-
近年来,随着人们生活质量的不断提高,对市场上水产品需求量日益增加,因此池塘高密度养殖方式应运而生. 相较于传统的养殖方法,高密度养殖会产生大量的粪便以及残饵,这些污染物排入水体中会导致养殖尾水的污染不断加剧. 为响应当前环保工作的推进,各地农业及生态环境部门相继提出池塘生态化改造政策,力求通过池塘标准化改造提升养殖尾水治理成效,加快渔业绿色发展,促进乡镇振兴. 因此养殖尾水的处理已经成为影响我国养殖行业发展的重要因素.
目前国内针对农村养殖尾水处理的技术各不相同,根据净化原理主要分为生物、生态和生物生态组合工艺[1]等. 近年来,潜流湿地处理养殖尾水日益受到关注[2]. 垂直潜流湿地是一种模拟天然湿地并利用基质、植物、微生物的物理、化学、生物等多重协同作用降解污水中污染物的方法[3-4]. 用来处理养殖尾水具有投资少、处理效率高、易维护等优点. 国内外对于垂直潜流湿地的研究主要基于改造湿地填料基质、水生植物选配[5-7],多孔填料的粒径、比表面积越大,水生植物的种类搭配越丰富,污染物去除效率越高[8-9]. 在由基质、水生植物和微生物组合的垂直潜流湿地系统中,微生物对养殖尾水中氮、磷的去除起着重要作用[10].
本研究通过构建菌剂强化-多级生物填料潜流湿地养殖尾水试验系统,采用生物镜检、高通量测序等手段,对系统内微生物种群结构、丰度、优势菌群进行分析,破解蟹池养殖尾水湿地净化过程中的微生物种群变迁,为潜流湿地净化蟹池养殖设施的应用提供理论依据与工程设计参考.
垂直潜流湿地净化蟹池养殖尾水试验
Experiment on purification of crab pond aquaculture tailwater by vertical-flow constructed submerged wetland
-
摘要: 用垂直潜流湿地系统打造闭环式生态养殖模式可达到蟹池尾水零排放.本文以蟹池养殖尾水为受试对象,通过建立“滤石层-载体生物膜”复合型生态系统,考察了河蟹黄蟹期内养殖尾水中氮、磷等污染物的去除特性,调查了垂直湿地模拟装置内生物相特征。结果表明,潜流湿地系统主要通过物理吸附和生物降解的方式对养殖尾水中的污染物进行降解,总氮、总磷、COD和叶绿素a的平均去除率分别为86.29%±2.77%、91.19%±1.18%、70.88%±3.10%、90.95%±1.64%,火山石滤料层表现出显著的氮、磷去除能力, 复合菌剂的运用可迅速提升系统整体净化能力. 生物相分析揭示,随着潜流湿地装置运行延续,系统内浮游藻类、微型动物、细菌的数量及种类呈不断增长趋势, 指示类微生物的出现表明系统内水质得到改善,证明净化后的水质更适于多种类微生物的生存与繁殖,最终实现养殖尾水零排放.Abstract: A closed-loop ecological system can accomplish no tailwater discharge from crab ponds with the help of a vertical submerged wetland system. In this paper, the tailwater is used as experimental target, a composite ecosystem of "stone layer- carrier biofilm" is established. The removal characteristics of pollutants, nitrogen and phosphorus, in the tailwater of river-crab during the breeding period of crab are examined, and the characteristics of biological phases in the vertical wetland simulator are investigated. The results showed that the submerged wetland system degraded the pollutants in the cultured tailwater by physical adsorption and biodegradation. The average removal rates of total nitrogen, total phosphorus, COD, and chlorophyll-a were 86.29%±2.77%, 91.19%±1.18%, 70.88%±3.10%, and 90.95%±1.64%, respectively. Nitrogen and phosphorus can be removed at the volcanic stone filter layer. The introduction of the composite bacterial agent can effectively improve the whole purification capacity of the system. Biological phase analysis reveals that the number and kinds of planktonic algae, microfauna, and bacteria in the system keep increasing with the continuously running of the submerged wetland. The appearance of indicator microorganisms indicates that the water quality in the system has been improved, which suggests the purified water is more suitable for the survival and reproduction of different kinds of microorganisms.No aquaculture tailwater discharge can be achieved.
