染问题,土壤重金属污染降低了土地的可持续利用性,并且它也威胁着生态环境和人类的健康[1]。被污染土地中的重金属主要来源于矿产资源的开采和冶炼、工业“三废”的排放、用含重金属废水进行污灌,施用含有重金属农药、以及施用过量的磷肥等[2]。目前我国耕地中的Cd污染问题比较严重,据统计数据显示我国Cd污染耕地面积达1.3 ×104 hm2,涉及11个省市的25个地区,每年生产Cd米(Cd含量≥1.0 mg·kg−1的糙米)5.0 ×107 kg[3]。我国近年来镉污染事故也频繁发生,如发生于2005年的广东北江韶段关Cd严重超标事件,发生于2006年的湘江湖南株洲段镉污染事故和发生于2009年的湖南省浏阳市镉污染事故等[4]。Cd被植物吸收、积累和富集到植物体内,之后通过食物链途径使Cd进入人体从而威胁人体健康[5]。Cd毒性较大,长期生活在Cd污染的环境中会引起慢性中毒,因此需要寻求合理的方法来防治Cd污染,减轻Cd对人体的危害。
水稻是一种在我国具有重要农业生产地位的粮食作物[6]。然而在许多地区水稻遭受比较严重的镉污染胁迫[7]。因此如何去除环境中的镉、降低其对植物和人体健康的危害已成为人们关注的环境问题。已有研究表明,外源添加一些物质,如植物激素、化学改良剂、络合螯合剂和有机物料等[8-11]均可以降低镉对环境的危害。亚精胺(Spd)是多胺的一种,普遍存在的多阳离子脂肪族胺,是细胞正常生长所必需的物质[12]。Spd是植物体内的内源物质,具有环境友好的优点。多胺在细胞生理中起着重要的作用,具有影响细胞大分子结构、基因表达、蛋白质功能、核酸及蛋白质合成,调节离子通道,以及保护细胞免受氧化损伤等功能[13]。杨安中等[14]研究发现,亚精胺浸种可以促进水稻种子的萌发和秧苗的生长,有很好的促根壮苗的效果。Alcázar等[15]研究发现外源添加Spd可以提高植物对盐胁迫、低温和干旱的耐受性。Spd提高植物的抗逆作用主要是通过提高抗氧化酶活性和清除自由基等方式实现的[16-17]。Zhao等[18]研究发现,在Cd胁迫下对平邑甜茶进行叶面喷施Spd可以显著地提高平邑甜茶的内源Spd含量,促进氧化酶活性或直接清除活性氧来保持膜的稳定性,减少活性氧的生成,从而缓解镉对平邑甜茶的胁迫作用。Yang等[19]研究发现,Spd参与了马来眼子菜的保护体系,Spd诱导抗氧化酶和抗氧化剂来阻止活性氧的形成。Spd可以作为潜在的生长调节剂来改善植物在金属胁迫下的生长状况。以上研究结果证明外源施用Spd对缓解植物重金属胁迫的可行性。
目前有关外源添加Spd对Cd胁迫下水稻种子萌发的影响鲜有报道,本文就外源亚精胺对Cd胁迫下水稻种子萌发的影响这一问题开展一系列研究,为Cd胁迫下水稻栽培以及稻田镉污染防治提供科学依据。
外源亚精胺对Cd胁迫下水稻种子萌发的影响
Effects of exogenous spermidine on seed germination of rice under Cd stress
-
摘要: 农田Cd污染对农作物生长有毒害作用,导致农作物产量降低、品质下降。为了缓解农作物Cd毒害,研究外源添加亚精胺(Spd)对Cd胁迫下水稻种子萌发和幼苗生长的影响,结果表明,30 μmol·L−1 Cd胁迫下外源添加1000 μmol·L−1 Spd能够促进水稻种子的萌发过程,提高种子的发芽势和发芽率,促进水稻根系生长。添加Spd可以显著地降低水稻幼芽和根系中的丙二醛(MDA)含量,不同程度地提高Cd胁迫下水稻幼苗和根系中的抗氧化酶系统过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)的活性。当Cd浓度为30 μmol·L−1时,添加500 μmol·L−1 Spd和1000 μmol·L−1 Spd使水稻根系中的MDA含量比对照处理分别降低55.8%和66.9%,水稻根系CAT活性分别提高50.1%和72.6%,水稻幼芽POD活性分别提高175.5%和185.5%。Spd可以有效地缓解Cd对水稻的氧化胁迫作用,提高水稻种子的抗逆能力,促进水稻的萌发过程。Abstract: Cadmium pollution in farmland has a toxic effect on crop growth, resulting in decreased crop yield and quality. In order to alleviate the toxicity of crop Cd, the effects of exogenous spermidine (Spd) on rice seed germination and seedling growth under Cd stress were studied. The results showed that exogenous Spd of 1000 mol·L−1 under 30 mol·L−1 Cd stress could promote the germination process of rice seeds, improve the germination potential and germination rate of seeds, and promote root growth of rice. Adding Spd could significantly reduce the content of