-
溶解有机质在河口系统中的迁移和转化过程一直是人们广泛关注的问题. 河口系统作为河流和海洋生态系统的交界,其溶解有机质(DOM)池包含了来自陆地和海洋的不同组分的DOM. 前者主要来源于河流流域内的土壤冲刷[1]以及生活污水和工农业废水的排放,后者主要来源于浮游生物生产、浮游动物排泄等过程[2]. 此外,沉积物再悬浮和间隙水扩散也是河口系统DOM的重要来源[3-4].
河口系统DOM的分布受咸淡水混合、现场浮游生物生产、光降解、微生物降解、絮凝沉降等多个过程共同影响[5-8]. 其中,光降解是河口系统有机质转化和去除的重要过程,可导致水体中DOM部分或完全矿化[9]. 有色溶解有机质(CDOM)是DOM中主要的光反应活性成分. CDOM组分含多种发色团,具有紫外吸收特性,这使其能够参与系列光化学过程,改变DOM的生物可利用性[10- 11]. 光降解对DOM的光学性质及其生物可利用性的影响与其光敏性CDOM的来源和组成密切相关. 陆源DOM富含具有光反应活性的芳香性物质,而海源DOM通常芳香性物质含量少,较难被光降解[12]. 具有光敏性的DOM经光降解可直接产生CO2和CO[13],或转变为小分子量有机质与微生物降解过程耦合[14],使水体DOM的光吸收特性发生改变[15]. 此外,多个海域研究表明,受河流与海水的混合过程控制的河口区CDOM光学特性和溶解有机碳(DOC)浓度之间存在显著相关性[15-20],可以基于CDOM反演DOM的浓度[16, 19, 21],以实现DOM的时空分布的实时、大范围遥感观测[22]. 然而,光降解作用下,表层水中CDOM的吸收系数会发生显著变化,尤其在陆源DOM向海洋不断输送的河口区[23]. 由于DOM及其光学组分的组成和来源复杂,并且CDOM和DOC的产生、转化和降解过程并不完全耦合,结果导致DOM与CDOM的关系存在较大的不确定性.
黄河为我国第二大河,水体高度浑浊,年入海泥沙量约1.08×109 t[24]. 河口区泥沙在入海径流和海洋动力共同影响下扩散、沉降和再悬浮,其释放的有机碳对河口区的生物地球化学过程产生了不可忽视的影响[25-26]. 自2002年实施调水调沙工程以来,黄河径流量短时期内急剧增减[27],使河口区域DOM组成和浓度出现较大波动[6],这对黄河口及其近岸海域的生源要素生物地球化学过程的影响不容忽视,亟需深入研究.
本研究通过2018年10月(秋季)、2019年5月(春季)、2019年8月(夏季)和2021年3月(冬季)在黄河口开展陆海同步观测,结合同步进行的不同来源DOM的光降解船基现场培养试验,评估了不同季节黄河输入DOC及CDOM组成和通量变化,分析了不同季节黄河口DOC和CDOM的分布规律,探究陆源和海域DOM的光降解特征,量化解析CDOM和DOC之间的关系. 不仅为深入认识河口区不同来源DOM的光降解过程及机制提供科学基础,而且为应用DOM光谱特性反演其浓度提供科学依据.
