-
重金属污染已经成为危害最大、范围最广的水污染物之一,是当今人类社会面临的一个严重问题。重金属具有毒性,且不可降解,除了对生活在水和土壤中的生物有毒害作用外,还会在整个食物链中积累,对人类、植物和动物的健康造成严重的危害。此外,重金属本身也是不可再生资源,因此,去除并可持续利用这些重金属的需求较为迫切,具有选择性地去除重金属离子方法的需求日益增加,其中常用的包括化学沉淀法[1]、离子交换法[2]、重金属捕集剂法[3]和吸附法[4]等。吸附法具有操作简便、成本低、效率高的特点而引起了广泛关注,而选择性吸附的关键在于吸附剂的选择与制备。
聚乙烯(PVA)((C2H4O)n)是聚醋酸乙烯酯的衍生物,是一种无毒、可降解、生物相容性好、成本相对较低的聚合物[5],因为聚乙烯醇中含有大量的羟基,可与多种官能团发生反应[6],可通过接枝对目标离子具有强作用力的官能团实现选择性吸附。细菌纤维素(BC)是一种新型的多功能纳米生物材料,是醋酸杆菌生长和代谢过程中分泌的高分子多糖[7],具有成本低、结构简单、亲水性好等特点,其主链上有大量的羟基,掺入PVA内可以有效提升PVA的力学性能[8]。硫脲中氨基官能团上的氢原子可被其他官能团取代生成硫脲基的衍生物,如脒基硫脲等。由于该类化合物上含有丰富的氮、硫元素,易与重金属离子通过配位作用生成稳定的螯合产物[9],可通过交联或接枝法负载到基质上,得到低成本、高选择性的吸附剂。
本研究以经戊二醛交联后的PVA/BC为基材,与脒基硫脲按照比例共混,采用水热法将脒基硫脲接枝到SPVA/BC表面,制备脒基硫脲改性交联聚乙烯醇/细菌纤维素的新型吸附剂(GLA-SPVA/BC)。通过FT-IR、SEM/EDS-mapping等表征手段对材料的形貌组成进行了表征并分析;通过吸附实验对其吸附热力学、动力学和选择性进行研究;对吸附动力学和热力学数据进行了拟合,与表征结果结合预测材料的吸附机理。
脒基硫脲接枝聚乙烯醇/细菌纤维素吸附剂的制备及其对Cu(Ⅱ)的选择性吸附
Preparation of amidyl thiourea grafted polyvinyl alcohol/bacterial cellulose adsorbent and its selective adsorption of Cu(Ⅱ)
-
摘要: 本研究将脒基硫脲(GLA)接枝到交联聚乙烯醇(SPVA)/细菌纤维素(BC)制备了一种新吸附剂(GLA-SPVA/BC),并研究其对铜离子的选择性吸附。FT-IR中C=N和—(C=S)—N特征吸收峰的出现以及mapping图像中N和S元素的均匀分布表明脒基硫脲成功接枝在SPVA/BC表面;TG-DSC的结果表明吸附剂GLA-SPVA/BC在吸附过程中具有很好的热稳定性。该吸附剂GLA-SPVA/BC对Cu(Ⅱ)离子的吸附符合Langmuir等温线模型,30 ℃时最大吸附容量为91.86 mg·g−1;Elovich动力学模型拟合显示在吸附剂表面发生了化学吸附作用;XPS谱图中N、S特征峰值的变化进一步证实是主要通过配位作用完成吸附。GLA-SPVA/BC吸附剂在铜锌铅镍4元离子体系中,对Cu(Ⅱ)表现出高的选择性。Abstract: In this study, we studied that the amidyl thiourea (GLA) was grafted to the matrix of cross-linked polyvinyl alcohol (SPVA) and bacterial cellulose (BC) to prepare a new adsorbent (GLA-SPVA/BC), selectively adsorbing copper ions. The C=N and —(C=S)—N characteristic absorption peaks in FT-IR spectrum of GLA-SPVA/BC and the uniform distribution of N and S elements in the element mapping image confirmed that GLA was successfully grafted onto the surface of SPVA/BC. The results of TG-DSC showed that GLA-SPVA /BC had good thermal stability during the adsorption process. The adsorption of Cu(Ⅱ) ions by the adsorbent GLA-SPVA/BC complies with the Langmuir isothermal model, and there is a maximum adsorption capacity of (91.86 mg·g−1) at 30 ℃. The fitting dynamical model verified a chemo-adsorption on the surface of the GLA-SPVA/BC. The adsorption by coordination way was confirmed by the change of N1s and S1s characteristic peak in the XPS spectrum. GLA-SPVA/BC shown high selectivity to Cu(Ⅱ) in Cu-Zn-Pb-Ni 4 ion system.
