-
家电拆解产生的废旧印刷电路板(WCPB,waste print circuit board)属于危险废物(代900-045-49)[1],主要由玻纤、金属、高聚物和电子元件等构成,WCPB中含量最高的金属是铜,其次是铁、铅、锌、镍等[2-4],其中,金、银等贵重金属的含量是普通矿石中贵金属品位的几十至上百倍[5-7]。为满足电器阻燃要求,WPCB的绝缘基底中含有溴的阻燃剂,当对其采用焚烧、酸蚀等操作时,可能产生严重的二次污染[8-9]。高效清洁实现WPCB资源化无害化利用成为电子废弃物利用的关键[10- 11]。目前我国WPCB资源化利用主要有酸法、破碎重力分选法、裂解法及等,普遍存在着环境风险大、资源利用率不高、投资大等问题[12-14]。
为削减废旧电器电子产品回收再利用过程中产生的持久性有机污染物(POPs,persistent organic pollutants)和持久性有毒物质(PTS,persistent toxic substance),满足《中国履行斯德哥尔摩公约国家实施计划》有关要求,生态环境部对外合作与交流中心(FECO) 与联合国开发计划署(UNDP) 合作开发了全球环境基金(GEF)“通过环境无害化管理减少电器电子产品的生命周期POPs和PTS的排放全额示范项目”。该项目其中内容之一是利用国外有色、稀有金属冶炼过程中被广泛使用的一种冶炼技术——奥斯麦特炉(Ausmelt有色冶炼炉,以下简称奥炉)[15],协同处置WPCB实现其清洁无害利用[16]。
为了解奥炉协同处置WPCB工艺过程中氯代/溴代二噁英污染的状况,本文通过对作业场所环境空气及WPCB预处理破碎生产线、奥炉进料口、排放烟气口、降尘、飞灰及出渣等处采样监测,分析氯代/溴代二噁英(PCDD/Fs、PBDD/Fs)的产生浓度及各组分的分布情况,评价作业场所的呼吸暴露风险,以期为WPCB资源化过程中的污染控制与职业卫生防护提供相关参考。
奥炉协同处置废印刷电路板排放的二噁英浓度和组成
Study on the concentration and composition of dioxin from waste printed circuit board disposed by Ausmelt furnace collaborative disposal
-
摘要: 利用奥炉协同处置废印刷电路板,是资源化利用有价元素铜的一种方式。为了解该过程中氯代/溴代二噁英的产生及危害,本文通过对环境空气及废旧印刷电路板(WPCB)预处理破碎生产线、奥炉进料口、排放烟气口、降尘、飞灰及出渣等处采样监测,分析氯代/溴代二噁英的浓度及各组分的分布情况,评价作业场所的暴露风险,以期为WPCB资源化过程中的污染控制与职业卫生防护提供相关参考。对大冶有色奥炉周边的大气及其中所含固相中的氯代二噁英(PCDD/Fs)和溴代二噁英(PBDD/Fs)的污染水平、同系物分布特征以及气固两相分布进行了系统的分析。研究结果显示,3个气相取样点中,∑17 PCDD/Fs最高的是排烟口29.12 pg·m−3,毒性当量浓度(W-TEQ)为3.45 pgTEQ·Nm−3;最低的是环境空气2.32 pg·m−3,毒性当量浓度为0.16 pgTEQ·Nm−3,奥炉进料口浓度为17.28 pg·m−3,毒性当量浓度为0.78 pgTEQ·Nm−3。排烟口、奥炉进料口采样∑17 PCDD/Fs总浓度分别是环境空气的13倍和7倍、W-TEQ(PCDD/Fs)分别是22倍、4倍;3个气相取样点∑11 PBDD/Fs最高的是排烟口484.95 pg·m−3,W-TEQ为42.67 pgTEQ·Nm−3,最低的是环境空气0.045 pg·m−3,毒性当量浓度为0.0019 pgTEQ·Nm−3,奥炉进口的∑11 PBDD/Fs为3.21 pg·m−3,W-TEQ(PBDD/Fs)为0.068 pgTEQ·Nm−3;排烟口和奥炉进料口的∑11 PBDD/Fs总浓度分别是环境空气的10777倍和71倍, W-TEQ(PBDD/Fs)分别是22458倍、36倍,低于贵屿、龙塘镇和二次铜铝处理厂周边大气中二噁英的浓度水平,与浙江台州的电子垃圾拆解地空气中二噁英质量浓度水平相当。对环境空气中二噁英类物质进行暴露风险评估,其对成人、儿童的暴露量分别为0.364 pgTEQ·kg−1·d−1、0.617 pgTEQ·kg−1·d−1,符合世界卫生组织(WHO)规定的PCDD/Fs日容许摄入量(TDI)1—4 pgTEQ·kg−1·d−1标准。Abstract: The use of Ausmelt furnace to dispose waste printed circuit boards (WPCB) collaboratively is a way to re-utilization of valuable copper. To understand the generation and harm of chlorinated/brominated dioxins in the process, the author sampled and monitored the ambient air and waste printed circuit board (WPCB) pretreatment crushing production line, the Ausmelt furnace