-
有机磷农药(organophosphorus pesticides, OPPs),是一类硫代羟基衍生物或有机酯类化合物[1-2],因其对胆碱酯酶较强的抑制活性而被广泛应用于害虫防治. 据2020年中国统计年鉴数据显示,2008年至2020年我国农药总产量年均近300万t,其中OPPs约占80%[3]. 在农业施用过程中,由于喷洒、遗漏等方式使OPPs暴露在大气环境中[4-5],并最终在沉降、迁移的作用下富集到土壤介质中,造成累积和污染. 同时,在我国“退二进三”和“产业转移”等政策的实施下,OPPs生产企业的搬迁所遗留的污染地块,也严重影响后续土地的开发和使用. 残留在土壤环境中的OPPs被人体吸收后,抑制体内胆碱酯酶的活性,造成神经生理功能紊乱,对人类产生危害[6],因此开展OPPs污染土壤修复技术研究十分必要.
目前,已有较多针对OPPs污染土壤的修复方法研究,如对于毒死蜱[7]、氧乐果[8]、二嗪农[9-11]、对硫磷[12]等的光催化氧化、微生物降解及协同修复等方法,对其降解效率及关键影响因素进行了分析,但多未考虑OPPs的自然降解过程. 因此,本文梳理OPPs的自然降解过程,重点阐述已有的人工强化修复技术的研究进展,进而分析了人工强化修复技术的相互耦合作用,并基于此对下一阶段的研究提出建议,以期推动我国OPPs污染土壤人工强化修复技术的研究与应用.
有机磷农药污染土壤降解修复研究进展
The research of organophosphorus pesticide degradation and remediation in soil
-
摘要: 有机磷农药的大量生产和使用,导致其在土壤环境中累积,从而危害人类健康. 通常,有机磷农药会在环境中发生光解、水解、生物降解等自然降解反应,但对于较高浓度的有机磷农药污染,其自然降解程度远远不足,无法在短时间内实现污染土壤的安全利用,因此发展了多种人工强化修复有机磷农药技术. 本文在解析有机磷农药自然降解机理的基础上,综述了其主流的人工强化修复技术的原理与研究现状,并对未来研究方向提出建议,为有机磷农药降解人工强化技术的研究与工程应用提供技术支撑.Abstract: Massive production and usage of organophosphorus pesticides (OPPs) has led to their accumulation in the soil, which endangers human health. Normally, OPPs undergo decomposition reactions such as photolysis, hydrolysis, and biodegradation in the natural environment. But natural decomposition may be insufficient to achieve a safe level for highly contaminated soil by OPPs in a short period. A variety of OPPs remediation enhancement techniques have been developed. Based on the understanding of natural degradation mechanisms of OPPs, this paper reviewed the principles and technical advances in OPP remediation enhancement techniques, and gave suggestions on future research areas. This study will provide technical support for the scientific research and engineering of enhanced OPP degradation.
-
Key words:
- organophosphorus pesticides /
- degradation /
- chemical oxidation /
- coupling technique.