malondialdehyde (MDA) in rice shoots and roots, and increased the activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) in rice seedlings and roots under Cd stress. When the concentration of Cd was 30 mol·L−1, the addition of 500 mol·L−1 Spd and 1000 mol·L−1 Spd reduced the MDA content in rice roots by 55.8% and 66.9%, respectively, compared with the control treatment; the CAT activity of rice roots increased by 50.1% and 72.6%, respectively; and the POD activity of rice buds increased by 175.5% and 185.5%, respectively. Spd could effectively alleviate the toxic effect of Cd on rice.
-
Key words:
- rice /
- cadmium /
- spermidine /
- seed germination /
- oxidative damage
-
表 1 Spd和Cd交互作用对水稻发芽势、发芽率、芽长和鲜重影响的方差分析结果
Table 1. Analysis of variance of Spd and Cd affecting on germination potential, germination rate, bud length and fresh weight of rice
指标 Index 项目Items 显著性 Statistical significance 发芽势Germination potential Cd浓度(Cd) NS Spd浓度(Spd) NS Cd×Spd P<0.01 发芽率Germination rate Cd浓度(Cd) NS Spd浓度(Spd) NS Cd×Spd NS 芽长Bud length Cd浓度(Cd) P<0.001 Spd浓度(Spd) NS Cd×Spd NS 芽重Bud weight Cd浓度(Cd) P<0.001 Spd浓度(Spd) NS Cd×Spd NS 根重Root weight Cd浓度(Cd) P<0.001 Spd浓度(Spd) NS Cd×Spd NS *NS表示差异不显著.
*NS means the difference is not significant.表 2 Spd对Cd胁迫下水稻幼苗根系形态的影响
Table 2. Effect of Spd on root morphology of rice seedlings under Cd stress
总根长/(cm·plant−1)
The total root
length根表面积/(cm2·plant−1)
The root surface
area/根体积/(mm3·plant−1)
The root volume根尖数/个
Root tip
number分叉数/个
Branch
numberCd0+Spd0 31.62±1.06b 7.01±0.26a 50.61±3.0a 190.28±13.36a 178.67±16.30a Cd0+Spd500 35.40±2.26a 7.33±0.27a 53.50±3.59a 190.39±6.33a 175.22±18.48a Cd0+Spd1000 36.12±1.07a 7.21±0.49a 55.94±5.10a 203.56±34.73a 176.72±10.18a Cd10+Spd0 30.77±1.24a 7.04±0.23ab 49.94±5.27b 143.72±7.50a 155.17±20.80a Cd10+Spd500 31.43±2.62a 7.10±0.26a 62.00±2.40a 151.44±17.53a 157.22±3.75a Cd10+Spd1000 32.79±2.90a 6.54±0.30b 61.67±6.5a 162.28±28.79a 162.17±21.46a Cd30+Spd0 29.66±4.17a 6.86±0.56a 55.56±7.42a 129.44±21.45a 143.67±9.71a Cd30+Spd500 30.14±4.74a 6.76±0.65a 58.22±8.51a 130.72±6.46a 141.72±10.06a Cd30+Spd1000 29.57±0.56a 5.95±0.54a 54.67±5.95a 142.83±26.85a 151.78±7.12a *不同的英文小写字母表示同一Cd处理下添加不同浓度Spd的处理之间的差异显著(P<0.05);Spd500和Spd1000表示添加浓度为500 μmol·L−1和1000 μmol·L−1的亚精胺的处理;Cd 10和Cd 30表示添加浓度为10 μmol·L−1和30 μmol·L−1的Cd的处理.
