-
青春期是生理-心理-社会三者相互交织的现象,是儿童到成人的过渡期。青春期发动时相对整个生命周期的身心健康有着巨大影响[1],发动时相异常会增加女性罹患各种疾病甚至癌症的风险[2-4]。目前,全球儿童青春期发育开始时间和速度加快,尽管个体基因是其主要决定因素,但上世纪环境污染严重,已发现许多环境内分泌干扰物(environmental endocrine disruptors,EEDs)会严重影响青春期的正常进程[5].
EEDs是一类能通过干扰天然激素的合成、分泌、运输、结合、反应和代谢等过程从而对人体的生殖、神经和免疫系统等功能产生影响的外源性化学物质。农药、洗涤剂、塑料、纺织品、塑化剂、防腐剂等化学用品是其主要来源。随着这些产品日益广泛而高频的使用,越来越多的EEDs进入环境,造成污染[6-7]。人类可通过摄取被EEDs污染的食物、呼吸道吸入和皮肤接触等途径接触EEDs,暴露风险不言而喻[8]。EEDs暴露对女性青春期性成熟具有干扰作用,如女性尿液中高双酚A水平与青春期启动提前相关(P<0.05)[9];我们前期的研究也发现,尿液中拟除虫菊酯主要代谢产物水平与女性青春期发动时相呈显著负相关[OR=0.51(95%CI:0.28—0.93),P<0.05][10]。但各类EEDs对女性青春期性成熟的具体影响均未得到一致结论,且具体诱发机制尚不明确。
本文回顾了青春期性成熟的神经内分泌机理,并对近10年发表的有关EEDs对女性青春期性成熟影响的人群流行病学研究进行整理,初步探讨产生这些作用可能的分子机制,以期为深入研究EEDs和青春期性成熟的关系提供思路。
环境内分泌干扰物对女性青春期性成熟的干扰作用研究进展
The effects and mechanisms of environmental endocrine disruptors exposure on pubertal development in females
-
摘要: 青春期是人一生中生长发育的关键窗口期,易受到外界环境信号的干扰。环境内分泌干扰物能通过干扰人体内天然激素的正常运作,影响青春期发动时相。目前,各种环境内分泌干扰物对女性青春期性成熟的影响均未得到一致结论,且具体诱发机制不明确。本文综述了有机污染物和重金属这两类环境内分泌干扰物对女性青春期性成熟的影响及其造成女性青春期性成熟异常的可能机制,以期为深入研究环境内分泌干扰物对青春期性成熟的影响和分子机制提供思路,为加强环境内分泌干扰物的风险管理提供科学依据,对保障女性健康具有重要的科学意义和社会意义。Abstract: Puberty is a critical period for growth and development of human beings and can be easily affected by environmental factors. Environmental endocrine disruptors (EEDs) can damage the normal operation of the natural hormones and the onset of puberty. There is no unanimity for the effects of EEDs on females sextual maturity and the molecular mechanism is not clear so far. This article reviewed the effects of organic pollutants and heavy metals on pubertal development of females and their underlying possible mechanisms. We aimed to provide insights for further studies on the effects of EEDs on the pubertal development and the molecular mechanism, which will be of great significance for the accurate and comprehensive evaluation of the health risks of EEDs and protection of children health.
-
Key words:
- environmental endocrine disruptors /
- female /
- puberty /
- sexual maturity /
- mechanism
-
表 1 有机污染物暴露对女性青春期性成熟时间相关的人群流行病学研究
Table 1. Human studies investigating the relationship of organic pollutants with pubertal development in females
环境内分泌
干扰物
EEDs样本(量)
Sample
(size)研究人群
Study
population研究方法
Study
design与青春期性
成熟的相关性
Correlation
