-
近年来,随着某些人群频繁地使用精神活性物质,精神活性物质已经出现在城市污水等水环境中[1]。《2019年世界毒品报告》称全球约有2.71亿人口使用过非法物质[2]。精神活性物质不仅破坏社会治安,还因其具有生物活性等特征而威胁着生态环境和人类健康[3-5]。精神活性物质可分为如麻醉药、抗抑郁药等的合法精神处方药和用于精神消遣的成瘾类非法物质,例如兴奋剂和迷幻剂等[6]。
精神活性物质被人体使用后会以母体化合物或其代谢物的形式随尿液排出体外,经下水管道流入城市污水管网,进而进入污水处理厂(WWTPs)[7]。世界各地已经报道了多起WWTPs精神活性物质赋存事件。Huerta-Fontela等在西班牙42个东北WWTPs进水测得了中位浓度为200 ng·L−1的可卡因(COC)、1100 ng·L−1的苯甲酰爱康宁(BE)和29 ng·L−1的氯胺酮(KET)[8];Du等在马来西亚吉隆坡的一个WWTP进水中检测到中位浓度为956 ng·L−1的冰毒(METH)、936 ng·L−1的摇头丸(MDMA)、284 ng·L−1的KET、94 ng·L−1的去甲氯胺酮(NK)、16 ng·L−1的BE[9]。由此可知,世界各地的WWTPs进水中检测到的COC、BE、METH、MDMA、KET浓度普遍较高。
虽然经WWTPs处理后排放到水环境中的浓度较低(ng·L−1),但是精神活性物质具有生物活性,可能会影响水生生物的内分泌系统,具有生态风险[10-11]。所以长期低浓度精神活性物质暴露对水生生态环境的影响不容小觑。Fraz等发现,暴露于10 μg·L−1卡马西平6周的成年斑马鱼生殖输出减少,攻击行为和精子的形态都会受到影响,且影响会持续到未被暴露的后4代[12]。Sivalingam等发现了吗啡(MOR)可以作用于斑马鱼大脑部位,这意味着MOR可能会对斑马鱼包括认知、厌恶的大脑功能有影响[13]。Johnson等发现,大部分抗抑郁药物长期低浓度暴露会对水生生物产生抑制生长等亚致死效应[14]。另外,水体中精神活性物质也可能通过食物链对人类健康产生影响[15]。Moratalla等发现,METH和MDMA可能会在调节运动和优越脑功能的大脑区域产生毒性作用,威胁人体健康[16]。
之前,精神活性物质的滥用情况是通过消费者访问、缉获药物数据等途径获知[17-18]。但过去十几年,污水流行病学(WBE)已广泛应用于比利时、中国、美国等[19-23]世界各地的WWTPs。其原理是对城市污水中目标物或其代谢物的浓度进行分析,并结合WWTPs的服务区域人口数量、进水流量以及药物代谢规律反算WWTPs服务区域的目标药物消耗量。作为对执法数据的补充,它具有客观、费时少、半实时的优点,也可以反映社区等小范围区域及节假日消耗量变化却能避免伦理问题。
根据《2019年世界毒品报告》,COC、METH、MDMA和MOR等精神活性物质滥用有持续上升的趋势[2]。所以本次研究以MOR、METH、KET、NK、MDMA、甲卡西酮(MC)、COC和BE为研究对象,测定了这些精神活性物质在广西某市12个WWTPs进水的浓度水平,并用WBE反算WWTPs服务区域的精神活性物质消耗量,以期为监测这8种精神活性物质滥用情况提供基础数据。
以污水流行病学监测广西某市12个污水处理厂服务区域精神活性物质的消耗量
Estimation of the consumption of psychoactive substances in the service areas of 12 wastewater treatment plants in a city of Guangxi, China using wastewater-based epidemiology
-
摘要: 精神活性物质滥用和使用量逐年递增正成为社会稳定、环境健康新的关注点。准确地估算某一地区这类化合物的消耗总量是管理这类物质的关键。本研究对中国广西某市12个污水处理厂(wastewater treatment plants,WWTPs)服务区域中的8种精神活性物质消耗量进行了调查。首先,采用固相萃取-液相色谱-串联质谱法测定了广西某市12个WWTPs进水中8种精神活性物质的浓度,检测到在<方法检测(method detection limit,MDL)至170.9 ng·L−1范围内的5种精神活性物质。然后,依据污水流行病学(wastewater-based epidemiology,WBE)进行消耗量反算。结果表明,氯胺酮(ketamine,KET)、吗啡(morphine,MOR)、冰毒(methamphetamine,METH)、摇头丸(3,4-methylenedioxymethamphetamine,MDMA)是主要检出的精神活性物质,平均消耗量分别为682.4、167.8、44.6、11.3 mg·d−1·1000inh−1;而可卡因(cocaine,COC)、苯甲酰爱康宁(benzoylecgonine,BE)、甲卡西酮(methcathinone,MC)没有被检出。对WWTPs进水中精神活性物质的残留进行分析,估算这些物质在特定区域的消耗量,为防控风险提供支持。