feeding inlet, the exhaust gas outlet, the dust fall, the fly ash and the slag discharge, analyzed the concentration of chlorinated/brominated dioxin and the distribution of each component, and evaluated the exposure risk in the workplace, in order to provide reference for pollution control and occupational health protection in the process of WPCB resource utilization. The pollution level, homologue distribution characteristics and gas-solid distribution of PCDD/Fs and PBDD/Fs in the gas and solid phase of the atmosphere around the Daye Ausmelt furnace were systematically analyzed. The results showed that the highest concentration of ∑17 PCDD/Fs in three gas sampling points was 29.12 pg·m−3 at the exhaust outlet, with a toxic equivalent concentration (W-TEQ) of 3.45 pgTEQ·Nm−3, while the lowest in ambient air was 2.32 pg·m−3, with a W-TEQ of 0.16 pgTEQ·Nm−3. The concentration of the Ausmelt furnace feeding inlet was 17.28 pg·m−3, and its W-TEQ was 0.78 pgTEQ·Nm−3. The total concentration of ∑17PCDD/Fs sampled at the smoke exhaust port and Austrian furnace feed port were 13 times and 7 times that of ambient air, respectively, as well as W-TEQ were 22 times and 4 times, respectively. The highest concentration of ∑11PBDD/Fs at the three gas sampling points was 484.95 pg·m−3 at the smoke outlet, with a W-TEQ of 42.67 pgTEQ·Nm−3, while the lowest was 0.045 pg·m−3 in the ambient air, with a W-TEQ of 0.0019 pgTEQ·Nm−3. The concentration of the Ausmelt furnace feeding inlet was 3.21 pg·m−3, its W-TEQ is 0.068 pgTEQ·Nm−3. The total concentration of ∑11PBDD/Fs at the smoke exhaust outlet and the Ausmelt furnace feeding inlet were 10777 and 71 times that of the ambient air, respectively, and the W-TEQ were 22458 and 36 times, respectively, which were lower than the concentrations of dioxins in the atmosphere around Guiyu, Longtang town and the secondary copper aluminum treatment plant, and were comparable to the concentrations of dioxins in the air of the e-waste dismantling site in Taizhou, Zhejiang Province. The exposure risk of dioxins in the ambient air was assessed. The exposure amounts for adults and children were 0.364 pgTEQ·kg−1·d−1 and 0.617 pgTEQ·kg−1·d−1 respectively, which met the standard of PCDD/Fs’ daily allowable intake (TDI) of 1—4 pgTEQ·kg−1·d−1.