with puberty主要结果
Results参考文献
Reference有机氯杀虫剂 血清
(524)哈萨克斯坦10—17岁女性 横断面研究,通过临床检查评估Tanner分级 是(延迟) 有机氯暴露与乳房及生殖器毛发发育延迟有关(P<0.05) [18] 有机氯农药、多溴联苯醚、多氯联苯 血清
(654)不同种族6—8岁女性 队列研究(每年多达7次检查),通过检查评估Tanner分级 是(延迟) 较高浓度的血清化合物使女性乳房Tanner分级达到第二阶段及以上时的年龄偏大[TR for B2+ and Q4 for ∑PBDE=1.05(95%CI:1.02—1.08),P<0.05;for ∑PCB=1.05(95%CI:1.01—1.08),P<0.05;for ∑OCP=1.10(95%CI:1.06—1.14),P<0.05] [19] 血清
(1257)美国6—8岁女性 队列研究(每年随访一次,持续10年),通过Tanner分级评估青春期状态、父母及自我报告确定初潮时间 是(延迟) 月经初潮延迟与较高水平的有机氯农药、多溴联苯醚、多氯联苯暴露相关(Q4 versus Q1 aHRs:PBDEs 0.75[95% CI:0.58—0.97];PCBs 0.67[95% CI:0.5—0.89];OCPs 0.66 [95% CI:0.50—0.89],P<0.01) [20] 多溴二苯醚 血清
(31名特发性中枢性性早熟患者)罗马平均年龄8岁女性 病例对照研究 是(提前) 特发性中枢性性早熟女性血清中多溴二苯醚浓度较其他文献中正常女性浓度高(P<0.05) [21] 血清
(314)美国9岁女性 队列研究(9—13岁之间每9个月评估一次青春期开始时间,持续14年),通过Tanner分级和自我报告确定初潮时间 是(延迟) 母亲产前多溴二苯醚暴露与女性月经初潮延迟有关[RR=0.5(95%CI:0.3—0.9),P<0.05],与女性乳房或生殖器毛发发育程度无关(P>0.05) [16] 多环芳烃 尿液
(404)美国6—8岁女性 队列研究,通过检查评估Tanner分级 是(超重人群,提前)/否(正常人群) 在超重的女性中,多环芳烃暴露与乳房发育提前有关,而在体重正常的女性中与乳房发育无关(P>0.05) [22] 尿液
(209早发育+528对照)中国1—4年级女性 病例对照研究 是(提前) 早发育女性尿液中多环芳烃浓度较正常组高(P<0.05) [23] 2,3,7,8-TCDD 血清
(316)意大利8—39岁女性 队列研究,通过访谈、检查确定初潮时间 是(延迟) 将爆炸发生时母亲当时青春期性成熟发育情况作为影响因素进行修正后发现,母亲产前TCDD暴露与其女儿月经初潮年龄延迟有关[HR=0.71(95%CI:0.52—0.97),P<0.05] [17] BPA 尿液
(655)中国9—18岁女性 横断面研究,通过 Tanner分级和自我报告月经初潮评估青春期发育状态 是(生殖器毛发,提前;月经初潮,延迟) 中[PRs=0.73(95%CI:0.56—0.95)]、高中[PRs=0.72(95%CI:0.52—0.99)]剂量BPA暴露与月经初潮延迟有关 [32] 尿液
(28中枢性性早熟+28早发育+22对照)土耳其5—8岁女性 病例对照研究 否 病例组尿液中BPA浓度较对照组无显著性差异(P>0.05) [34] BPA 尿液
(42中枢性性早熟+40外周行性早熟+37对照)韩国7—9岁女性 病例对照研究 否 病例组尿液中BPA浓度较对照组无显著性差异(P>0.05) [35] 尿液
(41性早熟+47对照)泰国6—8岁女性 病例对照研究 是(超重人群,提前)/否(正常人群) 超重且早发育女性尿液中BPA浓度较对照组高(P<0.05) [9] BPA 尿液
(25早发育+25对照)土耳其4—8岁女性 病例对照研究 是(提前) 早发育女性尿液中BPA浓度较正常对照组高(P<0.05) [30] 尿液
(136特发性中枢性性早熟+136对照)中国6—9岁女性 病例对照研究 是(提前) 特发性中枢性性早熟女性尿液中BPA浓度较高(P<0.001) [31] BPA/PAEs 产妇尿液
(120)墨西哥8—13岁女性 队列研究(妊娠前、中、晚期),通过检查评估Tanner分析 是(妊娠中期BPA及DEHP,提前/整个妊娠期DEHP,延迟) 妊娠中期BPA、MEHP暴露与乳房Tanner第二阶段及以上分别为[OR=2.2(95%CI:1.0—4.5),P<0.05]、生殖器毛发发育程度[OR=0.32(95%CI:0.11—0.95),P<0.05]提前有关;妊娠晚期MEHP暴露与乳房Tanner第一阶段发育程度延迟有关[OR=3.76(95%CI:1.1—12.8),P<0.05] [28] 产妇尿液
(179)美国9—13岁女性 队列研究(每9个月检查一次,9岁时就诊,直到13岁结束),通过访谈、问卷调查和检查评估Tanner分级 是(延迟) 正常体重的女性中,MCNP、MCOP、MCPP、ΣDEHP、BPA浓度与月经初潮延迟有关;只有MCOP、BPA与生殖器毛发发育程度延迟有关,MCPP、BPA与乳房延迟有关;在超重人群中只有ΣDEHP浓度与初潮延迟有关;而MBzP和ΣDEHP浓度与两类体重的人群乳房发育延迟都有关(P<0.05) [29] 尿液