Abstract: The abuse of psychoactive substances is increasing in the last few years, which has became a new concern for social stability and human health.How to accurately estimate the total amount of psychoactive substances used in a certain area is the key point for the management of these substances.This study investigated the consumption of 8 psychoactive substances in the service areas of 12 wastewater treatment plants (WWTPs) in a city of Guangxi, China.Firstly, the solid phase extraction-liquid chromatography-tandem mass spectrometry was used to determine the concentrations of 8 psychoactive substances in the influent of 12 WWTPs in a city of Guangxi, and 5 psychoactive substances were detected, with the concentrations ranging from <method detection limit (MDL) to 170.91 ng·L−1.Then, back calculation of consumption was conducted, according to the wastewater-based epidemiology (WBE).The results showed that ketamine (KET), morphine (MOR), methamphetamine (METH), and ecstasy (3, 4-methylenedioxymethamphetamine, MDMA) were the main psychoactive substances detected, with the average consumption of 682.4, 167.8, 44.6 and 11.3 mg·d−1·1000inh−1, respectively. However, cocaine (COC), benzoylecgonine (BE), and methcathinone (MC) were not detected at all. The residues of psychoactive substances in WWTPs influent were analyzed to estimate the consumption of these substances in specific areas, which contributes to the control and prevention of these psychoactive substances.
-
表 1 精神活性物质基本理化性质
Table 1. Basic physicochemical properties of the psychoactive substances
精神活性物质
Psychoactive substances结构式
Structure分子量/(g·mol−1)
Molecular weightpKa lgKow 备注
RemarksMOR 285.4 8.2 — 麻醉剂 METH 149.3 9. 9 2. 1 非法物质 KET 237.7 7. 5 2.2 非法物质 NK 223.7 — 2.7 KET的代谢物 MC 163.2 8.0 1.9 非法物质 MDMA 193.2 9.9 2.3 非法物质 COC 303.4 8.61 2.3 非法物质 BE 289.3 10.1 −1.3 COC的代谢物 表 2 残留目标物(DTR)的选择及排泄率
Table 2. Selection and consumption of Drug Target Residues (DTR)
表 3 方法检出限、定量限及线性关系
Table 3. Method detection limit, limit of quantitative(LOQ)and linear relationship
化合物
Compounds方法检出限/( ng·L−1)
MDL定量限/( ng·L−1)
LOQ线性方程
Linear equation相关系数
R2MOR 0.45 1.5 y=−0.101+2.86x 0.9904 METH 0.30 1.0 y =−0.145+3.02x 0.9935 KET 0.30 1.0 y =−0.0875+1.97x 0.9903 NK 0.15 0.5 y =−0.0119+0.173x 0.9918 MC 0.15 0.5 y =−0.0342+0.820x 0.9911 MDMA 0.15 0.5 y =−0.00856+0.319x 0.9942 COC 0.30 1.0 y =−0.0188+0.501x 0.9931 BE 0.15 0.5 y =−0.0523+2.13x 0.9966 表 4 广西某市12个WWTPs残留目标物平均浓度、浓度范围及检出频率
Table 4. Average concentrations,concentration ranges,and detection frequencies of 12 WWTPs in a city of Guangxi