黄河口近岸海域有色溶解有机质的时空分布及光降解特性
Spatial-temporal distribution and photodegradation of chromophoric dissolved organic matter in the coastal waters of the Yellow River Estuary
-
摘要: 根据2018年10月(秋季)、2019年5月(春季)、 2019年8月(夏季)和2021年3月(冬季)在黄河口开展的溶解有机质(DOM)及其光学性质特征参数的陆海同步观测数据,结合同步开展的不同来源DOM的光降解船基现场培养试验,分析黄河口DOM及有色溶解有机质(CDOM)的时空分布特征,探讨该海域不同来源DOM光降解作用及控制机制. 结果表明,黄河入海径流的溶解有机碳(DOC)和CDOM浓度呈现夏季高、冬季次之、春季和秋季低的变化特征;DOC和CDOM入海通量呈现夏季最高、秋季和春季次之、冬季最低的季节特征,主要受黄河流域汛期及调水调沙作用影响;黄河口DOC呈现不规则斑块状分布,CDOM呈现近岸高、离岸低的分布特征,为黄河输入、海源自生及光降解等多种因素影响所致. 在黄河径流较大的夏季,DOC受陆源输入影响较其他季节更为明显,CDOM浓度明显高于其他季节;夏季DOC与CDOM之间的线性关系也显著高于其他季节. 春季、夏季和秋季陆源DOM光化学降解速率均高于海源;受DOM来源组成和温度、光照等环境因子共同作用,研究海域夏季CDOM光降解率高于春、秋两季.Abstract: According to the land-sea synchronous observation data of dissolved organic matter (DOM) and its optical property characteristic parameters in October 2018 (autumn), May 2019 (spring), August 2019 (summer), and March 2021 (winter) in the Yellow River Estuary, and in combination with the simultaneous boat-based culture experiments of different sources of DOM, we analyzed the spatio-temporal distribution characteristics of DOM and chromophoric dissolved organic matter (CDOM) in the Yellow River Estuary, and investigated the effects and control mechanisms of different sources of DOM after photodegradation. The results showed that the concentrations of dissolved organic carbon (DOC) and CDOM in the Yellow River estuary were higher in summer, followed by winter, and lower in spring and autumn. The fluxes of DOC and CDOM to the sea were the highest in summer, followed by autumn and spring, and the lowest in winter, which were mainly influenced by the flood season and water and sediment regulation of the Yellow River basin. The concentration of DOC in the Yellow River estuary showed an irregular patchy distribution, and the concentration of CDOM showed a distribution characteristic of high near shore and low off shore, which was caused by many factors such as the input of the Yellow River, marine autogenesis and photodegradation. In summer, when the runoff of the Yellow River was large, DOC was more affected by terrestrial input than other seasons, and the concentration of CDOM is significantly higher than other seasons. The linear relationship between DOC and CDOM in summer was also significantly higher than that in other seasons. The photochemical degradation rate of terrestrial DOM in spring, summer and autumn is higher than that of marine DOM. The photodegradation rate of CDOM in summer was higher than that in spring and autumn due to the combination of DOM source composition, temperature, light and other environmental factors.
-
表 1 黄河及黄河口DOM光降解培养站位水体主要水文及理化要素
Table 1. Main hydrological and physicochemical elements of DOM photodegradation culture station in the Yellow River and the Yellow River Estuary
试验季节
Experiment season站位
Station水样来源
Source of water sample盐度
Salinity温度/℃
Temperature午间(10:00—15:00)
光照强度/lux
Midday(10:00—15:00) light intensityDOC/
(μmol·L−1)a355/m−1 秋季
AutumnD1 黄河水 0.01 16.08 10000—110000 194.20 1.38 —* 混合源 12.10 —* 195.46 1.33 C1 海源 24.24 16.78 219.71 1.06 春季
SpringD1 黄河水 0.01 19.21 6000—160000 185.04 1.41 Y1 混合源 23.20 18.36 183.21 1.19 C3 海源 30.10 18.25 179.87 0.60 夏季
SummerD1 黄河水 0.01 27.32 10000—160000 305.64 1.90 Y1 混合源 14.25 26.42 279.91 1.59 H1-6 海源 33.20 26.32 249.38 1.19 *秋季混合源培养水样为黄河水和C1站位海水混合所得.