(437)美国12—16岁女性(NHANES2003-2010) 横断面研究,问卷和检查评估青春期发育状态并确定月经初潮时间 否 BPA、DEHP暴露与月经初潮无关(P>0.05) [36] 尿液
(222)德国8—10岁女性 队列研究(每年随访一次,持续3年),根据PD表评估青春期阶段、父母及自我报告确定初潮时间 是(DEHP,延迟)/否(BPA) DEHP、MEP、MnBP水平与女性的PD评分呈负相关(P<0.1) [33] 尿液
(47中枢性性早熟+47对照)韩国5—12岁女性 病例对照研究 否 病例组尿液中BPA、邻苯二甲酸酯代谢物浓度较对照组无显著性差异(P>0.05) [37] 血浆(DEHP)、尿液(BPA)(42特发性中枢性早熟+42外周性性早熟+50对照) 土耳其6—8岁女性 病例对照研究 是(DEHP,提前)/否(BPA)
病例组尿液中BPA浓度较对照组无显著性差异(P>0.05);外周性性早熟患者血浆中ΣDEHP浓度较正常对照组高(P<0.05);特发性性早熟患者血浆中ΣDEHP、MEHP浓度较正常对照组高(P<0.05)[38] 壬基酚 血浆
(150性早熟+90对照)韩国6—12岁女性 病例对照研究 否 性早熟女性血浆中n-壬基酚浓度较高,但无统计学意义(P>0.05) [40] 壬基酚/PAEs 尿液
(118)中国台湾6.5—15岁女性 横断面研究,问卷和检查评估青春期发育状态 否 壬基酚、DEHP暴露与月经初潮、乳房及生殖器毛发发育程度无关(P>0.05) [41] PAEs 尿液
(200)智利6—9岁女性 队列研究(每6个月随访一次),通过检查和触诊Tanner分级和自我报告确定初潮时间 是(延迟) DEHP与月经初潮的延迟有关[HR=0.77(95%CI:0.60—0.98),P<0.05];MMP浓度的升高同样与初潮提前有关[HR=1.30(95%CI:1.10—1.53),P<0.01] [44] PAEs 尿液
(251)中国7—14岁女性 横断面研究,通过临床检查评估Tanner分级并询问月经初潮时间 是(提前) MEHP[OR=1.29(95%CI:1.01—1.64),P<0.05]、MEHHP[OR=1.45(95%CI:1.06—1.98),P<0.05]和MEOHP[OR=1.46(95%CI:1.09—1.95),P<0.05]暴露与乳房Tanner分级呈显著正相关 [45] 产妇尿液
(179)美国9—13岁女性 队列研究(9岁时就诊,每9个月进行一次,直到13岁),通过访谈、问卷调查和检查评估Tanner分级 是(提前) 母亲产前尿液MEP浓度与生殖器毛发发育程度提前有关[mean shift=-1.3 months(95%CI:-2.5—-0.1),P<0.05] [43] 拟除虫菊酯 尿液
(305)中国9—15岁女性 横断面研究,Tanner分级和初潮情况评估青春期发育程度 是(延迟) 女性尿液中3-PBA对数浓度每增加1个单位,以初潮为标志的青春期启动的OR值减少49%[OR=0.51(95%CI:0.28—0.93),P<0.05] [10] 注:TR,时间比;aHRs,调整后的风险比;RR,相对危险度;BMI,身体质量指数;TCDD,2,3,7,8-四氯二苯并对二恶英;HR,风险比;OR,比值比;BPA,双酚A;PAEs,邻苯二甲酸酯类;MEHP,邻苯二甲酸单(2-乙基己基)酯;MCNP,邻苯二甲酸单羧基壬基酯;MCOP,邻苯二甲酸单羧基辛基酯;MCPP,邻苯二甲酸单3-羧基丙基;ΣDEHP,所有邻苯二甲酸二(2-乙基己基)酯代谢物;MBzP,邻苯二甲酸单苄酯;MEP,邻苯二甲酸单乙基;MnBP,二甲酸正丁酯;MMP,邻苯二甲酸甲酯;MEHHP,邻苯二甲酸单2-乙基-5-羟基己基酯;MEOHP,邻苯二甲酸单2-乙基-5-羟基己基酯;3-PBA,3-苯氧基苯甲酸;NHANES,美国健康和营养检查调查.
Note: TR,time ratios;aHRs,adjusted hazard ratios;RR,relative risk;BMI,body mass index;TCDD,2,3,7,8-tetrachlorodibenzo-p-dioxin;HR,hazard ratio;OR,odds ratio;BPA,bisphenol A;PAEs,phthalate;MEHP,mono-2-ethylhexyl phthalate;MCNP,monocarboxynonyl phthalate;MCOP,mono-carboxyoctyl-phthalate;MCPP,mono-3-carboxypropyl phthalate;ΣDEHP,the sum of urinary metabolites of di(2-ethylhexyl) phthalate;MBzP,mono-benzyl phthalate;MEP,mono-ethyl phthalate;MnBP,mono-n-butyl phthalate;MMP,monomethyl phthalate;MEHHP,mono-(2-ethyl-5-hydroxyhexyl) phthalate;MEOHP,mono-(2-ethyl-5-oxohexyl) phthalate;3-PBA,3-phenoxybenzoic acid;NHANES,national health and nutrition examination survey.表 2 重金属暴露对女性青春期性成熟时间相关的人群流行病学研究