Different lowercase letters in English indicate that there are significant differences between treatments with different concentrations of Spd under the same cadmium treatment (P < 0.05). Spd 500 and Spd 1000 represent the treatment of spermine with concentrations of 500 mol·L−1 and 1000 mol·L−1.Cd 10 and Cd 30 represent the treatment of Cd with 10 mol·L−1 and 30 mol·L−1 concentrations.表 3 Spd和Cd交互作用对水稻MDA含量、CAT、POD和SOD活性影响的方差分析结果
Table 3. Analysis of variance of Spd and Cd affecting on MDA content, CAT, POD and SOD activity of rice
指标 Index 项目 Items 显著性 Statistical significance MDA(芽)Bud Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.001 Cd×Spd P<0.001 MDA(根)Root Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.001 Cd×Spd P<0.001 CAT(芽)Bud Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.001 Cd×Spd P<0.001 CAT(根)Root Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.001 Cd×Spd P<0.001 POD(芽)Bud Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.01 Cd×Spd NS POD(根)Root Cd浓度(Cd) P<0.001 Spd浓度(Spd) NS Cd×Spd NS SOD(芽)Bud Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.001 Cd×Spd P<0.001 SOD(根)Root Cd浓度(Cd) P<0.001 Spd浓度(Spd) P<0.001 Cd×Spd P<0.01 *NS表示差异不显著.
*NS means the difference is not significant. -
[1] DING M, ZHANG L, ZHANG Z, et al. Heavy metal pollution characteristics and potential ecological risk assessment of surface soil in Dawen river basin[C]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 242(5): 052022. [2] 顾继光, 林秋奇, 胡韧, 等. 土壤-植物系统中重金属污染的治理途径及其研究展望 [J]. 土壤通报, 2005, 36(1): 128-133. doi: 10.3321/j.issn:0564-3945.2005.01.036 GU J G, LIN Q Q, HU R, et al. Treatment approaches and research prospects of heavy metal pollution in soil-plant systems [J]. Soil Bulletin, 2005, 36(1): 128-133(in Chinese). doi: 10.3321/j.issn:0564-3945.2005.01.036
[3] 徐良将, 张明礼, 杨浩. 土壤重金属镉污染的生物修复技术研究进展 [J]. 南京师范大学学报(自然科学版), 2011, 34(1): 102-106. XU L J, ZHANG M L, YANG H. progress in bioremediation of soil heavy metal cadmium pollution [J]. Journal of Nanjing Normal University: Natural Science, 2011, 34(1): 102-106(in Chinese).
[4] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践 [J]. 农业环境科学学报, 2013, 3(3): 409-417. HUANG Y Z, HAO X W, LEI M, et al. Remediation technology and remediation practice of heavy metal contaminated soil [J]. Journal of Agro-Environmental Science, 2013, 3(3): 409-417(in Chinese).
[5] 刘仕翔, 黄益宗, 罗泽娇, 等. 外源褪黑素处理对镉胁迫下水稻种子萌发的影响 [J]. 农业环境科学学报, 2016, 35(6): 1034-1041. doi: 10.11654/jaes.2016.06.003 LIU S S, HUANG Y Z, LUO Z J, et al. Effects of exogenous melatonin treatment on rice seed germination under cadmium stress [J]. Journal of Agro-Environmental Sciences, 2016, 35(6): 1034-1041(in Chinese). doi: 10.11654/jaes.2016.06.003
[6] 胡雪芳, 田志清, 梁亮, 等. 不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析 [J]. 环境科学, 2008, 39(7): 3409-3417. HU X F, TIAN Z Q, LIANG L, et al. Comparative analysis of the effects of different modifiers on heavy metal accumulation and yield of rice in fields polluted by lead and cadmium [J]. Environmental Science, 2008, 39(7): 3409-3417(in Chinese).