-
表 1 氧化法降解OPPs方法及降解情况
Table 1. Oxidation method and condition of OPPs
方法
Method污染物
Pollutants最佳反应条件
Optimal reaction conditions降解率/%
Degradation rate影响因素
Influencing factors相关文献
ReferencesMW/PS 对硫磷 PS 浓度为0.1 mmol·g−1;
MW 60 ℃;80 min77.3 温度、时间、PS浓度、
腐殖酸含量、土壤水分[12] MW/PS 对硫磷 MW 80 ℃;土壤含水率20%,90 min 90 PS浓度、温度、有机质含量、
土壤水分[25] UV/热/PS 二嗪农 C0 =50 mg·kg−1;T=65 ℃;
PS剂量250 mmol·L−1;t =60 min90 温度、时间、光照强度、
氧化剂、初始浓度[11] 碱/Fenton/ PS CP/BCP NaOH 7 mol·L−1、 PS 0.21 mol·L−1、固/液=1 92/97 NaOH浓度、PS浓度、固液比 [1] 表 2 PS不同活化方法的原理与优缺点
Table 2. The principle, advantages and disadvantages of activation methods of PS
表 3 常见OPPs降解菌种及降解效果
Table 3. Common OPPs degrading strains and degradation conditions
菌种
Bacterium降解污染物
Pollutants最优降解条件
Optimal degradation conditions降解率/%
Degradation rate相关文献
References芽孢杆菌 辛硫磷 T=35—40 ℃,pH=6.5—8,接种量4.17% 99 [32] 苏云金杆菌 毒死蜱、三唑磷、乐果 T=37 ℃,pH=11 81—94.6 [33] 短乳杆菌 二嗪农、甲基对硫磷 T=42 ℃,t =24 h 50 [34] 鞘脂单胞菌、短波单胞菌 毒死蜱、蝇毒磷 T=60 ℃,pH=10 75.4 [35] 枯草芽孢杆菌、纤维化纤维
微细菌 、热带芽孢杆菌敌敌畏 pH=5—6,T=30—37 ℃,接种量2%—4%,
复合菌剂中3株菌最优配比4:2:360 [36] 假单胞菌、绿脓杆菌、 丙溴磷、毒死蜱、百治磷 C0=20 mg·L−1,T=30 ℃,pH=7 >90,33—73 [37] 粪产碱菌、麻疹孪生球菌 乐果 T=37 ℃,pH=7—8,t=14—16 h 71.8、54.9 [38] -
[1] ZHU C Y, ZHU F X, WANG F W, et al. Comparison of persulfate activation and Fenton reaction in remediating an organophosphorus pesticides-polluted soil [J]. Pedosphere, 2017, 27(3): 465-474. doi: 10.1016/S1002-0160(17)60342-4 [2] WANG J W, TENG Y G, ZHANG C X, et al. Activation of manganese dioxide with bisulfite for enhanced abiotic degradation of typical organophosphorus pesticides: Kinetics and transformation pathway [J]. Chemosphere, 2019, 226: 858-864. doi: 10.1016/j.chemosphere.2019.03.120 [3] 门晓晔. 有机磷农药污染土壤风险评估及热脱附修复研究[D]. 天津: 天津科技大学, 2016. MEN X Y. Risk assessment and thermal desorption of organophosphorus pesticide contaminated soils[D]. Tianjin: Tianjin University of Science & Technology, 2016(in Chinese).
[4] 李凯, 潘宁, 梅如波, 等. 泰安市大气挥发性有机物污染特征及来源解析 [J]. 环境化学, 2022, 41(2): 482-490. doi: 10.7524/j.issn.0254-6108.2021061803 LI K, PAN N, MEI R B, et al. Characteristics and source apportionment of ambient volatile organic compounds in Taian [J]. Environmental Chemistry, 2022, 41(2): 482-490(in Chinese). doi: 10.7524/j.issn.0254-6108.2021061803
[5] 庄红娟, 周鹏飞, 陈弘扬, 等. 农田9种农药残留特征及对土壤环境指标影响 [J]. 环境化学, 2021, 40(8): 2439-2449. doi: 10.7524/j.issn.0254-6108.2020113002 ZHUANG H J, ZHOU P F, CHEN H Y, et al. Characteristics of soil pesticide residues and their influence on soil environmental indicators [J]. Environmental Chemistry, 2021, 40(8): 2439-2449(in Chinese). doi: 10.7524/j.issn.0254-6108.2020113002
[6] WEE S Y, ARIS A Z. Ecological risk estimation of organophosphorus pesticides in riverine ecosystems [J]. Chemosphere, 2017, 188: 575-581. doi: 10.1016/j.chemosphere.2017.09.035 [7] FEMIA J, MARIANI M, ZALAZAR C, et al. Photodegradation of chlorpyrifos in water by UV/H2O2 treatment: Toxicity evaluation [J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2013, 68(10): 2279-2286. doi: 10.2166/wst.2013.493 [8] 凌文翠. 水中典型有机磷农药的预处理方法及机理研究[D]. 北京: 中国科学院大学, 2011. LING W C. Pretreatment of organophosphorous pesticides in water: Methods and Mechanisms [D]. Beijing: University of Chinese Academy of Sciences, 2011(in Chinese).