Table 2. Human studies investigating the relationship of heavy metals with pubertal development in females
环境内分泌
干扰物
EEDs样本(量)
Sample
(size)研究人群
Study
population研究方法
Study
design与青春期性成
熟的相关性
Correlation
with puberty主要结果
Results参考文献
Reference砷 饮用水
(809)孟加拉国 横断面研究,通过访谈评估初潮年龄 是(延迟) 产前砷暴露与月经初潮延迟有关[aHR=0.77(95% CI:0.63—0.95),P<0.05)] [53] 铅 产妇血清
(月经初潮n=918,Tanner分级n=765)英国8—17岁
女性队列研究(10年随访),通过Tanner分级和自我报告确定初潮时间 否 母亲产前铅暴露与月经初潮、乳房及生殖器毛发发育程度无关(P>0.05) [54] 产妇血清
(200)墨西哥9—18岁
女性队列研究(妊娠期每3个月一次血铅分析、访谈评估初潮年龄) 是(延迟) 妊娠中期高水平铅暴露女性较低水平铅暴露月经初潮OR值减小41%[HR=0.59(95%CI:10—72),P<0.05] [55] 铝/砷/钡/镉/钴/铜/铁/锰/钼/镍/锑/硒/锌 尿液
(114)墨西哥8—13岁
女性队列研究(在8—13、14—18岁两个时间点通过检查评估Tanner分级) 是(产前镍、铝和镉,延迟;青春期钡、铝,提前) 产前镍[OR=0.73(95%CI:0.59—0.89),P<0.05)]、铝[OR=0.82(95%CI:0.68—0.99),P<0.05)]和镉[OR=0.83(95%CI:0.71—0.97),P<0.05)]暴露与乳房发育延迟有关;青春期钡、铝(P<0.05)暴露水平与生殖器毛发发育提前有关 [56] 镉 尿液
(211)美国10—13岁
女性队列研究(每月1次,持续2年),通过Tanner分级评估青春期状态、自我报告确定初潮时间 是(延迟) 镉暴露与生殖器毛发发育程度[OR=0.21(95%CI:0.06—0.72),P<0.05]和月经初潮延迟有关[HR=0.42(95%CI:0.23—0.78),P<0.05] [57] 汞 头发
(344)比利时 横断面研究,通过访谈确定初潮年龄 是(提前) 汞暴露与女性月经初潮年龄呈负相关(P<0.05) [58] 注:OR,比值比;aHRs,调整后的风险比;HR,风险比.
Note: OR,odds ratio;aHRs,adjusted hazard ratios;HR,hazard ratio.表 3 环境内分泌干扰物暴露影响青春期性成熟的机制
Table 3. The mechanisms of EEDs on pubertal development
环境内分泌
干扰物EEDs受试动物
Subjects结局
Outcomes机制
Mechanisms参考文献
ReferenceBPA 大鼠 提前 通过激活下丘脑Kiss-1的表达,导致下丘脑分泌GnRH,进而刺激垂体FSH和LH的脉动性释放 [59] 小鼠 通过增加子代雌鼠GnRH分泌水平从而影响HPO轴功能的正常运作 [60] 小鼠 血清E2水平显著升高 [61] 大鼠 血清E2、LH和FSH水平显著升高 [62] PAEs 大鼠 提前(5 mg·kg−1)/
延迟(500 mg·kg−1)低剂量组较对照组下丘脑Kiss1 mRNA表达水平、LH、E2和P分泌量显著增加;高剂量则相反。 [67] 大鼠 提前 激活下丘脑IGF-1、Kiss-1、GPR54、GnRH mRNA和蛋白的表达水平,血清FSH、LH水平降低,P水平升高 [77] 大鼠 诱导下丘脑GnRH神经元激活IGF-1信号通路促进GnRH释放 [78] 大鼠 提高侧脑室周围核kisspeptin蛋白水平和kisspeptin免疫反应神经元数量,从而促进GnRH的表达 [79] 多溴联苯醚 大鼠 提前 卵泡发育及HIF-1α、CREB1、EGF、β-雌二醇和PPARA信号通路异常,血清E2水平显著升高 [80] 砷 小鼠 提前 促进Oct2和Ttf1的mRNA和蛋白的表达水平,导致Kiss-1 mRNA和kisspeptin蛋白表达水平显著升高 [81] 镉 大鼠 延迟 抑制血清中E2和P的分泌水平 [82] 注:BPA,双酚A;DEHP,邻苯二甲酸二(2-乙基己基)酯;GnRH,促性腺激素释放激素;FSH,卵泡刺激素;LH,黄体生成素;HPG,下丘脑-垂体-性腺轴;E2,雌二醇;IGF-1,胰岛素生长因子-1;GPR54,G蛋白偶联受体54;P,孕酮;HIF-1α,缺氧诱导因子-1α;CREB1,环AMP反应元件结合蛋白1;EGF,表皮生长因子;PPARA,过氧化物酶体增殖物激活受体α;Oct2,有机阳离子转运体2;Ttf1,转录终止因子1.