MOR METH KET NK MDMA 1号厂a 35.5 123.8 41.7 9.8 25.6 2号厂a 4.9 7.2 46.1 7.0 ND 3号厂a 20.7 70.0 51.3 44.5 ND 4号厂a 17.0 57.3 23.0 37.9 ND 5号厂a 4.2 8.9 21.2 NDc ND 6号厂a 7.6 59.6 13.6 ND ND 7号厂a 18.8 14.6 3.9 ND ND 8号厂a 14.4 22.3 11.9 19.1 ND 9号厂a 23.8 12.7 2.8 ND ND 10号厂a 17.6 42.5 26.1 92.8 29.5 11号厂a 11.8 18.0 17.2 30.2 ND 12号厂a 21.2 28.2 8.9 ND ND 检出率 100.0% 100.0% 100.0% 44.1% 14.3% 范围b 2.9—55.1 3.8—170.9 1.15—74.0 <MDL—161.68 <MDL—72.4 平均数b 16.5 38.7 22.3 20.1 4.6 中值b 15.7 22.5 18.9 ND ND a1—12厂对应平均浓度;a,b单位为浓度单位,ng·L−1;c ND表示未检测到.
a Average concentration, corresponding to WWTP NO.1—12;a,b Expressed in ng·L−1;c ND means not detected.表 5 国内外WWTPs精神活性物质进水浓度(ng·L−1)
Table 5. Influent concentrations of psychoactive substances in domestic and foreign WWTPs(ng·L−1)
表 6 国内外WWTPs服务区域精神活性物质消耗量(mg·d-1·1000inh-1)
Table 6. Consumption of psychoactive substances in the service area of the domestic and foreign WWTPs
MOR METH KET MDMA MC COC 年份
Year本研究 167.8 44.6 682.4 11.3 — — 2019 马来西亚吉隆坡[9] — 481±88 357±64 748±282 — 14±6 2011 英国[24] — 13.3—29.8 — 80.1—392 — 8733—14643 2017 美国西肯塔基州[32] 2380—2610 1240—3090 — 1.72—59 — 434—1970 2017 南非豪登、西开普[33] — 181.9—1184.8 — 2.2—61.6 — 100.6—589.6 2017 土耳其阿达纳[34] — 2 — 87 — 14 2017 克罗地亚萨格勒布[35] — — — 5.1 — 235 2009 -
[1] JONES-LEPP T L, ALVAREZ D A, PETTY J D, et al. Polar organic chemical integrative sampling and liquid chromatography-electrospray/ion-trap mass spectrometry for assessing selected prescription and illicit drugs in treated sewage effluents [J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4): 427-439. doi: 10.1007/s00244-004-3146-6 [2] United Nations Office On Crime. World Drug Report 2019[R]. New York: United Nations, 2019. [3] ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Illicit drugs, a novel group of environmental contaminants [J]. Water Research, 2008, 42(4/5): 961-968. [4] PAL R, MEGHARAJ M, KIRKBRIDE K P, et al. Illicit drugs and the environment-a review [J]. Science of the Total Environment, 2013, 463/464: 1079-1092. doi: 10.1016/j.scitotenv.2012.05.086 [5] ZUCCATO E, CASTIGLIONI S. Illicit drugs in the environment [J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1904): 3965-3978. [6] TANOUE R, MARGIOTTA-CASALUCI L, HUERTA B, et al. Protecting the environment from psychoactive drugs: problems for regulators illustrated by the