*The mixed culture water sample in autumn is the mixture of Yellow River water and C1 station seawater.表 2 黄河口近岸海域不同季节水文、生化参数变化特征
Table 2. Variation characteristics of hydrologic and biochemical parameters in different seasons in the coastal waters of the Yellow River Estuary
季节
Seasons水层
Layers温度/℃
Temperature盐度
SalinityChl-a/
(μg·L−1)DOC/
(μmol·L−1)a355/m−1 S275-295/nm−1 a355:DOC/
(L·mmol−1·m−1)SUVA254/
(L·μmol−1·m−1)秋季
Autumn表层
Surface范围 13.78—18.13 24.80—34.17 0.86—10.29 215.83—410.00 0.77—1.21 0.0235—0.0268 2.41—4.48 0.020—0.032 平均值±
标准偏差15.65±1.56 29.65±3.05 3.09±2.66 289.38±55.79 0.96±0.14 0.0253±0.0011 3.35±0.66 0.027±0.004 底层
Bottom范围 13.99—18.41 24.80—34.37 0.51—4.46 242.50—408.33 0.62—1.03 0.0249—0.0276 2.16—3.81 0.019—0.032 平均值±
标准偏差16.44±1.55 31.22±3.36 2.14±1.19 282.12±44.82 0.86±0.12 0.0260±0.0008 3.05±0.53 0.025±0.004 春季
Spring表层
Surface范围 12.23—18.64 25.86—31.34 0.80—4.13 179.12—232.71 0.56—1.12 0.0215—0.0279 3.08—6.09 0.032—0.047 平均值±
标准偏差15.36±1.89 28.24±1.57 1.68±0.76 197.12±17.68 0.80±0.13 0.0257±0.0013 4.05±0.65 0.037±0.003 底层
Bottom范围 11.47—18.71 26.50—31.94 0.23—2.84 166.71—225.96 0.67—1.18 0.0216—0.0268 3.68—6.70 0.034—0.052 平均值±
标准偏差13.96±2.15 29.30±1.64 1.59±0.59 191.56±18.93 0.81±0.13 0.0254±0.0013 4.30±0.83 0.039±0.005 夏季
Summer表层
Surface范围 23.56—26.65 14.63—32.69 0.95—20.77 206.20—377.46 0.43—1.40 0.0212—0.0292 1.86—5.78 0.026—0.038 平均值±
标准偏差25.30±0.93 28.66±4.53 5.49±5.70 256.03±37.84 0.98±0.26 0.0247±0.0022 3.93±0.95 0.032±0.004 底层
Bottom范围 21.84—26.99 25.15—32.69 1.30—11.40 203.97—276.41 0.66—1.34 0.0217—0.0272 2.75—5.51 0.029—0.043 平均值±
标准偏差24.58±1.54 30.44±2.28 4.17±3.36 232.74±19.88 0.96±0.20 0.0250±0.0018 4.15±0.84 0.034±0.004 冬季
Winter表层
Surface范围 3.84—7.82 0.46—31.40 0.74—20.44 192.40—259.59 0.64—1.48 0.0176—0.0282 2.93—4.67 0.027—0.040 平均值±
标准偏差5.55±1.10 26.36±8.53 8.28±5.52 222.00±19.84 0.92±0.23 0.0245±0.0028 3.82±0.48 0.034±0.003 底层Bottom 范围 3.80—7.83 27.02—31.42 0.40—16.41 174.78—246.15 0.53—1.73 0.0203—0.0288 2.71—5.01 0.032—0.042 平均值±
标准偏差4.90±1.02 29.42±1.39 6.83±4.10 207.01±21.67 0.84±0.28 0.0260±0.0020 3.77±0.61 0.035±0.003 表 3 DOM参数与盐度或Chl-a之间的相关系数(r)
Table 3. Correlation coefficients (r) between DOM parameters and salinity or Chl-a
决定因素
Parameters春季
Spring夏季
Summer秋季
Autumn冬季
WinterDOC vs. salinity −0.063 −0.661** 0.258 −0.083 a355 vs. salinity −0.606** −0.821** −0.645** −0.748** S275-295 vs. salinity 0.449** 0.622** 0.804** 0.769** a355: DOC vs. salinity −0.534** −0.643** −0.763** −0.814** SUVA254 vs. salinity −0.472** −0.673** −0.727** −0.639** DOC vs. Chl-a 0.325* 0.481** 0.185 0.026 a355 vs. Chl-a 0.117 0.630** 0.116 0.106 **表示在0.01水平上显著相关(双尾). *表示在0.05水平上显著相关(双尾).