-
Key words:
- Ausmelt furnace /
- waste printed circuit boards /
- PCDD/Fs /
- PBDD/Fs /
- exposure risk assessment
-
表 1 PCDD/Fs及PBDD/Fs仪器检出限和方法检出限表
Table 1. PCDD / Fs and PBDD/Fs instrument detection limit and method detection limit table
化合物
Chemical
compoundPCDD/Fs仪
器检出限/pg
IDLPCDD/Fs方
法检出限/pg
MDL化合物
Chemical
compoundPBDD/Fs仪
器检出限/pg
IDLPBDD/Fs方
法检出限/pg
MDL2,3,7,8-TeCDD 0.01 0.03 2,3,7,8-TeBDD 0.03 0.05 1,2,3,7,8-PeCDD 0.02 0.07 1,2,3,7,8-PeBDD 0.01 0.04 1,2,3,4,7,8-HxCDD 0.02 0.10 1,2,3,6,7,8-HxBDD 0.02 0.06 1,2,3,6,7,8-HxCDD 0.03 0.07 1,2,3,4,7,8-HxBDD 0.02 0.03 1,2,3,7,8,9-HxCDD 0.05 0.09 1,2,3,7,8,9-HxBDD 0.02 0.04 1,2,3,4,6,7,8-HxCDD 0.04 0.07 OBDD 0.07 0.17 OCDD 0.06 0.16 2,3,7,8-TeBDF 0.03 0.07 2,3,7,8-TeCDF 0.03 0.04 2,4,6,8-TeBDF 0.03 0.06 1,2,3,7,8-PeCDF 0.02 0.06 1,2,3,7,8-PeBDF 0.02 0.06 2,3,4,7,8-PeCDF 0.03 0.06 2,3,4,7,8-PeBDF 0.02 0.05 1,2,3,4,7,8-HxCDF 0.05 0.08 1,2,3,4,7,8-HxBDF 0.01 0.08 1,2,3,6,7,8-HxCDF 0.02 0.07 1,2,3,4,6,7,8-HpBDF 0.02 0.07 1,2,3,7,8,9-HxCDF 0.06 0.09 OBDF 0.08 0.19 2,3,4,6,7,8-HxCDF 0.03 0.08 1,2,3,4,6,7,8-HpCDF 0.04 0.07 1,2,3,4,7,8,9-HpCDF 0.03 0.10 OCDF 0.04 0.15 表 2 气相 2,3,7,8-PCDD/Fs 单体浓度分布表(pg·m−3)
Table 2. Concentration distribution of monomer 2, 3, 7, 8-PCDD / Fs in gas phase (pg·m−3)
同族体
Cognate环境空气
Ambient air
奥炉进口
Austrian furnace
Entrance排烟口
Smoke ventPCDDS 2,3,7,8-TeCDD 0.015(0.011—0.045) 0.016(0.01—0.02) 1.00(0.5—1.5) 1,2,3,7,8-PeCDD 0.036(0.019—0.056) 0.11(0.095—0.13) 1.17(1—2) 1,2,3,4,7,8-HxCDD 0.020(0.098—0.06) 0.12(0.1—0.13) 1.40(1—2.4) 1,2,3,6,7,8-HxCDD 0.020(0.01—0.06) 0.19(0.14—0.24) 1.47(1—2.8) 1,2,3,7,8,9-HxCDD 0.073(0.058—0.078) 0.15(0.1—0.19) 1.00(0.5—1.5) 1,2,3,4,6,7,8-HpCDD 0.21(0.15—0.31) 1.45(1—1.9) 4.00(1.5—6.6) OCDD 0.32(0.29—0.42) 3.80(1.7—5.9) 3.08(2—4.7) ∑7 PCDDs 0.69(0.636—1.029) 5.83(3.16—8.5) 13.12(8—16.8) PCDFS 2,3,7,8-TeCDF 0.13(0.11—0.14) 0.28(0.27—0.28) 0.93(0.5—2.6) 1,2,3,7,8-PeCDF 0.12(0.1—0.18) 0.51(0.37—0.65) 0.58(0.5—1) 2,3,4,7,8-PeCDF 0.11(0.097—0.16) 0.56(0.52—0.59) 1.52(0.5—3) 1,2,3,4,7,8-HxCDF 0.092(0.089—0.112) 0.98(0.76—1.2) 1.37(1—2.2) 1,2,3,6,7,8-HxCDF 0.11(0.107—0.13) 0.75(0.57—0.93) 1.33(0.5—2.3) 1,2,3,7,8,9-HxCDF 0.020(0.018—0.06) 0.36(0.24—0.47) 1.17(1—2) 2,3,4,6,7,8-HxCDF 0.13(0.1—0.15) 0.60(0.59—0.6) 1.42(1—2.5) 1,2,3,4,6,7,8-HpCDF 0.43(0.24—0.50) 3.20(2.3—4.1) 2.43(1.5—4.6) 1,2,3,4,7,8,9-HpCDF 0.10(0.095—0.3) 0.69(0.37—1) 1.92(1.5—3) OCDF 0.38(0.34—0.58) 3.55(2.4—4.7) 3.53(2—5) ∑10 PCDFs 1.62(1.296—2.312) 11.46(8.39—14.52) 16.00(10.5—21.7) ∑17 PCDD/Fs 2.32(1.93—3.34) 17.28(11.55—23.02) 29.12(19—38.5) W-TEQ/(pgTEQ·Nm−3) 0.16(0.13—0.18) 0.78(0.66—0.89) 3.45(2.5—4.7) 表 3 气相2,3,7,8-PBDD/Fs单体浓度分布表(pg·m−3)
Table 3. Concentration distribution of monomer 2, 3, 7, 8-PBDD / Fs in gas phase (pg·m−3)