possible effects of tramadol on fish behaviour [J]. Science of the Total Environment, 2019, 664: 915-926. doi: 10.1016/j.scitotenv.2019.02.090 [7] MASTROIANNI N, BLEDA M J, LOPEZ DE ALDA M, et al. Occurrence of drugs of abuse in surface water from four Spanish river basins: spatial and temporal variations and environmental risk assessment [J]. Journal of Hazardous Materials, 2016, 316: 134-142. doi: 10.1016/j.jhazmat.2016.05.025 [8] HUERTA-FONTELA M, GALCERAN M T, MARTIN-ALONSO J, et al. Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain [J]. Science of the Total Environment, 2008, 397(1-3): 31-40. doi: 10.1016/j.scitotenv.2008.02.057 [9] DU P, LIU X, ZHONG G, et al. Monitoring consumption of common illicit drugs in Kuala Lumpur, Malaysia, by wastewater-cased epidemiology [J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 889. doi: 10.3390/ijerph17030889 [10] CALISTO V, ESTEVES V I. Psychiatric pharmaceuticals in the environment [J]. Chemosphere, 2009, 77(10): 1257-1274. doi: 10.1016/j.chemosphere.2009.09.021 [11] 殷行行, 郭昌胜, 邓洋慧, 等. 在线固相萃取-超高效液相色谱/串联质谱法测定水中的11种精神活性物质 [J]. 环境化学, 2019, 38(12): 2883-2888. YIN X X, GUO C S, DENG Y H, et al. Determination of 11 psychoactive substances in water by ultra performance liquid chromatography-tandem mass spectrometry coupled with online solid phase extraction [J]. Environmental Chemistry, 2019, 38(12): 2883-2888(in Chinese).
[12] FRAZ S, LEE A H, POLLARD S, et al. Paternal exposure to carbamazepine impacts zebrafish offspring reproduction over multiple generations [J]. Environmental Science & Technology, 2019, 53(21): 12734-12743. [13] SIVALINGAM M, OGAWA S, PARHAR I S. Mapping of morphine-induced OPRM1 gene expression pattern in the adult zebrafish brain [J]. Front Neuroanat, 2020, 14: 5-21. doi: 10.3389/fnana.2020.00005 [14] JOHNSON D J, SANDERSON H, BRAIN R A, et al. Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae [J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 128-139. doi: 10.1016/j.ecoenv.2006.03.016 [15] 杨雯筌, 殷耀, 张睿, 等. 超高效液相色谱-串联质谱法测定火锅底料中罂粟碱、吗啡、那可丁、可待因和蒂巴因等五种非法添加物 [J]. 环境化学, 2016, 35(6): 1321-1324. YANG W Q, YIN Y, ZHANG R, et al. Direct determination of hot pot bottom material in papaverine, morphine, codeine and thebaine, narcotine and other five kinds of illegal additive by UPLC-MS / MS [J]. Environmental Chemistry, 2016, 35(6): 1321-1324(in Chinese).
