-
土壤是社会可持续发展的物质基础,其质量直接关系到人民群众的身体健康。为保证农业发展,农药以及含有抗生素残留畜禽粪便的大量使用,带来了严重的土壤污染问题。据统计我国抗生素使用量占全球一半,每年抗生素的使用量高达12000 t,其中大环内酯类使用量占20%[1-3],长期将含有是此类抗生素的有机肥投入到农田,会增加被作物吸收的风险最终给人类带来潜在风险[4]。苯醚甲环唑(difenoconazole,DZ)是一种内吸性三唑类杀菌剂,通过破坏细胞膜结构和功能达到杀灭真菌的目的,其具有低毒、高效、广谱等优点,在我国广泛使用[5],且在研究区的使用频率均较高,是当地的高风险农药。目前有研究表明20 mg·kg-1大环内酯类抗生素处理可显著抑制土壤细菌繁殖[6],不同地区土壤中DZ的降解率存在差异[7-8],主要原因是由不同地区土壤有机质含量、含水率以及酸碱度不同导致[9]。
不同用地类型因种植作物不同和农药、有机肥料的施用种类及施用量也存在较大差异,导致农药和抗生素的检测浓度存在差异性。翟程凯等发现有机氯农药在水田中的残留浓度要高于菜地和果园[10],赵方凯等发现农田、园地、林地的检出限及检出含量存在较大差异[11],张涛等通过对江西梅江流域土壤中11种抗生素采样测试发现,抗生素总浓度在耕地中含量最高,而草地中含量最少[12]。然而,目前对土壤抗生素和农药的污染特征的研究较为单一,并且在复合污染下进行让环境质量评价的相关研究仍相对较少。
针对日益严重的土壤污染问题及当前研究背景,本文以我国华北某农产品基地为研究区,通过对研究区内果园、菜地土壤取样并进行系统分析,揭示区内土壤中共存的杀菌剂和大环内酯类抗生素污染现状,以及其空间分布特征,并采用生态风险指数法对区内土壤质量进行简单评估。研究结果可供今后农业健康发展及土壤修复侧重提供参考,警示人们注重经济快速发展的同时也要注重土壤健康。
农用地大环内酯类抗生素与杀菌剂残留污染评价
Pollution assessment of macrolide antibiotics and fungicides residues in agricultural land
-
摘要: 土壤中农药与抗生素残留的污染问题引起了人们的广泛关注。研究选取我国华北地区典型农副产品基地,测定土壤中大环内酯类抗生素(macrolide antibiotics,MLs)中的红霉素(erythromycin,ERY)、罗红霉素(roxithromycin,ROX)与农药苯醚甲环唑(difenoconazole,DZ)的残留,分析不同种植模式及不同有机肥施用下土壤中抗生素残留差异,并从空间上分析研究区土壤中MLs类抗生素与DZ残留浓度特征,进一步的采用RDA冗余分析来探究土壤中残留DZ及MLs对土壤环境的影响。结果表明其对土壤中的OM、Cu等有一定的影响,这可能与土壤中酶与微生物的生命活动以及与其他药剂混用有关。DZ及MLs风险商(RQ)结果显示研究区土壤MLs类抗生素与DZ残留不具有潜在生态风险,但由土壤重金属综合污染评价得出区内有77.55%的土壤样点污染水平为轻度污染,潜在生态风险指数法预测区内土壤重金属75.50%的土壤样点属于轻微风险,22.45%属于中度风险等级,仅2.05%属于很强风险。本文对研究区土壤农药与抗生素残留特征及影响进行分析讨论,研究认为区内农药与抗生素污染短期内不存在潜在生态风险,但需注意与含金属药剂的混用问题。Abstract: The contamination of soil with pesticide and antibiotic residues has caused widespread concern. In this study, the residues of erythromycin (ERY) and roxithromycin (ROX) among macrolide antibiotics (MLs) and Difenoconazole (DZ) in soils of typical agricultural and sideline product bases in North China were determined, and the differences of antibiotic residues in soils under different planting patterns and different organic fertilizer application were analyzed, the characteristics of residual concentrations of MLS antibiotics and DZ in soil were analyzed spatially. RDA redundancy analysis was used to explore the effects of DZ and MLS on soil environment. The results showed that DZ and MLS had certain effects on OM and Cu in soil, which might be related to the life activities of enzymes and microorganisms in soil and the mixed use of other pesticides. The results of DZ and MLS risk quotient (RQ) showed that the residues of MLs and DZ in the soils of the study area were not potentially ecologically risky, but the comprehensive assessment of soil heavy metal pollution showed that 77.55% of the soil samples in the area were lightly contaminated, and the potential ecological risk index method for predicting soil heavy metals in the area indicates that 75.50% of the soil samples were at slight risk, 22.45% were at moderate risk level, and only 2.05% were at very strong risk. In this paper, the characteristics and effects of pesticide and antibiotic residues in the soil of the study area were analyzed and discussed. The results showed that there was no potential ecological risk in the short term of pesticide and antibiotic pollution in the area, but it was necessary to pay attention to the problem of mixing with metal containing pesticides.
