-
全氟化合物(perfluoroalkyl substances, PFASs)是一类人工合成的化学品,化合物碳链上与碳原子相连的氢原子全部被氟原子取代,结构通式为F(CF2)n-R。大量高能的“碳-氟”键使得此类物质化学性质非常稳定[1]。由于PFASs具有高表面活性及疏水疏油特性[2],因此被广泛应用于纺织、消防、洗涤剂、炊具制造、食品包装材料等生活用品和工业生产中。PFASs主要包括全氟烷基羧酸、全氟烷基磺酸、全氟烷基磺酰胺和全氟调聚醇等。全氟辛酸(perfluorooctanoic acid, PFOA)和全氟辛烷磺酸(perfluorooctane sulfonic acid, PFOS)是两种主要PFASs单体。研究表明,PFOA和PFOS具有致癌性、神经毒性、生殖及遗传毒性等[2],可通过食物链在生物体内富集,给食物链顶端的人类带来健康危害。2009年,PFOS和全氟辛基磺酰氟被列入《斯德哥尔摩公约》名单,PFOA及盐类也于2019年增列公约。2010年,欧盟委员会提议开展食品(特别是鱼、肉)中PFASs的监控。经济合作与发展组织(Organization for Economic Co-operation and Development, OECD)及美国环保总署(Environmental Protection Agency, EPA)也已将PFASs列入“可能使人致癌的物资”名单。据中国环保部公告“2014年第21号文”,环保部联合十一部委下发了关于“PFOS及其盐类”等十种持久性有机污染物(persistent organic pollutants, POPs)禁止生产、使用、流通和进出口的公告。2020年9月,欧洲食品安全局(European Food Safety Authority, EFSA)下调4种PFASs每周允许摄入量(tolerable weekly intake, TWI)至4.4 ng·kg−1·week−1[3],膳食健康面临新的挑战。
PFASs的大量生产和长期使用导致其在水、大气、土壤等环境介质及生物体中广泛存在。山东多个滨海城市水体中PFASs含量水平达到103—104 ng·L−1数量级[4]。全国多个省份尤其东部发达地区土壤中普遍检出PFASs[5]。在美国食鱼鸟类、水獭等野生动物血清中也发现了PFASs的存在[6]。随着PFASs在环境和生物体中研究的深入,人体对其暴露风险也引发关注。饮食是人体暴露污染物的主要途径。PFASs能够在动物组织中富集,膳食研究调查表明动物源性食品在居民饮食结构占据重要地位,动物源性食品是人体暴露PFASs的主要来源[7-8]。
本研究以北京市售生鲜肉、水产品、蛋类、奶制品为研究对象,通过对样品中PFASs的含量和单体赋存情况进行研究,获得动物源性食品中PFASs的污染数据,并据此对居民摄入风险进行评价。同时,本研究工作也将为PFASs的监管提供科学依据。
北京市售动物源性食品中全氟化合物赋存及居民摄入风险评估
Occurrence of perfluoroalkyl substances in animal-derived food in Beijing and risk assessment of residents’ intake
-
摘要: 全氟化合物(PFASs)具有极强的环境持久性。近年来,随着全氟辛酸(PFOA)和全氟辛基磺酸(PFOS)及其盐类增列《斯德哥尔摩公约》,以及欧洲食品安全局(EFSA)下调4类PFASs每周允许摄入量(TWI),PFASs的膳食暴露风险受到进一步关注。动物源性食品是人类暴露PFASs的主要来源,长链PFASs是其主要贡献单体。本研究共采集150份北京市售生鲜肉(畜肉、禽肉、水产品)、禽蛋、奶制品等动物源性食品,对其中长链PFASs的赋存情况和居民膳食暴露进行研究。结果显示,共有72份样品检出PFASs,总检出率为48%。动物源性食品中PFASs含量范围为ND—2.94 ng·g−1,水产品中ΣPFASs最高(20.7 ng·g−1),次之为蛋类、畜肉、禽肉(9.29、3.68、2.59 ng·g−1),奶类最低(0.30 ng·g−1)。PFOA和PFOS是动物源食品中的主要贡献单体,平均含量分别为0.09 ng·g−1和0.06 ng·g−1。对本研究样品中PFASs含量开展膳食风险评估,居民通过动物源性食品摄入PFASs含量为ND—3.68 ng·kg−1·d−1。Abstract: Perfluoroalkyl substances (PFASs) are persistent in the environment. Recently, perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and their salts have been listed in the Stockholm Convention for regulation. The European Food Safety Authority (EFSA) adjusted the tolerable weekly intake (TWI) of 4 PFASs so that the risk assessment of PFASs has raised more concern. Animal-derived food is the main source for human exposing to PFASs. Long-chain PFASs are the major contributions. In this study, 150 animal-derived food samples were collected, including raw meat (livestock, poultry and aquatic products), eggs and dairy products. The long-chain PFASs were studied. The detection rate of PFASs was 48%. The range of PFASs concentration in animal-derived food was ND—2.94 ng·g−1, the PFASs concentrations in aquatic products were the highest (20.7 ng·g−1), followed by eggs (9.29 ng·g−1), livestock (3.68 ng·g−1), poultry (2.59 ng·g−1) and milk (0.30 ng·g−1). PFOA (0.09 ng·g−1) and PFOS (0.06 ng·g−1) were the two major congeners in animal-derived food. The dietary risk assessment was carried out and the residents’ exposure to PFASs through animal-derived food was ND—3.68 ng·kg−1·d−1.