[9] FADAEI A, DEHGHANI M, MAHVI A, et al. Degradation of organophosphorus pesticides in water during UV/H2O2 treatment: Role of sulphate and bicarbonate ions [J]. E-Journal of Chemistry, 2012, 9: 958750. [10] BADAWY M I, GHALY M Y, GAD-ALLAH T A. Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater [J]. Desalination, 2006, 194(1/2/3): 166-175. [11] RASOULIFARD M H, AKRAMI M, ESKANDARIAN M R. Degradation of organophosphorus pesticide diazinon using activated persulfate: Optimization of operational parameters and comparative study by Taguchi's method [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 57: 77-90. doi: 10.1016/j.jtice.2015.05.014 [12] MIAO D, ZHAO S, ZHU K C, et al. Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation [J]. Chemosphere, 2020, 253: 126679. doi: 10.1016/j.chemosphere.2020.126679 [13] 杨璇. 珠江河口水体常见有机磷农药污染现状及风险评价[D]. 广州: 暨南大学, 2011. YANG X. Organophosphate pesticide residue monitoring and risk assessment in the Pearl River Estuary[D]. Guangzhou: Jinan University, 2011(in Chinese)
[14] STANGROOM S J, COLLINS C D, LESTER J N. Abiotic behaviour of organic micropollutants in soils and the aquatic environment. A review: Ⅱ. transformations [J]. Environmental Technology, 2000, 21(8): 865-882. doi: 10.1080/09593332108618059 [15] 戴树桂. 环境化学[M]. 2版. 北京: 高等教育出版社, 2006. DAI S G. Environmental chemistry [M]. Beijing: Higher Education Press, 2006(in Chinese).
[16] 李雪银. TiO2和ZnO光催化有机磷农药敌百虫及毒死蜱的降解效应[D]. 南京: 南京林业大学, 2015. LI X Y. The photocatalytic degradation of trichlorfon and chlorpyrifos by TiO2 and ZnO[D]. Nanjing: Nanjing Forestry University, 2015(in Chinese).
[17] 刘媛. 典型有机磷农药的水解行为研究[D]. 武汉: 中国地质大学, 2016. LIU Y. The hydrolysis behavior of typical organophosphorus pesticides[D]. Wuhan: China University of Geosciences, 2016(in Chinese).
[18] H. H. 麦尔尼科夫, 等著. 李巍岷, 等译. 农药与环境[M]. 北京: 化学工业出版社, 1985. H. H. Melnikov. Pesticides and the environment [M]. Beijing: Chemical Industry Press, 1985(in Chinese).