-
Key words:
- soil /
- pesticides /
- antibiotic /
- residual characteristics /
- ecological risk
-
表 1 MLs及DZ残留情况
Table 1. Residual MLs and DZ
抗生素
Antibiotic浓度范围/(μg·kg−1)
Concentration range平均值/(μg·kg−1)
Mean标准差/(μg·kg−1)
Standard deviation检出率
Recall factorERY ND—7.84 0.20 1.14 6.12% ROX ND—2.73 0.40 0.41 93.88% DZ ND—206.00 9.94 32.43 69.39% 表 2 研究区土壤重金属残留情况
Table 2. Residual conditions of heavy metals in soil of the study area
项目
Project最小值/(mg·kg−1)
Maximum最大值/(mg·kg−1)
Minimum平均值/(mg·kg−1)
Mean标准差/(mg·kg−1)
Standard deviation相对标准偏差/%
Relative standard deviation土壤背景值/(mg·kg−1)
Background value of soilHg 0.02 0.27 0.06 0.05 80.29% 0.07 As 2.61 12.61 9.02 1.86 20.66% 11.20 Cr 50.07 154.53 69.42 22.28 32.10% 61.00 Cu 17.90 78.83 32.12 11.82 36.80% 22.60 Cd 0.08 0.38 0.18 0.06 33.89% 0.10 Pb 17.20 39.69 24.37 5.15 21.12% 26.00 表 3 预测土壤中抗生素无效应浓度
Table 3. Predicts the non-effective concentration of antibiotics in soil
表 4 土壤重金属污染指数分级标准
Table 4. Soil heavy metal pollution index classification standard
内梅罗污染指数
Nemerowindexofpollution潜在生态风险评估
PotentialecologicalriskassessmentPN 污染程度 $ {E}_{r}^{i} $ 风险等级 RI 风险等级 PN≤0.7 安全 <40$ {E}_{r}^{i} $ 轻微 RI<150 轻微风险 0.7<PN≤1 警戒线 40≤ <80$ {E}_{r}^{i} $ 中等 150≤RI<300 中等 风险 1<PN≤2 轻度污染 80≤ <160$ {E}_{r}^{i} $ 强 300≤RI<600 强风险 2<PN≤3 中度污染 160≤ <320$ {E}_{r}^{i} $ 很强 600≤RI 很强风险 3<PN 重度污染 320≤ $ {E}_{r}^{i} $ 极强 表 5 土壤重金属潜在生态风险分析
Table 5. Potential ecological risk analysis of heavy metals in soil
$ {E}_{r}^{i} $ 风险等级
Risklevel比例 Proportion RI 风险等级
Risklevel比例
ProportionHg As Cr Cu Cd Pb <40$ {E}_{r}^{i} $ 轻微 77.55% 89.80% 100% 100% 18.37% 100% RI<150 轻微风险 75.50% 40≤ <80$ {E}_{r}^{i} $ 中等 16.33% 10.20% 71.43% 150≤RI<300 中等风险 22.45% 80≤ <160$ {E}_{r}^{i} $ 强 6.12% 10.20% 300≤RI<600 强风险 2.05% 160≤ <320$ {E}_{r}^{i} $ 很强 600≤RI 很强风险 320≤ $ {E}_{r}^{i} $ 极强 -
[1] 高景峰, 孙丽欣, 樊晓燕, 等. 罗红霉素短期冲击对活性污泥中氨氧化微生物丰度和多样性的影响 [J]. 环境科学, 2017, 38(7): 2961-2971. GAO J F, SUN L X, FAN X Y, et al. Short-term effect of roxithromycin on abundance and diversity of ammonia oxidizing microorganisms in activated sludge [J]. Environmental Science, 2017, 38(7): 2961-2971(in Chinese).