-
Key words:
- perfluoroalkyl substances /
- animal-derived food /
- aquatic food /
- risk assessment
-
表 1 PFASs回收率、相对标准偏差和检出限
Table 1. Recoveries, relative standard deviations(RSD)and limits of detection (LOD) of PFASs
目标物Analytes 0.5 ng·g−1 5 ng·g−1 LOD/(ng·g−1) 回收率/% Recovery RSD/% 回收率/% Recovery RSD/% PFHxAPFOA 90.2 6.26 88.6 3.81 0.032 83.6 5.91 92.1 2.09 0.021 PFOS 106.6 7.14 98.3 5.92 0.018 PFNA 83.2 7.22 96.8 1.97 0.022 PFDA 91.6 5.87 98.2 4.85 0.032 PFUnDA 101.2 1.73 106.8 2.73 0.027 PFDoDA 86.4 7.71 102.8 9.81 0.034 表 2 北京市售动物源性食品中全氟化合物含量水平(ng·g−1)
Table 2. PFAS concentrations in animal-derived food from Beijing markets
样品类型
Matrix检出率
Detection ratePFHxA PFOA PFNA PFDA PFUnDA PFDoDA PFOS ΣPFASs 蛋类
(n=30)26.70% ND
(NDa —0.42)0.22
(ND—2.61)ND
(ND-0.19)0.06
(ND—1.75)ND ND ND
(ND—0.36)9.29 奶类
(n=30)23.30% ND ND
(ND—0.05)ND ND ND ND ND 0.30 禽肉类
(n=30)53.30% 0.03
(ND—0.29)0.05
(ND—0.41)ND
(ND-0.19)ND ND ND ND
(ND—0.03)2.59 畜肉类
(n=30)66.70% 0.07
(ND—0.54)0.03
(ND-0.1)ND
(ND—0.03)ND
(ND—0.02)ND ND 0.02
(ND—0.3)3.68 水产类
(n=30)70.00% ND
(ND-0.12)0.13
(ND—2.41)0.04
(ND—0.62)0.05
(ND—1.01)0.16
(ND—1.93)0.02
(ND—0.25)0.28
(ND—2.94)20.73 平均值 0.023 0.09 0.01 0.022 0.03 ND 0.06 aND,未检出. 表 3 国内外动物源性食品中PFASs含量水平(ng·g−1)
Table 3. Concentration of PFASs in animal-derived food
国家/地区Nation PFASs 鱼类Fish 禽肉类Poultry 畜肉类Livestock 蛋类Egg 奶类Milk 参考文献Reference 河北 PFOA — — — NDa—1.60 0.03—0.37 [8] PFOS — — — ND—0.18 — 山东 PFOA — ND—0.54 — ND—1.00 — [8] PFOS — — — ND—0.17 — 江西 PFOA — ND ND — — [20] PFOS — ND ND — — 四川 PFOA — ND—2.19 — — 0.37—3.87 [18,24] PFOS — — — — — 荷兰 PFOA 0.02 ND 0.02 0.03 0.001 [14] PFOS 0.31 ND 0.08 0.03 0.01 PFHxA 0.003 0.007 0.011 0.05 0.006 PFUnDA 0.17 0.003 0.004 0.02 ND 挪威 PFOA 0.05 0.05 0.01 0.03 0.005 [15] PFOS 0.1 0.02 0.06 0.04 0.007 PFHxA 0.02 0.01 0.004 0.01 0.001 PFUnDA 0.02 0.01 0.008 0.009 0.002 希腊 PFOA ND—6.19 <1.0 ND ND—0.5 ND—0.57 [19] PFOS 5.8 ND 0.9 ND—8.9 ND—0.73 意大利 PFOA <0.5 0.5 <0.5 <0.5 <0.5 [26] PFOS 7.65 1.43 2.11 <0.5 0.36 美国 PFOA 0.05—0.3 ND — 0.04 0.02 [21] 本研究 PFOA ND—0.24 ND—0.41 ND—0.1 0.07—2.61 0.04—0.05 PFOS ND—2.94 ND—0.02 ND—0.3 ND—0.36 ND PFHxA ND—0.12 ND—0.29 ND—0.54 ND—0.42 ND PFUnDA ND—1.93 ND ND ND ND aND,未检出. 表 4 PFASs在动物源性食品中EDI值和TWI值