-
表 1 试验进水水质
Table 1. Test water quality
水质指标
Water quality indexpH T/℃ TN/(mg·L−1) TP/(mg·L−1) CODMn/(mg·L−1) 数值范围
Numerical value7.20—7.45 31.5—32.3 4.126—4.325 0.196—0.215 43.8—45.1 表 2 各试验周期内浮游藻类种群变化
Table 2. Changes of plankton algae population in each test cycle
门类
Gate level属类
Genus试验周期
Experimental cycle初期
Initial stage中期
Middle stage末期
Last stage硅藻门
Bacillariophyta辐节藻属
Stauroneis+ + + 舟形藻属
Navicula+ + 菱形藻属
Nitzschia+ + 桥弯藻属
Cymbella+ 盒形藻属
Biddulphia+ 绿藻门
Chlorophyta小球藻属
Chlorella+ + + 新月藻属
Closterium+ + 角星鼓藻属
Staurastrum+ + 裂鼓藻属
Euastrum+ 鼓藻属
Cosmarium+ 衣藻属
Chlamydomonas+ 蓝藻门
Cyanophyta须藻属
Homoeothrix+ + + 色球藻属
Chroococcus+ + 微囊藻属
Microcystis+ + 裸藻门
Euglenophyta扁裸藻属
Phacus+ + + 囊裸藻属
Trachelomonas+ + 鳞孔藻属
Lepocinclis+ + 藻类数量
Algae quantity5 13 15 水质类型
Water quality type** ** * * 注: 水质类型判断指标依据湖泊富营养化的藻类生物学评价及污染指示种[17], “+”: 表示该藻类在系统中检出; “**”代表富营养型水质, “*”代表中营养性水质. Note: the judgment index of water quality type is based on the biological evaluation of lake eutrophication and pollution indicator species[17], “+”: indicates that the algae is detected in the system; “**” represents eutrophic water quality, “*” represents medium nutrient water quality. 表 3 生物膜上微型动物的变化
Table 3. Changes of microfauna on biofilm
名称
Definition初期
Initial stage中期
Middle stage末期
Last stage微型动物
Miniature animals纤毛虫纲
Ciliates漫游虫属
Litonotus+ + + 豆形虫属
Colpidium+ 草履虫
Paramecium+ 尾毛虫属
Urotricha+ 鞭毛虫纲
Mastigophora二态虫属
Dimorpha+ + + 四鞭虫
Trepomonas+ + 肉足虫纲
Sarcodina名壳虫
Pamphagus+ + 轮虫Rotifera + + + 注: “+”表示系统中镜检出该属微型动物.
Note: “+” indicates that the micro animal is detected by microscope in the system. -
[1] 谭学军, 张惠锋, 张辰. 农村生活污水收集与处理技术现状及进展 [J]. 净水技术, 2011, 30(2): 5-9,13. doi: 10.3969/j.issn.1009-0177.2011.02.002 TAN X J, ZHANG H F, ZHANG C. Current situation and development progress of domestic sewage collection and treatment technological processes in rural areas [J]. Water Purification Technology, 2011, 30(2): 5-9,13(in Chinese). doi: 10.3969/j.issn.1009-0177.2011.02.002
[2] 刘文涛, 吴磊, 吕锡武, 等. 生物生态耦合技术处理农村生活污水的应用研究 [J]. 环境监控与预警, 2012, 4(1): 46-49. doi: 10.3969/j.issn.1674-6732.2012.01.012 LIU W T, WU L, LU X W, et al. Study on the process combined with bio-ecological technology for rural sewage treatment [J]. Environmental Monitoring and Forewarning, 2012, 4(1): 46-49(in Chinese). doi: 10.3969/j.issn.1674-6732.2012.01.012