[7] YU H, WANG J, FANG W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice [J]. Science of the Total Environment, 2006, 370(2/3): 302-309. doi: 10.1016/j.scitotenv.2006.06.013 [8] 王丙烁, 黄益宗, 李娟, 等. 镉胁迫下不同改良剂对水稻种子萌发和镉吸收积累的影响 [J]. 农业环境科学学报, 2019, 38(4): 746-755. WANG P S, HUANG Y Z, LI J, et al. Effects of different modifiers on rice seed germination and cadmium uptake and accumulation under cadmium stress [J]. Journal of Agro-Environmental Sciences, 2019, 38(4): 746-755(in Chinese).
[9] TAJTI J, JANDA T, MAJLÁTH I, et al. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat [J]. Ecotoxicology and Environmental Safety, 2018, 148: 546-554. doi: 10.1016/j.ecoenv.2017.10.068 [10] 蒋航, 黄益宗, 杨秀文, 等. 外源褪黑素对As3+胁迫下水稻种子萌发的影响 [J]. 生态毒理学报, 2018, 13(1): 229-240. doi: 10.7524/AJE.1673-5897.20170112008 JIANG H, HUANG Y Z, YANG X W, et al. Effects of exogenous melatonin on rice seed germination under As3+ stress [J]. Journal of Ecological Toxicology, 2018, 13(1): 229-240(in Chinese). doi: 10.7524/AJE.1673-5897.20170112008
[11] 韩廿, 黄益宗, 魏祥东, 等. 螯合剂对油葵修复镉砷复合污染土壤的影响 [J]. 农业环境科学学报, 2019, 38(8): 1891-1900. doi: 10.11654/jaes.2019-0568 HAN N, HUANG Y Z, WEI X D, et al. Effects of chelating agents on remediation of cadmium and arsenic contaminated soil [J]. Journal of Agro-Environmental Science, 2019, 38(8): 1891-1900(in Chinese). doi: 10.11654/jaes.2019-0568
[12] RIDER J E, HACKER A, MACKINTOSH C A, et al. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide [J]. Amino Acids, 2007, 33(2): 231-240. doi: 10.1007/s00726-007-0513-4 [13] PEGG A E. The function of spermine [J]. IUBMB Life, 2014, 66(1): 8-18. doi: 10.1002/iub.1237 [14] 杨安中, 许俊芝. 亚精胺浸种对水稻种子萌发及秧苗生长的影响 [J]. 安徽技术师范学院学报, 2002(1): 39-42. YANG A Z, XU J Z. Effects of spermidine impregnation on rice seed germination and seedling growth [J]. Journal of Anhui Technical Normal University, 2002(1): 39-42(in Chinese).
[15] ALCÁZAR R, MARCO F, CUEVAS J C, et al. Involvement of polyamines in plant response to abiotic stress [J]. Biotechnology letters, 2006, 28(23): 1867-1876. doi: 10.1007/s10529-006-9179-3 [16] PARVIN S, LEE O R, SATHIYARAJ G, et al. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system [J]. Gene, 2014, 537(1): 70-78. doi: 10.1016/j.gene.2013.12.021 [17] GHOSH N, DAS S P, MANDAL C, et al. Variations of antioxidative responses in two rice cultivars with polyamine treatment under salinity stress [J]. Physiology and Molecular Biology of Plants, 2012, 18(4): 301-313. doi: 10.1007/s12298-012-0124-8 [18] ZHAO H, YANG H. Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd [J]. Scientia Horticulturae, 2008, 116(4): 440-447. [19] YANG H Y, SHI G X, QIAO X Q, et al. Exogenous spermidine and spermine enhance cadmium tolerance of Potamogeton malaianus [J]. Russian Journal of Plant Physiology, 2011, 58(4): 622-628. doi: 10.1134/S1021443711040261 [20] 许昊, 苏锋, 高孝美. 砷和草甘膦复合污染对水稻种子萌发的影响 [J]. 湖北农业科学, 2015, 54(22): 5540-5543. XU H, SU F, GAO X M. effects of combined arsenic and glyphosate contamination on rice seed germination [J]. Hubei Agricultural Science, 2015, 54(22): 5540-5543(in Chinese).