Table 4. EDI and TWI of PFASs in animal-derived food
食品种类 人均日摄入量/g 含量/(ng·g−1) EDI值/(ng·kg−1·d−1) TWI值/(ng·kg−1·week−1) PFOA PFOS PFNA PFOA PFOS PFNA PFOA PFOS PFNA 蛋类 60 2.61 0.36 0.19 2.61 0.36 0.19 18.3 2.52 1.33 牛奶 300 0.05 ND ND 0.25 ND ND 1.75 ND ND 禽肉 75 0.41 0.03 0.19 0.51 0.04 0.24 3.57 0.28 1.68 畜肉 75 0.54 0.30 0.03 0.68 0.38 0.04 4.76 2.66 0.28 鱼肉 75 0.24 2.94 0.62 0.30 3.68 0.78 2.10 25.8 5.46 贝类 35 2.41 ND 0.10 1.41 ND 0.06 9.87 ND 0.42 -
[1] 贺锦灿, 张诗韵, 苏榆媛, 等. 典型全氟有机酸类化合物的样品前处理与分析方法研究进展 [J]. 色谱, 2020, 38(1): 86-94. HE J C, ZHANG S Y, SU Y Y, et al. Progress on the sample techniques and analytical methods for typical perfluorinated organic acids [J]. Chinese Journal of Chromatography, 2020, 38(1): 86-94(in Chinese).
[2] 杨琳, 李敬光. 全氟化合物前体物质生物转化与毒性研究进展 [J]. 环境化学, 2015, 34(4): 649-655. YANG L, LI J. Perfluorinated compound precursors: Biotransformation and toxicity [J]. Environmental Chemistry, 2015, 34(4): 649-655(in Chinese).
[3] SCHRENK D, BIGNAMI M, BODIN L, et al. Risk to human health related to the presence of perfluoroalkyl substances in food [J]. EFSA Journal, 2020, 18(9): 6223. [4] 杨洪法, 史斌, 周云桥, 等. 中、韩滨海城市化区域水体全氟化合物的空间特征及生态风险 [J]. 环境科学, 2020, 41(4): 1607-1618. YANG H F, SHI B, ZHOU Y Q, et al. Spatial characteristics and ecological risks of perfluoroalkyl substances in coastal urbanized areas of China and south Korea [J]. Environmental Science, 2020, 41(4): 1607-1618(in Chinese).
[5] 陈诗艳, 仇雁翎, 朱志良, 等. 土壤中全氟和多氟烷基化合物的污染现状及环境行为 [J]. 环境科学研究, 2021, 34(2): 468-478. CHEN S Y, QIU Y L, ZHU Z L, et al. Current pollution status and environmental behaviors of PFASs in soil [J]. Research of Environmental Sciences, 2021, 34(2): 468-478(in Chinese).
[6] KANNAN K, CORSOLINI S, FALANDYSZ J, et al. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean seas [J]. Environmental Science & Technology, 2002, 36(15): 3210-3216. [7] 齐彦杰, 周珍, 史亚利, 等. 北京市市售鸡蛋和鸭蛋中全氟化合物的污染水平研究 [J]. 环境科学, 2013, 34(1): 244-250. QI Y J, ZHOU Z, SHI Y L, et al. Pollution levels of perfluorochemicals in chicken eggs and duck eggs from the markets in Beijing [J]. Chinese Journal of Environmental Science, 2013, 34(1): 244-250(in Chinese).