[2] 徐维海, 张干, 邹世春, 等. 香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化 [J]. 环境科学, 2006, 27(12): 2458-2462. doi: 10.3321/j.issn:0250-3301.2006.12.016 XU W H, ZHANG G, ZOU S C, et al. Occurrence and seasonal changes of antibiotics in the Victoria harbour and the Pearl River, South China [J]. Environmental Science, 2006, 27(12): 2458-2462(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.12.016
[3] 顾鑫, 余凯翔, 胡宏华, 等. 土壤中红霉素结合残留在菜心中生物有效性研究 [J]. 核农学报, 2020, 34(3): 601-609. doi: 10.11869/j.issn.100-8551.2020.03.0601 GU X, YU K X, HU H H, et al. Bioavailability of the bound residues of 14C-erythromycin in soil [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 601-609(in Chinese). doi: 10.11869/j.issn.100-8551.2020.03.0601
[4] 庄红娟, 周鹏飞, 陈弘扬, 等. 农田9种农药残留特征及对土壤环境指标影响 [J]. 环境化学, 2021, 40(8): 2439-2449. doi: 10.7524/j.issn.0254-6108.2020113002 ZHUANG H J, ZHOU P F, CHEN H Y, et al. Characteristics of soil pesticide residues and their influence on soil environmental indicators [J]. Environmental Chemistry, 2021, 40(8): 2439-2449(in Chinese). doi: 10.7524/j.issn.0254-6108.2020113002
[5] 华乃震. 杀菌剂苯醚甲环唑的进展和应用 [J]. 世界农药, 2013, 35(6): 7-12,43. doi: 10.3969/j.issn.1009-6485.2013.06.002 HUA N Z. Dvelopment and application of difenoconazole fungicide [J]. World Pesticides, 2013, 35(6): 7-12,43(in Chinese). doi: 10.3969/j.issn.1009-6485.2013.06.002
[6] 严虎. 多菌灵、氯霉素单一与复合条件下在土壤中的消解及其对土壤真菌细菌比和酶活性的影响[D]. 杭州: 浙江大学, 2011. YAN H. Dissipation of carbendazim and chloramphenicol alone and in combination, and their effects on soil fungi: Bacteria and soil enzyme activities[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[7] 封天佑. 苯醚甲环唑在稻田中的残留及降解动态研究[D]. 长沙: 湖南农业大学, 2016. FENG T Y. Rearch on residues and dissipation dynamics of difenoconazole in rice field[D]. Changsha: Hunan Agricultural University, 2016(in Chinese).
[8] PAN M, WONG C K C, CHU L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, Southern China [J]. Journal of Agricultural and Food Chemistry, 2014, 62(46): 11062-11069. doi: 10.1021/jf503850v [9] 马亚培, 李宇轩, 谢欢, 等. 氮沉降与生物炭对土壤可溶性有机质的影响 [J]. 中国环境科学, 2020, 40(10): 4514-4521. doi: 10.3969/j.issn.1000-6923.2020.10.038 MA Y P, LI Y X, XIE H, et al. Effects of nitrogen deposition and biochar application on soil dissolved organic matter [J]. China Environmental Science, 2020, 40(10): 4514-4521(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.10.038
[10] 瞿程凯, 祁士华, 张莉, 等. 福建戴云山脉土壤有机氯农药残留及空间分布特征 [J]. 环境科学, 2013, 34(11): 4427-4433. QU C K, QI S H, ZHANG L, et al. Distribution characteristics of organochlorine pesticides in soil from Daiyun mountain range in Fujian, China [J]. Environmental Science, 2013, 34(11): 4427-4433(in Chinese).
[11] 赵方凯, 陈利顶, 杨磊, 等. 长三角典型城郊不同土地利用土壤抗生素组成及分布特征 [J]. 环境科学, 2017, 38(12): 5237-5246. ZHAO F K, CHEN L D, YANG L, et al. Composition and distribution of antibiotics in soils with different land use types in a typical peri-urban area of the yangtze river delta [J]. Environmental Science, 2017, 38(12): 5237-5246(in Chinese).
[12] 张涛, 郭晓, 刘俊杰, 等. 江西梅江流域土壤中四环素类抗生素的含量及空间分布特征 [J]. 环境科学学报, 2017, 37(4): 1493-1501. ZHANG T, GUO X, LIU J J, et al. Concentration and spatial distribution of tetracycline antibiotics in soil of Meijiang river catchment, Jiangxi Province [J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1493-1501(in Chinese).