[21] YANG X, BALIGAR V C, MARTENS D C, et al. Cadmium effects on influx and transport of mineral nutrients in plant species [J]. Journal of Plant Nutrition, 1996, 19(3/4): 643-656. doi: 10.1080/01904169609365148 [22] ALDESUQUY H, HAROUN S, ABO-HAMED S, et al. Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water [J]. Egyptian Journal of Basic and Applied Sciences, 2014, 1(1): 16-28. doi: 10.1016/j.ejbas.2013.12.001 [23] 陈镔, 谭淑端, 董方旭, 等. 重金属对植物的毒害及植物对其毒害的解毒机制 [J]. 江苏农业科学, 2019, 47(4): 42-46. CHEN B, TAN S D, DONG F X, et al. Heavy metal poisoning plants and plant the poisoning mechanism of detoxification [J]. Journal of Jiangsu Agricultural Science, 2019, 47(4): 42-46(in Chinese).
[24] LIN Y F, AARTS M G M. The molecular mechanism of zinc and cadmium stress response in plants [J]. Cellular and Molecular Life Sciences, 2012, 69(19): 3187-3206. doi: 10.1007/s00018-012-1089-z [25] ESTERBAUER H, SCHAUR R J, ZOLLNER H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde, and related aldehydes [J]. Free Radic Biol Med, 1991, 11: 81-128. doi: 10.1016/0891-5849(91)90192-6 [26] ESTERBAUER H, CHEESEMAN K H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal [J]. Methods Enzymol, 1990, 186: 407-421. doi: 10.1016/0076-6879(90)86134-H [27] HASSAN M J, ZHANG G, WU F, et al. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice [J]. Journal of Plant Nutrition and Soil Science, 2005, 168(2): 255-261. doi: 10.1002/jpln.200420403 [28] GUO B, LIANG Y C, ZHU Y G, et al. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress [J]. Environmental Pollution, 2007, 147(3): 743-749. doi: 10.1016/j.envpol.2006.09.007 [29] XU X, SHI G, DING C, et al. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress [J]. Plant Growth Regulation, 2011, 63(3): 251-258. doi: 10.1007/s10725-010-9522-5 [30] TALUKDAR D. Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris Medic. seedlings through modulation of antioxidant enzyme activities [J]. Journal of Crop Science and Biotechnology, 2012, 15(4): 325-334. doi: 10.1007/s12892-012-0065-3 [31] HASSAN M J, SHAO G, ZHANG G. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation [J]. Journal of Plant Nutrition, 2005, 28(7): 1259-1270. doi: 10.1081/PLN-200063298 [32] KIRKMAN H N, GAETANI G F. Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH [J]. Proceedings of the National Academy of Sciences, 1984, 81(14): 4343-4347. doi: 10.1073/pnas.81.14.4343 [33] RANIERI A, PETACCO F, CASTAGNA A, et al. Redox state and peroxidase system in sunflower plants exposed to ozone [J]. Plant Science, 2000, 159(1): 159-167. doi: 10.1016/S0168-9452(00)00352-6 [34] BOWLER C, MONTAGU M, INZE D. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Biology, 1992, 43(1): 83-116. doi: 10.1146/annurev.pp.43.060192.000503 [35] BHATLA S C, LAL M A. Plant physiology, development and metabolism[M]. Berlin:Springer, 2018.