[3] 崔丽娟, 张曼胤, 李伟, 等. 人工湿地处理富营养化水体的效果研究 [J]. 生态环境学报, 2010, 19(9): 2142-2148. doi: 10.3969/j.issn.1674-5906.2010.09.021 CUI L J, ZHANG M Y, LI W, et al. Research on the effects of constructed wetlands for eutrophication waterbodies [J]. Ecology and Environmental Sciences, 2010, 19(9): 2142-2148(in Chinese). doi: 10.3969/j.issn.1674-5906.2010.09.021
[4] FAULWETTER J L, GAGNON V, SUNDBERG C, et al. Microbial processes influencing performance of treatment wetlands: A review [J]. Ecological Engineering, 2009, 35(6): 987-1004. doi: 10.1016/j.ecoleng.2008.12.030 [5] DORDIO A V, CARVALHO A J P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix [J]. Journal of Hazardous Materials, 2013, 252/253: 272-292. doi: 10.1016/j.jhazmat.2013.03.008 [6] WU H M, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation [J]. Bioresource Technology, 2015, 175: 594-601. doi: 10.1016/j.biortech.2014.10.068 [7] 杨萌尧, 吕铭志, 何春光, 等. 基质类型和粒径对垂直潜流人工湿地堵塞效应的研究 [J]. 湿地科学, 2017, 15(3): 391-395. YANG M Y, LU M Z, HE C G, et al. Effects of matrix type and particle size on clogging in vertical-flow constructed wetlands [J]. Wetland Science, 2017, 15(3): 391-395(in Chinese).
[8] LU S B, ZHANG X L, WANG J H, et al. Impacts of different media on constructed wetlands for rural household sewage treatment [J]. Journal of Cleaner Production, 2016, 127: 325-330. doi: 10.1016/j.jclepro.2016.03.166 [9] XIA R Z, PENG Y T, ZHONG S, et al. Performance of the iron-caron coupling constructed wetland for rural sewage treatment [J]. {IOP} Conference Series:Earth and Environmental Science, 2017, 51: 012016. doi: 10.1088/1742-6596/51/1/012016 [10] 张成龙, 李冰, 侯诒然, 等. 复合垂直潜流人工湿地中硝化和反硝化细菌的筛选及其特性//中国水产学会. 2018年中国水产学会学术年会论文摘要集[C]. 中国水产学会: 中国水产学会, 2018: 1. ZHANG C L, LI B, HOU Y R, et al. Screening and characteristics of nitrification and denitrification bacteria in composite vertical subsurface flow constructed wetlands//Fishery Society of China. 2018 Annual Conference of Fishery Society of China papers abstracts [C]. Fishery Society of China: Fishery Society of China, 2018: 1(in Chinese).
[11] 章霞, 徐志进, 柳敏海, 等. 不同滤料和碳氮比对对虾养殖尾水处理效果的影响 [J]. 大连海洋大学学报, 2018, 33(5): 620-624. ZHANG X, XU Z J, LIU M H, et al. Effects of different C: N ratios and biofiltration materials on wastewater treatment in shrimp culture [J]. Journal of Dalian Ocean University, 2018, 33(5): 620-624(in Chinese).
[12] 张志良, 李小芳. 植物生理学试验指导[M]. 第5版. 北京: 高等教育出版社, 2016. ZHANG Z L, LI X F. Experimental guidance of plant physiology [M]. 5th Edition, Beijing: Higher Education Press, 2016(in Chinese).