[13] 陈莉, 贾春虹, 刘冰洁, 等. 超高效液相色谱-电喷雾串联质谱法同时测定土壤中四环素类抗生素及其降解产物 [J]. 地学前缘, 2019, 26(6): 1-6. CHEN L, JIA C H, LIU B J, et al. Determination of tetracyclines and their degradation products in soil using ultra-performance liquid chromatography-tandem mass spectrometry [J]. Earth Science Frontiers, 2019, 26(6): 1-6(in Chinese).
[14] 邰义萍. 珠三角地区蔬菜基地土壤中典型抗生素的污染特征研究[D]. 广州: 暨南大学, 2010. TAI Y P. The study on pollution characteristics of typical antibiotics in soil from vegetable fields of Pearl River Delta area[D]. Guangzhou: Jinan University, 2010(in Chinese).
[15] 王雅丽, 龚道新, 张春艳, 等. 气相色谱法对稻田水、土壤中的醚菌酯和苯醚甲环唑残留的检测 [J]. 湖北农业科学, 2014, 53(21): 5249-5252. WANG Y L, GONG D X, ZHANG C Y, et al. Simultaneous determination of kresoxim-methyl and difenoconazole residue in paddy water and soil with gas chromatography [J]. Hubei Agricultural Sciences, 2014, 53(21): 5249-5252(in Chinese).
[16] 刘纲华. 苯醚甲环唑在几种果蔬中的残留降解行为研究[D]. 长沙: 湖南农业大学, 2012. LIU G H. The residue and degradation behavior of difenoconazole in some fruits and vegetables[D]. Changsha: Hunan Agricultural University, 2012(in Chinese).
[17] 许秀莹, 刘晓凤, 王鸣华. 氟啶胺的水解与土壤降解特性研究 [J]. 安全与环境学报, 2014, 14(5): 252-256. XU X Y, LIU X F, WANG M H. On fluazinam hydrolysis and degradation features in the soil [J]. Journal of Safety and Environment, 2014, 14(5): 252-256(in Chinese).
[18] GU C, KARTHIKEYAN K G, SIBLEY S D, et al. Complexation of the antibiotic tetracycline with humic acid [J]. Chemosphere, 2007, 66(8): 1494-1501. doi: 10.1016/j.chemosphere.2006.08.028 [19] 王瑞, 魏源送. 畜禽粪便中残留四环素类抗生素和重金属的污染特征及其控制 [J]. 农业环境科学学报, 2013, 32(9): 1705-1719. doi: 10.11654/jaes.2013.09.002 WANG R, WEI Y S. Pollution and control of tetracyclines and heavy metals residues in animal manure [J]. Journal of Agro-Environment Science, 2013, 32(9): 1705-1719(in Chinese). doi: 10.11654/jaes.2013.09.002
[20] 喻倩. 罗红霉素荧光光度法测定铬(Ⅵ)的研究 [J]. 湖南城市学院学报(自然科学版), 2014, 23(1): 49-51. YU Q. Study on the determination of chromium(Ⅵ) with roxithromycin fluorescence spectrophotofluorimetry [J]. Journal of Hunan City University (Natural Science), 2014, 23(1): 49-51(in Chinese).
[21] 卢诚, 张俊, 王钊, 等. 河北潘家口水库氯霉素类抗生素检测及风险评估 [J]. 中国环境科学, 2016, 36(6): 1843-1849. doi: 10.3969/j.issn.1000-6923.2016.06.036 LU C, ZHANG J, WANG Z, et al. Determination and risk assessment of chloramphenicols in Panjiakou Reservoir, Hebei Province [J]. China Environmental Science, 2016, 36(6): 1843-1849(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.06.036
[22] 涂棋, 徐艳, 李二虎, 等. 典型养鸡场及其周边土壤中抗生素的污染特征和风险评估 [J]. 农业环境科学学报, 2020, 39(1): 97-107. doi: 10.11654/jaes.2019-0823 TU Q, XU Y, LI E H, et al. Occurrence and risk assessment of antibiotics in typical chicken farms and surrounding soils [J]. Journal of Agro-Environment Science, 2020, 39(1): 97-107(in Chinese). doi: 10.11654/jaes.2019-0823
[23] NIETO A, BORRULL F, MARCÉ R M, et al. Selective extraction of sulfonamides, macrolides and other pharmaceuticals from sewage sludge by pressurized liquid extraction [J]. Journal of Chromatography A, 2007, 1174(1/2): 125-131. [24] CRISTALE J, KATSOYIANNIS A, SWEETMAN A J, et al. Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK) [J]. Environmental Pollution, 2013, 179: 194-200. doi: 10.1016/j.envpol.2013.04.001 [25] SÁNCHEZ-AVILA J, TAULER R, LACORTE S. Organic micropollutants in coastal waters from NW Mediterranean Sea: Sources distribution and potential risk [J]. Environment International, 2012, 46: 50-62. doi: 10.1016/j.envint.2012.04.013 [26] KARCı A, BALCıOĞLU I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey [J]. Science of the Total Environment, 2009, 407(16): 4652-4664. doi: 10.1016/j.scitotenv.2009.04.047 [27] PAN M, CHU L M. Adsorption and degradation of five selected antibiotics in agricultural soil [J]. Science of the Total Environment, 2016, 545/546: 48-56. doi: 10.1016/j.scitotenv.2015.12.040 [28] 王嘉玮. 渭河西安段表层水体中抗生素的分布特征及生态风险评价[D]. 西安: 西安理工大学, 2018. WANG J W. Distribution characteristics and ecological risk assessment of antibiotics in surface water of xi’an section of Weihe river[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese).