[8] 刘晓湾, 张鸿, 李静, 等. 中国沿海地区鸡蛋中全氟化合物污染水平及分布 [J]. 食品科学, 2016, 37(4): 191-196. LIU X W, ZHANG H, LI J, et al. Investigation of contamination levels of perfluorinated compounds in eggs from nine coastal provinces of China [J]. Food Science, 2016, 37(4): 191-196(in Chinese).
[9] LI X M, DONG S J, ZHANG W, et al. The occurrence of perfluoroalkyl acids in an important feed material (fishmeal) and its potential risk through the farm-to-fork pathway to humans [J]. Journal of Hazardous Materials, 2019, 367: 559-567. doi: 10.1016/j.jhazmat.2018.12.103 [10] 柳思帆, 王铁宇, 薛科社, 等. 北京水源地鱼体全氟化合物的暴露水平及其健康风险 [J]. 生态毒理学报, 2017, 12(1): 111-118. LIU S F, WANG T Y, XUE K S, et al. Occurrence and human health risk of PFASs in fishes from drinking water sources of Beijing [J]. Asian Journal of Ecotoxicology, 2017, 12(1): 111-118(in Chinese).
[11] FANG S H, CHEN X W, ZHAO S Y, et al. Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu lake, China [J]. Environmental Science & Technology, 2014, 48(4): 2173-2182. [12] ZHAO Y G, WAN H T, ALICE Y S L, et al. Risk assessment for human consumption of perfluorinated compound-contaminated freshwater and marine fish from Hong Kong and Xiamen [J]. Chemosphere, 2011, 85(2): 277-283. doi: 10.1016/j.chemosphere.2011.06.002 [13] 方国康, 徐建明, 李若慧, 等. 全氟化合物污染现状及其与肝型脂肪酸结合蛋白相互作用研究进展 [J]. 食品科学, 2020, 41(7): 329-335. doi: 10.7506/spkx1002-6630-20190330-393 FANG G K, XU J M, LI R H, et al. Current pollution situation of perfluorinated compounds in waters and foodstuffs and recent progress in understanding their interactions with liver fatty acid binding protein [J]. Food Science, 2020, 41(7): 329-335(in Chinese). doi: 10.7506/spkx1002-6630-20190330-393
[14] NOORLANDER C W, van LEEUWEN S P J, TE BIESEBEEK J D, et al. Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in the Netherlands [J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7496-7505. doi: 10.1021/jf104943p [15] HAUG L S, SALIHOVIC S, JOGSTEN I E, et al. Levels in food and beverages and daily intake of perfluorinated compounds in Norway [J]. Chemosphere, 2010, 80(10): 1137-1143. doi: 10.1016/j.chemosphere.2010.06.023 [16] DOMINGO J L, ERICSON-JOGSTEN I, PERELLÓ G, et al. Human exposure to perfluorinated compounds in Catalonia, Spain: Contribution of drinking water and fish and shellfish [J]. Journal of Agricultural and Food Chemistry, 2012, 60(17): 4408-4415. doi: 10.1021/jf300355c [17] 孟娣, 王赛赛, 刘欢, 等. 水产品中全氟辛酸和全氟辛烷磺酸检测技术及污染现状 [J]. 食品安全质量检测学报, 2016, 7(10): 3935-3941. MENG D, WANG S S, LIU H, et al. Research progress on detection and occurence of perfluorooctanoic acid and perfluorooctane sulfonate in aquatic products [J]. Journal of Food Safety & Quality, 2016, 7(10): 3935-3941(in Chinese).
[18] 白润叶, 张毅, 肖陈贵, 等. 中国部分主产区鸡肉中全氟化合物残留水平调查 [J]. 食品安全质量检测学报, 2016, 7(2): 730-740. BAI R Y, ZHANG Y, XIAO C G, et al. Investigation of perfluorinated compounds in chicken from parts of main producing areas of China [J]. Journal of Food Safety & Quality, 2016, 7(2): 730-740(in Chinese).