[13] 严如玉, 高桂青, 杨军飞, 等. 浮游藻类淡水生态环境评价应用现状 [J]. 人民珠江, 2020, 41(8): 111-116,138. doi: 10.3969/j.issn.1001-9235.2020.08.017 YAN R Y, GAO G Q, YANG J F, et al. Application status of planktonic algae in evaluating the freshwater environment [J]. Pearl River, 2020, 41(8): 111-116,138(in Chinese). doi: 10.3969/j.issn.1001-9235.2020.08.017
[14] 冯娟, 李超, 曾威, 等. 农村生活污水治理技术分析 [J]. 中国资源综合利用, 2018, 36(6): 40-42. doi: 10.3969/j.issn.1008-9500.2018.06.013 FENG J, LI C, ZENG W, et al. Analysis of rural domestic sewage treatment technology [J]. China Resources Comprehensive Utilization, 2018, 36(6): 40-42(in Chinese). doi: 10.3969/j.issn.1008-9500.2018.06.013
[15] 陈晶, 张敏特, 陈萍, 等. 菌剂强化潜流湿地总氮总磷去除及功能菌特性 [J]. 环境化学, 2015, 34(12): 2268-2274. doi: 10.7524/j.issn.0254-6108.2015.12.2015032902 CHEN J, ZHANG M T, CHEN P, et al. Nitrogen and phosphorus removal and characteristics of functional microbes in subsurface flow wetland with microbe augmentation [J]. Environmental Chemistry, 2015, 34(12): 2268-2274(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.12.2015032902
[16] BOON P I, SORRELL B K. Biogeochemistry of billabong sediments. I. The effect of macrophytes [J]. Freshwater Biology, 1991, 26(2): 209-226. doi: 10.1111/j.1365-2427.1991.tb01730.x [17] 王悦, 邵宇婷, 徐相龙, 等. 短泥龄活性污泥系统碳磷污染物去除机制及微生物结构分析 [J]. 环境科学学报, 2021, 41(1): 118-125. WANG Y, SHAO Y T, XU X L, et al. Removal mechanism of carbon and phosphorus and microbial community structure analysis in short-SRT activated sludge system [J]. Acta Scientiae Circumstantiae, 2021, 41(1): 118-125(in Chinese).
[18] 孟昭翠, 徐奎栋. 长江口邻近海域夏季底栖纤毛虫的多样性与群落结构特点 [J]. 海洋与湖沼, 2020, 51(3): 591-601. doi: 10.11693/hyhz20200100004 MENG Z C, XU K D. Diversity and community structure of benthic ciliates in sediments of Changjiang river estuary and its adjacent areas in summer [J]. Oceanologia et Limnologia Sinica, 2020, 51(3): 591-601(in Chinese). doi: 10.11693/hyhz20200100004
[19] 周晔平. 轮虫培育池浮游生物的种群动态 [J]. 福建农业科技, 2020(4): 23-27. ZHOU Y P. Population dynamics of plankton in the rotifer-culturing ponds [J]. Fujian Agricultural Science and Technology, 2020(4): 23-27(in Chinese).
[20] 张文艺, 陈晶, 邓文, 等. 反硝化聚磷菌菌剂种子液制备条件及除磷机理 [J]. 土木建筑与环境工程, 2014, 36(6): 99-105. ZHANG W Y, CHEN J, DENG W, et al. Preparation of denitrifying phosphorus accumulating bacterial seed liquid and analysis of phosphorus removal mechanism [J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(6): 99-105(in Chinese).
[21] 曹开银, 丁海涛, 邓超, 等. 湿地水生植物对富营养化水体的净化效果研究 [J]. 生物学杂志, 2019, 36(1): 39-42. doi: 10.3969/j.issn.2095-1736.2019.01.039 CAO K Y, DING H T, DENG C, et al. Purification effects of wetland aquatic plants on eutrophic water [J]. Journal of Biology, 2019, 36(1): 39-42(in Chinese). doi: 10.3969/j.issn.2095-1736.2019.01.039
[22] 梅慧. 四种典型水生高等植物复合抗藻效应研究[D]. 芜湖: 安徽师范大学, 2013. MEI H. Synergistic effect in algal suppression by four typical aquatic macrophytes[D]. Wuhu: Anhui Normal University, 2013(in Chinese).
[23] 任启飞, 晏妮, 房小晶, 等. 贵州云台山喀斯特水体浮游藻类调查及水质评价 [J]. 湖北农业科学, 2015, 54(13): 3123-3127. REN Q F, YAN N, FANG X J, et al. Phytoplankton survey and water quality evaluation in Karst water of Yuntai mountain in Guizhou [J]. Hubei Agricultural Sciences, 2015, 54(13): 3123-3127(in Chinese).