[19] MUFF J, MACKINNON L, DURANT N D, et al. Solubility and reactivity of surfactant-enhanced alkaline hydrolysis of organophosphorus pesticide DNAPL [J]. Environmental Science and Pollution Research International, 2020, 27(3): 3428-3439. doi: 10.1007/s11356-019-07152-0 [20] 于小新, 田齐东, 卜凡阳, 等. 有机磷农药污染土壤的氧化及水解修复技术初步研究 [J]. 绿色科技, 2020(14): 152-155. doi: 10.3969/j.issn.1674-9944.2020.14.049 YU X X, TIAN Q D, BU F Y, et al. Preliminary study on oxidation and hydrolysis remediation technology of organophosphorus pesticide contaminated soil [J]. Journal of Green Science and Technology, 2020(14): 152-155(in Chinese). doi: 10.3969/j.issn.1674-9944.2020.14.049
[21] XIAO Y J, ZHANG L F, ZHANG W, et al. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes [J]. Water Research, 2016, 102: 629-639. doi: 10.1016/j.watres.2016.07.004 [22] FANG G D, DIONYSIOU D D, ZHOU D M, et al. Transformation of polychlorinated biphenyls by persulfate at ambient temperature [J]. Chemosphere, 2013, 90(5): 1573-1580. doi: 10.1016/j.chemosphere.2012.07.047 [23] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate [J]. Environmental Science & Technology, 2010, 44(16): 6423-6428. [24] ZHU C Y, FANG G D, DIONYSIOU D D, et al. Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: A mechanistic study [J]. Journal of Hazardous Materials, 2016, 316: 232-241. doi: 10.1016/j.jhazmat.2016.05.040 [25] KAN H S, WANG T C, YU J X, et al. Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave [J]. Journal of Hazardous Materials, 2021, 401: 123361. doi: 10.1016/j.jhazmat.2020.123361 [26] YU M, TEEL A L, WATTS R J. Activation of peroxymonosulfate by subsurface minerals [J]. Journal of Contaminant Hydrology, 2016, 191: 33-43. doi: 10.1016/j.jconhyd.2016.05.001 [27] 李旭伟. 热活化过硫酸盐对水体和土壤中毒死蜱的化学氧化研究[D]. 南京: 南京农业大学, 2016. LI X W. Removal of chlorpyrifos via thermo activated persulfate oxidation processes in water and soil[D]. Nanjing: Nanjing Agricultural University, 2016(in Chinese).
[28] FURMAN O S, TEEL A L, AHMAD M, et al. Effect of basicity on persulfate reactivity [J]. Journal of Environmental Engineering, 2011, 137(4): 241-247. doi: 10.1061/(ASCE)EE.1943-7870.0000323 [29] KU Y, LIN H S. Decomposition of phorate in aqueous solution by photolytic ozonation [J]. Water Research, 2002, 36(16): 4155-4159. doi: 10.1016/S0043-1354(02)00124-0 [30] FANG G D, CHEN X R, WU W H, et al. Mechanisms of interaction between persulfate and soil constituents: Activation, free radical formation, conversion, and identification [J]. Environmental Science & Technology, 2018, 52(24): 14352-14361. [31] MARICAN A, DURÁN-LARA E F. A review on pesticide removal through different processes [J]. Environmental Science and Pollution Research International, 2018, 25(3): 2051-2064. doi: 10.1007/s11356-017-0796-2 [32] 孟迪. Bacillus amyloliquefaciens YP6在降解有机磷农药中的作用及机理 [D]. 无锡: 江南大学, 2020. MENG D. The role and mechanism of Bacillus amyloliquefaciens YP6 in the degradation of organophosphorus pesticides [D]. Wuxi: Jiangnan University, 2020(in Chinese).
[33] AMBREEN S, YASMIN A, AZIZ S. Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading chlorpyrifos, triazophos and dimethoate [J]. Heliyon, 2020, 6(7): e04221. doi: 10.1016/j.heliyon.2020.e04221 [34] ZHANG Y H, XU D, LIU J Q, et al. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production [J]. Food Chemistry, 2014, 164: 173-178. doi: 10.1016/j.foodchem.2014.05.059 [35] SANTILLAN J Y, ROJAS N L, GHIRINGHELLI P D, et al. Organophosphorus compounds biodegradation by novel bacterial isolates and their potential application in bioremediation of contaminated water [J]. Bioresource Technology, 2020, 317: 124003. doi: 10.1016/j.biortech.2020.124003 [36] 张亚亚. 有机磷农药降解菌的筛选及菌剂的制备[D]. 沈阳: 沈阳农业大学, 2019. ZHANG Y Y. Screening of bacteria for degradation of organophosphorus pesticides and preparation of fungicides[D]. Shenyang: Shenyang Agricultural University, 2019(in Chinese).