Note: BPA,bisphenol A;DEHP,di(2-ethylhexyl) phthalate;GnRH,gonadotropin releasing hormone;FSH,follicle-stimulating hormone;LH,luteinizing hormone;HPG,hypothalamic-pituitary-gonad axis;E2,estradiol;IGF-1,insulin growth factor 1;GPR54,G protein-coupled receptor 54;P,progesterone;HIF1A,hypoxia inducible factor 1 alpha;CREB1,cyclic AMP responsive element binding protein 1;EGF,epidermal growth factor;PPARA,peroxisome proliferator-activated receptor alpha;Oct2,organic cation transporters 2;Ttf1,transcription termination factor 1. -
[1] DORN L D, HOSTINAR C E, SUSMAN E J, et al. Conceptualizing puberty as a window of opportunity for impacting health and well-being across the life span [J]. Journal of Research on Adolescence, 2019, 29(1): 155-176. doi: 10.1111/jora.12431 [2] YI Y, DENIC-ROBERTS H, RUBINSTEIN D, et al. Effect of age at menarche on microvascular complications among women with Type 1 diabetes [J]. Diabetic Medicine, 2019, 36(10): 1287-1293. doi: 10.1111/dme.13936 [3] ZURAWIECKA M, WRONKA I. Age at menarche and risk of respiratory diseases [J]. Adv Exp Med Biol, 2019, 1222: 9-16. [4] WANG L Y, YAN B, SHI X L, et al. Age at menarche and risk of gestational diabetes mellitus: A population-based study in Xiamen, China [J]. BMC Pregnancy and Childbirth, 2019, 19(1): 138. doi: 10.1186/s12884-019-2287-6 [5] MCLACHLAN J A. Environmental signaling: From environmental estrogens to endocrine-disrupting chemicals and beyond [J]. Andrology, 2016, 4(4): 684-694. doi: 10.1111/andr.12206 [6] BARBER L B, LOYO-ROSALES J E, RICE C P, et al. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions [J]. Science of the Total Environment, 2015, 517: 195-206. doi: 10.1016/j.scitotenv.2015.02.035 [7] DAN L, WU S M, XU H Z, et al. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks [J]. Ecotoxicology and Environmental Safety, 2017, 140: 222-229. doi: 10.1016/j.ecoenv.2017.02.045 [8] YILMAZ B, TEREKECI H, SANDAL S, et al. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention [J]. Reviews in Endocrine and Metabolic Disorders, 2020, 21(1): 127-147. doi: 10.1007/s11154-019-09521-z [9] SUPORNSILCHAI V, JANTARAT C, NOSOOGNOEN W, et al. Increased levels of bisphenol A (BPA) in Thai girls with precocious puberty [J]. Journal of Pediatric Endocrinology and Metabolism, 2016, 29(11): 1233-1239. [10] YE X Q, PAN W Y, ZHAO Y H, et al. Association of pyrethroids exposure with onset of puberty in Chinese girls [J]. Environmental Pollution, 2017, 227: 606-612. doi: 10.1016/j.envpol.2017.04.035 [11] WORTHMAN C M, DOCKRAY S, MARCEAU K. Puberty and the evolution of developmental science [J]. Journal of Research on Adolescence, 2019, 29(1): 9-31. doi: 10.1111/jora.12411 [12] LEE Y, STYNE D. Influences on the onset and tempo of puberty in human beings and implications for adolescent psychological development [J]. Hormones and Behavior, 2013, 64(2): 250-261. doi: 10.1016/j.yhbeh.2013.03.014 [13] VIJAYAKUMAR N, OP de MACKS Z, SHIRTCLIFF E A, et al. Puberty and the human brain: Insights into adolescent development [J]. Neuroscience & Biobehavioral Reviews, 2018, 92: 417-436. [14] ABREU A P, KAISER U B. Pubertal development and regulation [J]. The Lancet Diabetes & Endocrinology, 2016, 4(3): 254-264. [15] BRUCE-VANDERPUIJE P, MEGSON D, REINER E J, et al. The state of POPs in Ghana- A review on persistent organic pollutants: Environmental and human exposure [J]. Environmental Pollution, 2019, 245: 331-342. doi: 10.1016/j.envpol.2018.10.107 [16] HARLEY K G, RAUCH S A, CHEVRIER J, et al. Association of prenatal and childhood PBDE exposure with timing of puberty in boys and girls [J]. Environment International, 2017, 100: 132-138. doi: 10.1016/j.envint.2017.01.003 [17] WARNER M, RAUCH S, AMES J, et al. Age at menarche in Seveso daughters exposed in utero to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin [J]. Environmental Epidemiology, 2020, 4(5): e111. doi: 10.1097/EE9.0000000000000111 [18] BAPAYEVA G, ISSAYEVA R, ZHUMADILOVA A, et al. Organochlorine pesticides and female puberty in South Kazakhstan [J]. Reproductive Toxicology, 2016, 65: 67-75. doi: 10.1016/j.reprotox.2016.06.017 [19] WINDHAM G C, PINNEY S M, VOSS R W, et al. Brominated flame retardants and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study of girls [J]. Environmental Health Perspectives, 2015, 123(10): 1046-1052. doi: 10.1289/ehp.1408778 [20] ATTFIELD K R, PINNEY S M, SJÖDIN A, et al. Longitudinal study of age of menarche in association with childhood concentrations of persistent organic pollutants [J]. Environmental Research, 2019, 176: 108551. doi: 10.1016/j.envres.2019.108551 [21] TASSINARI R, MANCINI F R, MANTOVANI A, et al. Pilot study on the dietary habits and lifestyles of girls with idiopathic precocious puberty from the city of Rome: Potential impact of exposure to flame retardant polybrominated diphenyl ethers [J]. Journal of Pediatric Endocrinology & Metabolism, 2015, 28(11/12): 1369-1372. [22] DOBRACA D, LAURENT C A, GREENSPAN L C, et al. Urinary polycyclic aromatic hydrocarbons in relation to anthropometric measures and pubertal development in a cohort of Northern California girls [J]. Environmental Epidemiology, 2020, 4(4): e0102. doi: 10.1097/EE9.0000000000000102 [23] 邓旭, 刘琴, 刘舒丹, 等. 