[16] MORATALLA R, KHAIRNAR A, SIMOLA N, et al. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms [J]. Progress in Neurobiology, 2017, 155: 149-170. doi: 10.1016/j.pneurobio.2015.09.011 [17] ZUCCATO E, CHIABRANDO C, CASTIGLIONI S, et al. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse [J]. Environmental Health, 2005, 4(1): 14. doi: 10.1186/1476-069X-4-14 [18] YADAV M K, SHORT M D, ARYAL R, et al. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment [J]. Water Research, 2017, 124: 713-727. doi: 10.1016/j.watres.2017.07.068 [19] VAN NUIJS A L, MOUGEL J F, TARCOMNICU I, et al. Sewage epidemiology-a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium [J]. Environment International, 2011, 37(3): 612-621. doi: 10.1016/j.envint.2010.12.006 [20] DU P, LI K, LI J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology [J]. Water Research, 2015, 84: 76-84. doi: 10.1016/j.watres.2015.07.025 [21] GUSHGARI A J, VENKATESAN A K, CHEN J, et al. Long-term tracking of opioid consumption in two United States cities using wastewater-based epidemiology approach [J]. Water Research, 2019, 161: 171-180. doi: 10.1016/j.watres.2019.06.003 [22] DRIVER E M, GUSHGARI A, CHEN J, et al. Alcohol, nicotine, and caffeine consumption on a public U. S. university campus determined by wastewater-based epidemiology [J]. Science of the Total Environment, 2020, 727: 138492. doi: 10.1016/j.scitotenv.2020.138492 [23] RIVA F, CASTIGLIONI S, PACCIANI C, et al. Testing urban wastewater to assess compliance with prescription data through wastewater-based epidemiology: first case study in Italy [J]. Science of the Total Environment, 2020, 739: 139741. doi: 10.1016/j.scitotenv.2020.139741 [24] BAKER D R, BARRON L, KASPRZYK-HORDERN B. Illicit and pharmaceutical drug consumption estimated via wastewater analysis. part a: chemical analysis and drug use estimates [J]. Science of the Total Environment, 2014, 487: 629-641. doi: 10.1016/j.scitotenv.2013.11.107 [25] METCALFE C, TINDALE K, LI H, et al. Illicit drugs in Canadian municipal wastewater and estimates of community drug use [J]. Environmental Pollution, 2010, 158(10): 3179-3185. doi: 10.1016/j.envpol.2010.07.002 [26] CASTIGLIONI S, ZUCCATO E. Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry [J]. Analytical Chemistry, 2006, 78(24): 8421-8429. doi: 10.1021/ac061095b [27] HOSKIN P J, HANKS G W. Morphine: pharmacokinetics and clinical practice [J]. British Journal of Cancer, 1990, 62: 705-707. doi: 10.1038/bjc.1990.363 [28] KHAN U, NICELL J A. Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol [J]. Science of the Total Environment, 2012, 421/422: 144-162. doi: 10.1016/j.scitotenv.2012.01.020 [29] KAMATA H T, SHIMA N, Zaitsu K, et al. Metabolism of the recently encountered designer drug, methylone, in humans and rats [J]. Xenobiotica, 2006, 36(8): 709-723. doi: 10.1080/00498250600780191 [30] CHEN C Y, LEE M R, CHENG F C, et al. Determination of ketamine and metabolites in urine by liquid chromatography-mass spectrometry [J]. Talanta, 2007, 72(3): 1217-1222. doi: 10.1016/j.talanta.2007.01.016 [31] THOMAS K V, BIJLSMA L, CASTIGLIONI S, et al. Comparing illicit drug use in 19 European cities through sewage analysis [J]. Science of the Total Environment, 2012, 432: 432-439. doi: 10.1016/j.scitotenv.2012.06.069 [32] FOPPE K S, HAMMOND-WEINBERGER D R, SUBEDI B. Estimation of the consumption of illicit drugs during special events in two communities in Western Kentucky, USA using sewage epidemiology [J]. Science of the Total Environment, 2018, 633: 249-256. doi: 10.1016/j.scitotenv.2018.03.175 [33] ARCHER E, CASTRIGNANO E, KASPRZYK-HORDERN B, et al. Wastewater-based epidemiology and enantiomeric profiling for drugs of abuse in South African wastewaters [J]. Science of the Total Environment, 2018, 625: 792-800. doi: 10.1016/j.scitotenv.2017.12.269 [34] DAGLIOGLU N, GUZEL E Y, KILERCIOGLU S. Assessment of illicit drugs in wastewater and estimation of drugs of abuse in Adana Province, Turkey [J]. Forensic Science International, 2019, 294: 132-139. doi: 10.1016/j.forsciint.2018.11.012 [35] TERZIC S, SENTA I, AHEL M. Illicit drugs in wastewater of the city of Zagreb (Croatia)-estimation of drug abuse in a transition country [J]. Environmental Pollution, 2010, 158(8): 2686-2693. doi: 10.1016/j.envpol.2010.04.020