同族体
Cognate环境空气
Ambient air奥炉进口
Austrian furnace entrance排烟口
Smoke ventPBDDS 2,3,7,8-TeBDD 0.00030(0.0001—0.0005) 0.0030(0.001—0.004) 29.37(1.9—48) 1,2,3,7,8-PeBDD 0.0015(0.0011—0.0045) 0.0090(0.015—0.0026) 5.15(1.5—11) 1,2,3,4,7,8HxBDD+ 1,2,3,6,7,8-HxBDD 0.0015(0.0012—0.0044) 0.052(0.0035—0.1) 18.52(9.1—26) 1,2,3,7,8,9-HxBDD 0.0015(0.0013—0.0046) 0.077(0.004—0.15) 13.05(7.3—18) OBDD 0.010(0.008—0.03) 0.035(0.05—0.02) 37.00(15—65) ∑5 PBDDs 0.015(0.0084—0.044) 0.18(0.0311—0.319) 103.08(44—159) PBDFS 2,3,7,8-TeBDF 0.00045(0.00029—0.00054) 0.026(0.001—0.05) 9.08(6.1—9.3) 1,2,3,7,8-PeBDF 0.00050(0.00046—0.0015) 0.051(0.002—0.1) 2.03(1—3.3) 2,3,4,7,8-PeBDF 0.00050(0.00039—0.0006) 0.051(0.002—0.1) 8.23(4.2—13) 1,2,3,4,7,8-HxBDF 0.0020(0.0015—0.006) 0.11(0.01—0.2) 12.85(3.5—30) 1,2,3,4,6,7,8-HpBDF 0.0015(0.0012—0.0055) 0.56(0.01—1.1) 101.50(51—170) OBDF 0.025(0.017—0.03) 2.25(0.1—4.4) 248.17(50—500) ∑6 PBDFs 0.030(0.021—0.044) 3.038(0.125—0.95) 381.87(153.3—619.1) ∑11 PBDD/Fs 0.045(0.029—0.088) 3.21(0.156—6.27) 484.95(299.6—694.6) W-TEQ/(pgTEQ·Nm−3) 0.0019(0.0018—0.008) 0.068(0.0054—0.13) 42.67(19—67) 表 4 呼吸暴露剂量表
Table 4. Respiratory exposure dose table
采样点Sampling point 位置position 呼吸暴露剂量/(pgTEQ·kg−1·d−1)
Respiratory exposure dosePCDD/Fs PBDD/Fs 成人Adult 儿童Children 成人Adult 儿童Children 环境空气Ambient air 破碎线附近Near the broken line 0.036 0.061 0.0004 0.00072 表 5 总暴露剂量表
Table 5. Total exposure dose table
采样点
Sampling point位置
Position总暴露剂量/(pgTEQ·kg−1·d−1)
Total exposure dose合计/(pgTEQ·kg−1·d−1)
TotalPCDD/Fs PBDD/Fs 成人
Adult儿童
Children成人
Adult儿童
Children成人
Adult儿童
Children环境空气
Ambient air破碎线附近
Near the broken line0.36 0.61 0.004 0.007 0.364 0.617 -
[1] KAYA M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes [J]. Waste Manage, 2016, 57: 64-90. doi: 10.1016/j.wasman.2016.08.004 [2] ISILDAR A, RENE E R, VAN HULLEBUSCH E D, et al. Electronic waste as a secondary source of critical metals: Management and recovery technologies [J]. Resour Conserv Recycl, 2018, 135: 296-312. doi: 10.1016/j.resconrec.2017.07.031 [3] CAYUMIL R, KHANNA R, RAJARAO R, et al. Concentration of precious metals during their recovery from electronic waste [J]. Waste Manage, 2016, 57: 121-130. doi: 10.1016/j.wasman.2015.12.004 [4] ZHANG L G, XU Z M. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment [J]. Clean Prod, 2016, 127: 19-36. doi: 10.1016/j.jclepro.2016.04.004 [5] CHEN B, HE J, XI Y Y, et al. Liquid-liquid hierarchical separation and metal recycling of waste printed circuit boards [J]. Hazard Mater, 2019, 364: 388-395. doi: 10.1016/j.jhazmat.2018.10.022 [6] MENG L, GUO L, GUO Z C. Separation of metals from metal-rich particles of crushed waste printed circuit boards by