-
图 2 (a)SPVA/BC、(b) GLA-SPVA/BC和 (c)GLA-SPVA/BC-Cu (Ⅱ)的SEM图像;(b1—b4) GLA-SPVA/BC的EDS-mapping图像;(c1—c5)GLA-SPVA/BC-Cu (Ⅱ)的EDS-mapping图像
Figure 2. (a) SEM images of SPVA / BC, (b) GLA-SPVA / BC, and (c) GLA-SPVA / BC-Cu (Ⅱ); (b1—b4) EDS-mapping images of GLA-SPVA / BC; and (c1—c5) EDS-mapping images of GLA-SPVA / BC-Cu (Ⅱ)
表 1 准一级动力学模型与准二级动力学模型动力学参数
Table 1. Kinetic parameters of quasi-first-order and quasi-second-order kinetic models
吸附剂
AdsorbentT/℃ qe,exp/
(mg·g−1)Pseudo-first-order model Pseudo-second-order model Elovich kinetic model qe,cal/
(mg·g−1)k1/
min−1R2 SD/% qe,cal/
(mg·g−1)k2/
(g·mg−1·min−1)R2 SD/% qe,cal/
(mg·g−1)a/
(mg·g−1·min−1)b/
(g·mg−1)R2 SD/% SPVA/
BC20 13.38 12.26 0.0113 0.8704 21.22 14.01 0.0011 0.9476 14.12 13.31 0.619 0.3868 0.9820 7.53 30 17.97 15.10 0.0270 0.6882 15.11 16.79 0.0022 0.8867 9.09 17.50 2.823 0.3799 0.9890 2.31 40 24.78 20.71 0.0291 0.6069 16.15 22.97 0.0017 0.8414 10.43 24.04 4.664 0.2857 0.9810 1.66 GLA-
SPVA/
BC20 18.2 16.67 0.0069 0.9177 24.01 20.22 0.0004 0.9492 19.17 16.80 0.452 0.2653 0.9366 19.39 30 30.18 25.49 0.0173 0.6639 21.45 28.31 0.0009 0.8510 14.08 28.64 2.735 0.2104 0.9684 6.06 40 36.05 32.47 0.0106 0.7590 25.54 36.87 0.0004 0.8714 18.89 34.62 1.785 0.1525 0.9438 11.67 表 2 吸附剂吸附Cu(Ⅱ)的等温线参数
Table 2. Isotherm parameters of adsorption of Cu(Ⅱ) by adsorbent
吸附剂
AdsorbentT/°C Langmuir models Freundlich models qm/(mg·g−1) KL/(L·mg−1) R2 KF/(mg·g−1) 1/n R2 SPVA/BC 20 50.81 0.0029 0.9414 0.376 0.733 0.9167 30 69.11 0.0039 0.9839 0.857 0.700 0.965 40 78.52 0.0070 0.9992 2.453 2.453 0.9812 GLA-SPVA/BC 20 66.41 0.0031 0.9583 0.535 0.724 0.9293 30 82.36 0.0051 0.9958 1.545 0.620 0.9755 40 86.57 0.0146 0.9881 6.592 0.433 0.9905 表 3 Cu (Ⅱ)吸附于吸附剂上的热力学参数
Table 3. Thermodynamic parameters of Cu(Ⅱ) adsorbed on an adsorbent
吸附剂
Adsorbent温度T/K 吉布斯自由能ΔG0/(kJ·mol−1) 焓变ΔH0/(kJ·mol−1) 熵变ΔS0/(J·mol−1·K−1) SPVA/BC 293.15 -12.35 19.97 110.24 303.15 −13.45 313.15 −14.55 GLA-SPVA/BC 293.15 −15.12 7.35 76.64 303.15 −15.88 313.15 −16.65 -
[1] REYES-SERRANO A, LÓPEZ-ALEJO J E, HERNÁNDEZ-CORTÁZAR M A, et al. Removing contaminants from tannery wastewater by chemical precipitation using CaO and Ca(OH)2 [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1107-1111. doi: 10.1016/j.cjche.2019.12.023 [2] MOGHIMI F, JAFARI A H, YOOZBASHIZADEH H, et al. Adsorption behavior of Sb(III) in single and binary Sb(III)—Fe(II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 236-248. doi: 10.1016/S1003-6326(19)65195-2 [3] XIAO D, DING W, ZHANG J B, et al. Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition [J]. Chemical Engineering Journal, 2019, 358: 310-320. doi: 10.1016/j.cej.2018.10.037 [4] AYDIN Y A, AKSOY N D. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics [J]. Chemical Engineering Journal, 2009, 151(1/2/3): 188-194. [5] WANG X H, YANG L, ZHANG J P, et al. Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions [J]. Chemical Engineering Journal, 2014, 251: 404-412. doi: 10.1016/j.cej.2014.04.089 [6] TRIKKALIOTIS D G, CHRISTOFORIDIS A K, MITROPOULOS A C, et al. Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol) [J]. Carbohydrate Polymers, 2020, 234: 115890. doi: 10.1016/j.carbpol.2020.115890 [7] WU Z Y, LIANG H W, CHEN L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials [J]. Accounts of Chemical Research, 2016, 49(1): 96-105. doi: 10.1021/acs.accounts.5b00380 [8] XU X R, CHEN X, YANG L Y, et al. Film-like bacterial cellulose based molecularly imprinted materials for highly efficient recognition and adsorption of cresol isomers [J]. Chemical Engineering Journal, 2020, 382: 123007. doi: 10.1016/j.cej.2019.123007 [9] 刘海龙, 何璐红, 赵扬. 硫脲基重金属离子吸附材料的研究进展[C]//第三届河南省化学、化工与生物、食品学术研讨会论文集. 平顶山市, 2015: 26-29. LIU H L, HE L H, ZHAO Y. Research progress of thiourea - based heavy metal ion adsorption materials[C]//Proceedings of the 3rd Henan Provincial Symposium on Chemistry, Chemical engineering and Biological Food. Pingdingshan City, 2015: 26-29(in Chinese).
[10] MONIER M, ABDEL-LATIF D A. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions [J]. Journal of Hazardous Materials, 2013, 250/251: 122-130. doi: 10.1016/j.jhazmat.2013.01.056 [11] SONG L, SHU L, WANG Y Q, et al. Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction [J]. International Journal of Biological Macromolecules, 2020, 143: 922-927. doi: 10.1016/j.ijbiomac.2019.09.152 [12] WANG S, GAO Q Y, WANG J C. Thermodynamic analysis of decomposition of thiourea and thiourea oxides [J]. The Journal of Physical Chemistry B, 2005, 109(36): 17281-17289. doi: 10.1021/jp051620v [13] 张洪玉, 杨亮, 陆大年. 细菌纤维素基聚乙烯醇(BC/PVA)复合膜的制备及性能研究 [J]. 印染助剂, 2012, 29(8): 18-21. doi: 10.3969/j.issn.1004-0439.2012.08.005 ZHANG H Y, YANG L, LU D N. Preparation and properties of polyvinyl alcohol (PVA) composites membranes based on bacterial cellulose (BC) [J]. Textile Auxiliaries, 2012, 29(8): 18-21(in Chinese). doi: 10.3969/j.issn.1004-0439.2012.08.005
[14] AWAD F S, ABOUZEID K M, EL-MAATY W M A, et al. Efficient removal of heavy metals from polluted water with high selectivity for mercury(II) by 2-imino-4-thiobiuret-partially reduced graphene oxide (IT-PRGO) [J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34230-34242. [15] CHEN Z C, TANG B T, NIU Y Z, et al. Synthesis of silica supported thiosemicarbazide for Cu(II) and Zn(II) adsorption from ethanol: A comparison with aqueous solution [J]. Fuel, 2021, 286: 119287. doi: 10.1016/j.fuel.2020.119287 [16] LIU P, WANG X L, TIAN L, et al. Adsorption of silver ion from the aqueous solution using a polyvinylidene fluoride functional membrane bearing thiourea groups [J]. Journal of Water Process Engineering, 2020, 34: 101184. doi: 10.1016/j.jwpe.2020.101184 [17] 李怀娜, 尤进茂, 李峰, 等. 乙醛酸缩氨基硫脲和锌(Ⅱ)、铅(Ⅱ)、铜(Ⅱ)、锰(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)配合物的薄层色谱与紫外光谱的研究 [J]. 色谱, 1995, 13(3): 203-204. LI H N, YOU J M, LI F, et al. A study on the thin-layer chromatography and ultraviolet spectrum of cobalt(Ⅱ), copper(Ⅱ), zinc(Ⅱ), lead(Ⅱ), manganese(Ⅱ)and nickel(Ⅱ)as their glyoxylic acid thiosemicarbazone complexes [J]. Chinese Journal of Chromatography, 1995, 13(3): 203-204(in Chinese).
[18] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. doi: 10.1107/S0567739476001551