[29] 谭华东, 李勤奋, 张汇杰, 等. 南渡江农业土壤中农药分布特征与生态风险评估 [J]. 生态环境学报, 2021, 30(1): 181-189. TAN H D, LI Q F, ZHANG H J, et al. Distribution and ecotoxicological risk of current-use pesticides in agricultural soil from nandu river basin in Hainan [J]. Ecology and Environmental Sciences, 2021, 30(1): 181-189(in Chinese).
[30] 郑睛之, 王楚栋, 王诗涵, 等. 典型小城市土壤重金属空间异质性及其风险评价: 以临安市为例 [J]. 环境科学, 2018, 39(6): 2875-2883. ZHENG J Z, WANG C D, WANG S H, et al. Spatial variation of soil heavy metals in Lin'an City and its potential risk evaluation [J]. Environmental Science, 2018, 39(6): 2875-2883(in Chinese).
[31] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [32] 张春秀. 农药污染对农作物土壤的影响及可持续治理对策 [J]. 现代农业, 2017(7): 39-40. doi: 10.3969/j.issn.1008-0708.2017.07.030 ZHANG C X. Effect of pesticide pollution on crop soil and sustainable management countermeasures [J]. Modern Agriculture, 2017(7): 39-40(in Chinese). doi: 10.3969/j.issn.1008-0708.2017.07.030
[33] SCHLÜSENER M P, BESTER K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil [J]. Environmental Pollution, 2006, 143(3): 565-571. doi: 10.1016/j.envpol.2005.10.049 [34] 许天衡. 苯醚甲环唑在土壤中的消解及其对土壤微生物和烟曲霉敏感性的影响[D]. 杭州: 浙江大学, 2018. XU T H. Dissipation of difenoconazole in soil and its impacts on soil microorganism and sensitivity of A. Fumigatus[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[35] 李云开, 刘世荣, 张克强, 等. 磺胺类药物在农田生态系统中迁移转化过程的研究进展 [J]. 中国畜牧兽医, 2007, 34(12): 141-144. doi: 10.3969/j.issn.1671-7236.2007.12.051 LI Y K, LIU S R, ZHANG K Q, et al. Research progress on migration and transformation of sulfonamides in farmland ecosystem [J]. China Animal Husbandry & Veterinary Medicine, 2007, 34(12): 141-144(in Chinese). doi: 10.3969/j.issn.1671-7236.2007.12.051
[36] 王晓洁, 赵蔚, 张志超, 等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控 [J]. 中国科学:技术科学, 2021, 51(6): 615-636. doi: 10.1360/SST-2020-0337 WANG X J, ZHAO W, ZHANG Z C, et al. Veterinary antibiotics in soils: Environmental processes, ecotoxicity, and risk mitigation [J]. Scientia Sinica (Technologica), 2021, 51(6): 615-636(in Chinese). doi: 10.1360/SST-2020-0337
[37] MOHRING S A I, STRZYSCH I, FERNANDES M R, et al. Degradation and elimination of various sulfonamides during anaerobic fermentation: A promising step on the way to sustainable pharmacy? [J]. Environmental Science & Technology, 2009, 43(7): 2569-2574. [38] 初春, 王志华, 秦冬梅, 等. 苯醚甲环唑在芹菜及其土壤中的残留测定和消解动态研究 [J]. 中国科学:化学, 2011, 41(1): 129-135. doi: 10.1360/032010-100 CHU C, WANG Z H, QIN D M, et al. Study on determination and dynamics of difenoconazole residues in celery and soil [J]. Scientia Sinica (Chimica), 2011, 41(1): 129-135(in Chinese). doi: 10.1360/032010-100