[19] KEDIKOGLOU K, COSTOPOULOU D, VASSILIADOU I, et al. Preliminary assessment of general population exposure to perfluoroalkyl substances through diet in Greece [J]. Environmental Research, 2019, 177: 108617. doi: 10.1016/j.envres.2019.108617 [20] 王冬根, 袁丽娟, 张莉, 等. 江西省畜禽产品中全氟辛酸和全氟辛烷磺酸污染情况调查与分析 [J]. 食品科学, 2016, 37(4): 216-221. doi: 10.7506/spkx1002-6630-201604039 WANG D G, YUAN L J, ZHANG L, et al. Survey and analysis of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) pollution in livestock and poultry products from Jiangxi Province [J]. Food Science, 2016, 37(4): 216-221(in Chinese). doi: 10.7506/spkx1002-6630-201604039
[21] SCHECTER A, COLACINO J, HAFFNER D, et al. Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA [J]. Environmental Health Perspectives, 2010, 118(6): 796-802. doi: 10.1289/ehp.0901347 [22] 白润叶. 中国部分主产区鸡肉和羊肉中全氟化合物残留水平调查[D]. 深圳: 深圳大学, 2016. BAI R Y. Investigation on residual levels of perfluorinated compounds in chicken and mutton in some main production areas in China[D]. Shenzhen : Shenzhen University, 2016 (in Chinese).
[23] QI X, ZHOU J, WANG M, et al. Perfluorinated compounds in poultry products from the Yangtze River Delta and Pearl River Delta regions in China [J]. The Science of the Total Environment, 2019, 689: 1079-1086. doi: 10.1016/j.scitotenv.2019.06.258 [24] 方淑红, 彭光垣, 印红玲, 等. 成都饮食中全氟化合物的污染特征及健康风险评估 [J]. 环境科学学报, 2019, 39(5): 1708-1716. FANG S H, PENG G Y, YIN H L, et al. Pollution characteristics and human health risk of perfluoroalkyl substance exposure through the diet in Chengdu City [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1708-1716(in Chinese).
[25] 余宇成. 牛奶中全氟烷基类物质的残留分析及污染水平调查[D]. 厦门: 集美大学, 2015. YU Y C. Residual analysis and pollution level investigation of perfluoroalkyl substances in milk[D]. Xiamen: Jimei University, 2015(in Chinese).
[26] GUERRANTI C, PERRA G, CORSOLINI S, et al. Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy [J]. Food Chemistry, 2013, 140(1/2): 197-203. [27] SZNAJDER-KATARZYNSKA K, SURMA M, WICZKOWSKI W, et al. The perfluoroalkyl substance (PFAS) contamination level in milk and milk products in Poland [J]. International Dairy Journal, 2019, 96: 73-84. doi: 10.1016/j.idairyj.2019.04.008 [28] JIAN J M, GUO Y, ZENG L X, et al. Global distribution of perfluorochemicals (PFCs) in potential human exposure source-A review [J]. Environment International, 2017, 108: 51-62. doi: 10.1016/j.envint.2017.07.024 [29] 吴江平, 管运涛, 李明远, 等. 全氟化合物的生物富集效应研究进展 [J]. 生态环境学报, 2010, 19(5): 1246-1252. WU J P, GUAN Y T, LI M Y, et al. Recent research advances on the bioaccumulation potentials of perfluorinated compounds [J]. Ecology and Environmental Sciences, 2010, 19(5): 1246-1252(in Chinese).
[30] HEO J J, LEE J W, KIM S K, et al. Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea [J]. Journal of Hazardous Materials, 2014, 279: 402-409. doi: 10.1016/j.jhazmat.2014.07.004 [31] ZHANG T, SUN H W, LIN Y, et al. Perfluorinated compounds in human blood, water, edible freshwater fish, and seafood in China: Daily intake and regional differences in human exposures [J]. Journal of Agricultural and Food Chemistry, 2011, 59(20): 11168-11176. doi: 10.1021/jf2007216 [32] MAI D H, HYEON J J, HUI H J, et al. Perfluoroalkyl substances (PFASs) in special management sea areas of Korea: Distribution and bioconcentration in edible fish species [J]. Marine Pollution Bulletin, 2020, 156: 111236. doi: 10.1016/j.marpolbul.2020.111236 [33] ZHANG H Y, VESTERGREN R, WANG T, et al. Geographical differences in dietary exposure to perfluoroalkyl acids between manufacturing and application regions in China [J]. Environmental Science & Technology, 2017, 51(10): 5747-5755. [34] BERGER U. Tissue distribution of perfluorinated surfactants in common guillemot (Uria aalge) from the Baltic sea [J]. Environmental Science & Technology, 2008, 42(16): 5879-5884. [35] 杨月欣, 张环美. 《中国居民膳食指南(2016)》简介 [J]. 营养学报, 2016, 38(3): 209-217. YANG Y X, ZHANG H M. Introduction to Chinese dietary guidelines (2016) [J]. Acta Nutrimenta Sinica, 2016, 38(3): 209-217(in Chinese).
-
刘逸飞.pdf