low-pressure filtration [J]. Waste Manage, 2019, 84: 227-234. doi: 10.1016/j.wasman.2018.11.046 [7] RIGOLDI A, TROGU E F, MARCHESEILI G C, et al. Advances in recovering noble metals from waste printed circuit boards (WPCBs) [J]. ACS Sustain Chem Eng, 2019, 7(1): 1308-1317. doi: 10.1021/acssuschemeng.8b04983 [8] YU G, BU Q W, CAO Z G, et al. Brominated flame retardants (BFRs): A review on environmental contamination in China [J]. Chemosphere, 2016, 150: 479-490. doi: 10.1016/j.chemosphere.2015.12.034 [9] FROMME H, BECHER G, HILGER B, et al. Brominated flame retardants - Exposure and risk assessment for the general population [J]. International Journal of Hygiene & Environmental Health, 2016, 219(1): 1-23. doi: 10.1016/j.ijheh.2015.08.004 [10] ZENG X L, MATHEWS J A, LI J H. Urban mining of e-waste is becoming more cost-effective than virgin mining [J]. Environ Sci Technol, 2018, 52(8): 4835-4841. doi: 10.1021/acs.est.7b04909 [11] BAKHIYI B, GRAVEL S, CEBALLOS D, et al. Has the question of e-waste opened a Pandora's box? An overview of unpredictable issues and challenges [J]. Environ Int, 2018, 110: 173-192. doi: 10.1016/j.envint.2017.10.021 [12] ZHANG M M, BUEKENS A, LI X D. Brominated flame retardants and the formation of dioxins and furans in fires and combustion [J]. Hazard Mater, 2016, 304: 26-39. doi: 10.1016/j.jhazmat.2015.10.014 [13] ALTARAWNEH M, SAEED A, Al-HARAHSHEH M, et al. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms [J]. Prog Energy Combust Sci, 2019, 70: 212-259. doi: 10.1016/j.pecs.2018.10.004 [14] AJIBOYE E A, PANDA P K, ADEBAYO A O, et al. Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid [J]. Hydrometallurgy, 2019, 188: 161-168. doi: 10.1016/j.hydromet.2019.06.016 [15] 马忠旭. 炼铅奥斯麦特炉概述 [J]. 中国金属通报, 2018(9): 1-3. doi: 10.3969/j.issn.1672-1667.2018.09.001 MA Z X. Overview of ausmelt furnace for lead smelting [J]. China Metal Bulletin, 2018(9): 1-3(in Chinese). doi: 10.3969/j.issn.1672-1667.2018.09.001
[16] 朱静, 杨立群, 高鹏, 等. 废弃电器电子产品POPs/PTS减排环境管理实践研究 [J]. 环境科学与管理, 2017, 42(1): 1-4. doi: 10.3969/j.issn.1673-1212.2017.01.001 ZHU J, YANG L Q, GAO P, et al. Environmental management practice research on POPs / PTS emission reduction of waste electrical and electronic products [J]. Environmental Science and Management, 2017, 42(1): 1-4(in Chinese). doi: 10.3969/j.issn.1673-1212.2017.01.001
[17] 肖潇, 陈德翼, 梅俊, 等. 贵屿某电子垃圾拆解点附近大气颗粒物中氯代/溴代二噁英、四溴双酚A污染水平研究 [J]. 环境科学学报, 2012, 32(5): 1142-1148. XIAO X, CHEN D Y, MEI J, et al. Study on the pollution level of chlorinated / brominated dioxins and tetrabromobisphenol A in air particles near an electronic waste dismantling site in Guiyu [J]. Journal of Environmental Science, 2012, 32(5): 1142-1148(in Chinese).