[37] SIRIPATTANAKUL-RATPUKDI S, VANGNAI A S, SANGTHEAN P, et al. Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil [J]. Environmental Science and Pollution Research, 2015, 22(1): 320-328. doi: 10.1007/s11356-014-3354-1 [38] 姜华, 石爽, 胡晓静. 有机磷农药降解菌的筛选及其降解能力的研究 [J]. 辽宁师范大学学报(自然科学版), 2011, 34(1): 93-97. JIANG H, SHI S, HU X J. Selection and degradation capacity analysis of organophosphorus pesticide degradation strains [J]. Journal of Liaoning Normal University (Natural Science Edition), 2011, 34(1): 93-97(in Chinese).
[39] 杨成良. 原位热脱附技术在有机磷农药污染场地修复中的应用及二次污染防治措施[C]. 中国环境科学学会, 中国天津, 2021. YANG C L. Secondary pollution control for organophosphorus pesticide contaminated soil remediation using in-situ thermal desorption[C]. Chinese Society for Environmental Sciences, Tianjin, 2021(in Chinese).
[40] HUANG D Q, XU Q, CHENG J J, et al. Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils [J]. International Journal of Electrochemical Science, 2012, 7(5): 4528-4544. [41] 杨燕. O3/US与生物法组合降解有机磷农药废水研究[D]. 上海: 上海师范大学, 2011. YANG Y. Study on degradation of organophosphorus pesticide wastewater by combination of O3/US and biological method[D]. Shanghai: Shanghai Normal University, 2011(in Chinese).
[42] 梁欣然. 多种UV-AOPs工艺降解马拉硫磷与马拉氧磷的动力学及机理研究[D]. 西安: 西安建筑科技大学, 2018. LIANG X R. Comparison of photochemical degradation characteristics of malathion and malaoxon via UV assisted advanced oxidation processesin in aqueous solution[D]. Xi'an: Xi'an University of Architecture and Technology, 2018(in Chinese).
[43] 李亚峰, 春艳, 张晓宁, 等. 微波-Fenton-活性炭法降解有机磷农药混合废水试验研究 [J]. 工业水处理, 2012, 32(3): 45-47,51. doi: 10.3969/j.issn.1005-829X.2012.03.012 LI Y F, CHUN Y, ZHANG X N, et al. Experimental study on the treatment of organophosphorus pesticide mixed wastewater by microwave-Fenton-activated carbon process [J]. Industrial Water Treatment, 2012, 32(3): 45-47,51(in Chinese). doi: 10.3969/j.issn.1005-829X.2012.03.012
[44] LETORT S, BOSCO M, CORNELIO B, et al. Structure-efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds [J]. Beilstein Journal of Organic Chemistry, 2017, 13: 417-427. doi: 10.3762/bjoc.13.45 [45] WANG X, HOU J W, LIU W R, et al. Plant-microbial remediation of chlorpyrifos contaminated soil [J]. Journal of Environmental Science and Health, Part B, 2021, 56(10): 925-931. doi: 10.1080/03601234.2021.1977570 [46] LIU T, XU S R, LU S Y, et al. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors [J]. Science of the Total Environment, 2019, 651: 2247-2268. doi: 10.1016/j.scitotenv.2018.10.087 [47] 侯俊, 王岩博, 张明, 等. 微生物-物化耦合法降解毒死蜱研究进展 [J]. 水资源保护, 2021, 37(2): 15-20,42. doi: 10.3880/j.issn.1004-6933.2021.02.003 HOU J, WANG Y B, ZHANG M, et al. Research progress on degradation of chlorpyrifos by microbial-physicochemical coupling method [J]. Water Resources Protection, 2021, 37(2): 15-20,42(in Chinese). doi: 10.3880/j.issn.1004-6933.2021.02.003