重庆市某区小学女生多环芳烃内暴露水平及其与青春发动时相的关系 [J]. 卫生研究, 2017, 46(5): 743-748. doi: 10.19813/j.cnki.weishengyanjiu.2017.05.011 DENG X, LIU Q, LIU S D, et al. Determination of polycyclic aromatic hydrocarbons in girls and association between polycyclic aromatic hydrocarbons exposure and puberty timing [J]. Journal of Hygiene Research, 2017, 46(5): 743-748(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2017.05.011
[24] JANOUSEK R M, MÜLLER J, KNEPPER T P. Combined study of source, environmental monitoring and fate of branched alkylphenols: The chain length matters [J]. Chemosphere, 2020, 241: 124950. doi: 10.1016/j.chemosphere.2019.124950 [25] FAN X H, KUBWABO C, WU F, et al. Analysis of bisphenol A, alkylphenols, and alkylphenol ethoxylates in NIST SRM 2585 and indoor house dust by gas chromatography-tandem mass spectrometry (GC/MS/MS) [J]. Journal of Aoac International, 2019, 102(1): 246-254. doi: 10.5740/jaoacint.18-0071 [26] WEN H J, CHANG T C, DING W H, et al. Exposure to endocrine disruptor alkylphenols and the occurrence of endometrial cancer [J]. Environmental Pollution, 2020, 267: 115475. doi: 10.1016/j.envpol.2020.115475 [27] KONIECZNA A, RUTKOWSKA A, RACHOŃ D. Health risk of exposure to Bisphenol A (BPA) [J]. Roczniki Panstwowego Zakladu Higieny, 2015, 66(1): 5-11. [28] WATKINS D J, SÁNCHEZ B N, TÉLLEZ-ROJO M M, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls [J]. Environmental Research, 2017, 159: 143-151. doi: 10.1016/j.envres.2017.07.051 [29] BERGER K, ESKENAZI B, KOGUT K, et al. Association of prenatal urinary concentrations of phthalates and bisphenol A and pubertal timing in boys and girls [J]. Environmental Health Perspectives, 2018, 126(9): 97004. doi: 10.1289/EHP3424 [30] DURMAZ E, ASCI A, ERKEKOGLU P, et al. Urinary bisphenol A levels in Turkish girls with premature thelarche [J]. Human & Experimental Toxicology, 2018, 37(10): 1007-1016. [31] CHEN Y, WANG Y C, DING G D, et al. Association between bisphenol a exposure and idiopathic central precocious puberty (ICPP) among school-aged girls in Shanghai, China [J]. Environment International, 2018, 115: 410-416. doi: 10.1016/j.envint.2018.02.041 [32] MIAO M H, WANG Z L, LIU X Q, et al. Urinary bisphenol A and pubertal development in Chinese school-aged girls: A cross-sectional study [J]. Environmental Health, 2017, 16(1): 80. doi: 10.1186/s12940-017-0290-9 [33] KASPER-SONNENBERG M, WITTSIEPE J, WALD K, et al. Pre-pubertal exposure with phthalates and bisphenol A and pubertal development [J]. PLoS One, 2017, 12(11): e0187922. doi: 10.1371/journal.pone.0187922 [34] ÖZGEN İ T, TORUN E, BAYRAKTAR-TANYERI B, et al. The relation of urinary bisphenol A with kisspeptin in girls diagnosed with central precocious puberty and premature thelarche [J]. Journal of Pediatric Endocrinology & Metabolism, 2016, 29(3): 337-341. [35] LEE S H, KANG S M, CHOI M H, et al. Changes in steroid metabolism among girls with precocious puberty may not be associated with urinary levels of bisphenol A [J]. Reproductive Toxicology, 2014, 44: 1-6. doi: 10.1016/j.reprotox.2013.03.008 [36] BUTTKE D E, SIRCAR K, MARTIN C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008) [J]. Environmental Health Perspectives, 2012, 120(11): 1613-1618. doi: 10.1289/ehp.1104748 [37] JUNG M K, CHOI H S, SUH J, et al. The analysis of endocrine disruptors in patients with central precocious puberty [J]. BMC Pediatrics, 2019, 19(1): 323. doi: 10.1186/s12887-019-1703-4 [38] BULUŞ A D, AŞCI A, ERKEKOGLU P, et al. The evaluation of possible role of endocrine disruptors in central and peripheral precocious puberty [J]. Toxicology Mechanisms and Methods, 2016, 26(7): 493-500. doi: 10.3109/15376516.2016.1158894 [39] ARAUJO F G D, BAUERFELDT G F, CID Y P. Nonylphenol: Properties, legislation, toxicity and determination[J]. Anais Da Academia Brasileira De Ciencias, 2018, 90(2 suppl 1): 1903-1918. [40] YUM T, LEE S, KIM Y. Association between precocious puberty and some endocrine disruptors in human plasma [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(8): 912-917. [41] HOU J W, LIN C L, TSAI Y A, et al. The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty [J]. International Journal of Hygiene and Environmental Health, 2015, 218(7): 603-615. doi: 10.1016/j.ijheh.2015.06.004 [42] JUREWICZ J, HANKE W. Exposure to phthalates: Reproductive outcome and children health. A review of epidemiological studies [J]. International Journal of Occupational Medicine and Environmental Health, 2011, 24(2): 115-141. [43] HARLEY K G, BERGER K P, KOGUT K, et al. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys [J]. Human Reproduction (Oxford, England), 2019, 34(1): 109-117. doi: 10.1093/humrep/dey337 [44] BINDER A M, CORVALAN C, CALAFAT A M, et al. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls [J]. Environmental Health, 2018, 17(1): 32. doi: 10.1186/s12940-018-0376-z [45] SHI H J, CAO Y, SHEN Q, et al. Association between urinary phthalates and pubertal timing in Chinese adolescents [J]. Journal of Epidemiology, 2015, 25(9): 574-582. doi: 10.2188/jea.JE20140205 [46] DEZIEL N C, COLT J S, KENT E E, et al. Associations between self-reported pest treatments and pesticide concentrations in carpet dust [J]. Environmental Health, 2015, 14(1): 1-11. doi: 10.1186/1476-069X-14-1 [47] YE X Q, LIU J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective [J]. Environmental Pollution, 2019, 245: 590-599. doi: 10.1016/j.envpol.2018.11.031 [48] HU Y, ZHANG Z J, QIN K L, et al. Environmental pyrethroid exposure and thyroid hormones of pregnant women in Shandong, China [J]. Chemosphere, 2019, 234: 815-821. doi: 10.1016/j.chemosphere.2019.06.098 [49] CASTIELLO F, FREIRE C. Exposure to non-persistent pesticides and puberty timing: A systematic review of the epidemiological evidence [J]. European Journal of Endocrinology, 2021, 184(6): 733-749. doi: 10.1530/EJE-20-1038 [50] LI J W, REN F Z, LI Y X, et al. Chlorpyrifos induces metabolic disruption by altering levels of reproductive hormones [J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10553-10562. doi: 10.1021/acs.jafc.9b03602 [51] FU Z S, XI S H. The effects of heavy metals on human metabolism [J]. Toxicology Mechanisms and Methods, 2020, 30(3): 167-176. doi: 10.1080/15376516.2019.1701594 [52] VAREDA J P, VALENTE A J M, DURÃES L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review [J]. Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126 [53] RAHMAN A, KIPPLER M, PERVIN J, et al. A cohort study of the association between prenatal arsenic exposure and age at menarche in a rural area, Bangladesh [J]. Environment International, 2021, 154: 106562. doi: 10.1016/j.envint.2021.106562 [54] MAISONET M, JAAKKOLA J J K, TAYLOR C M, et al. Prenatal lead exposure and puberty timing in girls [J]. Epidemiology, 2014, 25(1): 153-155. doi: 10.1097/EDE.0000000000000021 [55] JANSEN E C, ZHOU L, SONG P X K, et al. Prenatal lead exposure in relation to age at menarche: Results from a longitudinal study in Mexico City [J]. Journal of Developmental Origins of Health and Disease, 2018, 9(4): 467-472. doi: 10.1017/S2040174418000223 [56] ASHRAP P, SÁNCHEZ B N, TÉLLEZ-ROJO M M, et al. In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City [J]. Environmental Research, 2019, 177: 108630. doi: 10.1016/j.envres.2019.108630 [57] REYNOLDS P, CANCHOLA A J, DUFFY C N, et al. Urinary cadmium and timing of menarche and pubertal development in girls [J]. Environmental Research, 2020, 183: 109224. doi: 10.1016/j.envres.2020.109224 [58] CROES K, de COSTER S, de GALAN S, et al. Health effects in the Flemish population in relation to low levels of mercury exposure: From organ to transcriptome level [J]. International Journal of Hygiene and Environmental Health, 2014, 217(2/3): 239-247. [59] QIU J, SUN Y Y, SUN W, et al. Neonatal exposure to bisphenol A advances pubertal development in female rats [J]. Molecular Reproduction and Development, 2020, 87(4): 503-511. doi: 10.1002/mrd.23329 [60] 徐耿, 韩阿珠, 许诺, 等. 孕期双酚A暴露对子代雌鼠青春期发育提前及下丘脑-垂体-性腺轴激素水平的影响 [J]. 卫生研究, 2018, 47(3): 425-431. doi: 10.19813/j.cnki.weishengyanjiu.2018.03.015 XU G, HAN A, XU N, et al. Effects of maternal exposure to bisphenol A during pregnancy on puberty in advance and hypothalamo-pituitary gonadal axis hormones level in female offspring [J]. Journal of Hygiene Research, 2018, 47(3): 425-431(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2018.03.015