[18] LI H R, YU L P, SHENG G Y, et al. Severe PCDD/F and PBDD/F pollution in air around an electronic waste dismantling area in China [J]. Environmental Science and Technology, 2007, 41(16): 564-5646. [19] 李英明, 江桂斌, 王亚, 等. 电子垃圾拆解地大气中二噁英、多氯联苯、多溴联苯醚的污染水平及相分配规律 [J]. 科学通报, 2008, 53(2): 165-171. doi: 10.3321/j.issn:0023-074X.2008.02.006 LI Y M, JIANG G B, WANG Y, et al. Pollution level and phase distribution of dioxin, polychlorinated biphenyls and polybrominated diphenyl ethers in the air of e-waste dismantling area [J]. Scientific Bulletin, 2008, 53(2): 165-171(in Chinese). doi: 10.3321/j.issn:0023-074X.2008.02.006
[20] 赵金平, 何群华, 钟英立, 等. 典型电子垃圾拆解区二噁英污染特征、相分配及暴露风险 [J]. 生态环境学报, 2014, 23(8): 1338-1343. doi: 10.3969/j.issn.1674-5906.2014.08.014 ZHAO J P, HE Q H, Z Y L, et al. Pollution characteristics, phase distribution and exposure risk of dioxins in typical e-waste dismantling area [J]. Acta Zoologica Sinica, 2014, 23(8): 1338-1343(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.08.014
[21] SONG S, ZHOU X, GUO C Q, et al. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China [J]. Ecotox Environ Safe, 2019, 184: 8. [22] QIN Q L, XU X J, DAI Q Y, et al. Air pollution and body burden of persistent organic pollutants at an electronic waste recycling area of China [J]. Environ Geochem Health, 2019, 41(1): 93-123. doi: 10.1007/s10653-018-0176-y [23] FALANDYSZ J, SMITH F, PANTON S, et al. A retrospective investigation into the occurrence and human exposure to polychlorinated naphthalenes (PCNs), dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs through cod liver products (1972-2017) [J]. Chemosphere, 2019, 231: 240-248. doi: 10.1016/j.chemosphere.2019.05.073 [24] SSEBUGERE P, SILLANPAA M, MATOVU H, et al. Human and environmental exposure to PCDD/Fs and dioxin-like PCBs in Africa: A review [J]. Chemosphere, 2019, 223: 483-493. doi: 10.1016/j.chemosphere.2019.02.065 [25] XIAO X, HU J F, PENG P A, et al. Characterization of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDDs/Fs) in environmental matrices from an intensive electronic waste recycling site, South China [J]. Environ Pollut, 2016, 212: 464-471. doi: 10.1016/j.envpol.2016.02.029 [26] MATO Y, SUZUKI N, KATATANI N, et al. Human intake of PCDDs, PCDFs, and dioxin like PCBs in Japan, 2001 and 2002 [J]. Chemosphere, 2007, 67(9): 247-255. doi: 10.1016/j.chemosphere.2006.05.105 [27] 孙文文, 周林 韩文亮, 等. 电子垃圾拆解对台州氯代/溴代二噁英浓度和组成的影响 [J]. 生态毒理学报, 2016, 11(2): 330-338. SUN W W, ZHOU L, HAN W L, et al. Effect of e-waste dismantling on concentration and composition of chloro / bromo dioxins in Taizhou [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 330-338(in Chinese).