[61] SHI M X, WHORTON A E, SEKULOVSKI N, et al. Prenatal exposure to bisphenol A, E, and S induces transgenerational effects on female reproductive functions in mice [J]. Toxicological Sciences, 2019, 170(2): 320-329. doi: 10.1093/toxsci/kfz124 [62] YUAN M, ZHAO Y N, LIN R, et al. Adverse reproductive function induced by maternal BPA exposure is associated with abnormal autophagy and activating inflamation via mTOR and TLR4/NF-κB signaling pathways in female offspring rats [J]. Reproductive Toxicology, 2020, 96: 185-194. doi: 10.1016/j.reprotox.2020.07.001 [63] FERNÁNDEZ M, BIANCHI M, LUX-LANTOS V, et al. Neonatal exposure to bisphenol A alters reproductive parameters and gonadotropin releasing hormone signaling in female rats [J]. Environmental Health Perspectives, 2009, 117(5): 757-762. doi: 10.1289/ehp.0800267 [64] LI Z L, LI T, LENG Y, et al. Hormonal changes and folliculogenesis in female offspring of rats exposed to cadmium during gestation and lactation [J]. Environmental Pollution, 2018, 238: 336-347. doi: 10.1016/j.envpol.2018.03.023 [65] MUNIER M, AYOUB M, SUTEAU V, et al. In vitro effects of the endocrine disruptor p, p'-DDT on human choriogonadotropin/luteinizing hormone receptor signalling [J]. Archives of Toxicology, 2021, 95(5): 1671-1681. doi: 10.1007/s00204-021-03007-1 [66] HALL J M, GRECO C W. Perturbation of nuclear hormone receptors by endocrine disrupting chemicals: Mechanisms and pathological consequences of exposure [J]. Cells, 2019, 9(1): 13. doi: 10.3390/cells9010013 [67] YU Z, WANG F, HAN J Y, et al. Opposite effects of high- and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats [J]. Reproduction, Fertility, and Development, 2020, 32(6): 610-618. doi: 10.1071/RD19024 [68] KIM D H, PARK C G, KIM S H, et al. The effects of mono-(2-ethylhexyl) phthalate (MEHP) on human estrogen receptor (hER) and androgen receptor (hAR) by YES/YAS in vitro assay [J]. Molecules, 2019, 24(8): E1558. doi: 10.3390/molecules24081558 [69] REN X M, GUO L H. Molecular toxicology of polybrominated diphenyl ethers: Nuclear hormone receptor mediated pathways [J]. Environmental Science. Processes & Impacts, 2013, 15(4): 702-708. [70] CAO L Y, REN X M, YANG Y, et al. Hydroxylated polybrominated diphenyl ethers exert estrogenic effects via non-genomic G protein-coupled estrogen receptor mediated pathways [J]. Environmental Health Perspectives, 2018, 126(5): 057005. doi: 10.1289/EHP2387 [71] DICKERSON S M, GORE A C. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle [J]. Reviews in Endocrine and Metabolic Disorders, 2007, 8(2): 143-159. doi: 10.1007/s11154-007-9048-y [72] ANDROUTSOPOULOS V P, HERNANDEZ A F, LIESIVUORI J, et al. A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides [J]. Toxicology, 2013, 307: 89-94. doi: 10.1016/j.tox.2012.09.011 [73] GRACELI J B, DETTOGNI R S, MERLO E, et al. The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis [J]. Molecular and Cellular Endocrinology, 2020, 518: 110997. doi: 10.1016/j.mce.2020.110997 [74] BAYKARA M, OZCAN M, BILGEN M, et al. Interference of gadolinium dechelated from MR contrast agents by calcium signaling in neuronal cells of GnRH [J]. Journal of Cellular Physiology, 2021, 236(3): 2139-2143. doi: 10.1002/jcp.30000 [75] TCHOUNWOU P B, YEDJOU C G, PATLOLLA A K, et al. Heavy metal toxicity and the environment[M]//Experientia Supplementum. Basel: Springer Basel, 2012: 133-164. [76] JALAL N, SURENDRANATH A R, PATHAK J L, et al. Bisphenol A (BPA) the mighty and the mutagenic [J]. Toxicology Reports, 2018, 5: 76-84. doi: 10.1016/j.toxrep.2017.12.013 [77] LIU T, WANG Y Z, YANG M D, et al. Di-(2-ethylhexyl) phthalate induces precocious puberty in adolescent female rats [J]. Iranian Journal of Basic Medical Sciences, 2018, 21(8): 848-855. [78] SHAO P, WANG Y Z, ZHANG M, et al. The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway [J]. Ecotoxicology and Environmental Safety, 2019, 181: 362-369. doi: 10.1016/j.ecoenv.2019.06.017 [79] YU Z, ZHAN Q F, CHEN A, et al. Intermittent fasting ameliorates di-(2-ethylhexyl) phthalate-induced precocious puberty in female rats: A study of the hypothalamic-pituitary-gonadal axis [J]. Reproductive Biology, 2021, 21(3): 100513. doi: 10.1016/j.repbio.2021.100513 [80] ALLAIS A, ALBERT O, LEFÈVRE P L C, et al. In utero and lactational exposure to flame retardants disrupts rat ovarian follicular development and advances puberty [J]. Toxicological Sciences, 2020, 175(2): 197-209. doi: 10.1093/toxsci/kfaa044 [81] LI X H, SUN Z L, MANTHARI R K, et al. Effect of gestational exposure to arsenic on puberty in offspring female mice [J]. Chemosphere, 2018, 202: 119-126. doi: 10.1016/j.chemosphere.2018.03.095 [82] SAEDI S, SHIRAZI M R J, ZAMIRI M J, et al. Impaired follicular development and endocrine disorders in female rats by prepubertal exposure to toxic doses of cadmium [J]. Toxicology and Industrial Health, 2020, 36(2): 63-75. doi: 10.1177/0748233720912060