** represents significant correlation at the 0.01 level (2-tailed). * represents significant correlation at the 0.05 level (2-tailed).表 4 不同海域 CDOM与 DOC一元线性回归关系
Table 4. Univariate linear regression relationship between CDOM and DOC in different sea areas.
调查海域
Survey area调查时间
Survey timeCDOM(m−1)与DOC(μmol·L−1)
一元线性回归关系
Linear regression relationship
between CDOM and DOCR2 参考文献
ReferenceSouthern Baltic Sea April, 1994; DOC = 357.3 (±5.13) + 64.9 (±2.03)a355 0.81 Ferrari et al., 1996[16] September, 1994 DOC = 343.6 (±13.7) + 73.2 (±7.7)a355 0.49 Delaware Bay July, 1998 DOC = 98.3+55.6a355 Del Vecchio and Blough, 2004[55] Chesapeake Bay October, November 2004;
January to May, November 2005;
May, November 2006DOC = 53.7 + 82.8a355 0.94 Mannino et al., 2008[22] Chesapeake Bay July, September 2004; June to
September 2005;
July, September 2006DOC = 68.1 + 99.4a355 0.84 Mannino et al., 2008[22] Delaware July 2005, July 2006 DOC = 69.9 + 48.9a355 0.88 Mannino et al., 2008[22] 长江口及邻近海域
Changjiang Estuary and its adjacent sea area2014年7月 DOC = 81.29 + 26.55a355 0.78 李奕杰,2015[57] 黄河口
Yellow River Estuary2019年8月 DOC=201.09+49.44a355 0.38 本研究 -
[1] HEDGES J I, COWIE G L, RICHEY J E, et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids [J]. Limnology and Oceanography, 1994, 39(4): 743-761. doi: 10.4319/lo.1994.39.4.0743 [2] REPETA D J. Chemical characterization and cycling of dissolved organic matter[M]//Biogeochemistry of Marine Dissolved Organic Matter[M]. Amsterdam: Elsevier, 2015: 21-63. [3] ABRIL G, ETCHEBER H, le HIR P, et al. Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France) [J]. Limnology and Oceanography, 1999, 44(5): 1304-1315. doi: 10.4319/lo.1999.44.5.1304 [4] BURDIGE D J, BERELSON W M, COALE K H, et al. Fluxes of dissolved organic carbon from California continental margin sediments [J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1507-1515. doi: 10.1016/S0016-7037(99)00066-6 [5] AMON R M W, BENNER R. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1783-1792. doi: 10.1016/0016-7037(96)00055-5 [6] WANG X C, CHEN R F, GARDNER G B. Sources and transport of dissolved and particulate organic carbon in the Mississippi River Estuary and adjacent coastal waters of the northern Gulf of Mexico [J]. Marine Chemistry, 2004, 89(1-4): 241-256. doi: 10.1016/j.marchem.2004.02.014 [7] BENNER R, KAISER K. Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter [J]. Biogeochemistry, 2011, 102(1): 209-222. [8] BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean [J]. Nature, 2013, 504(7478): 61-70. doi: 10.1038/nature12857 [9] MOPPER K, KIEBER D J, STUBBINS A. Marine photochemistry of organic matter[M]//Biogeochemistry of Marine Dissolved Organic Matter. Amsterdam: Elsevier, 2015: 389-450. [10] OBERNOSTERER I, BENNER R. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon [J]. Limnology and Oceanography, 2004, 49(1): 117-124. doi: 10.4319/lo.2004.49.1.0117 [11] ZHU W Z, ZHANG H H, ZHANG J, et al. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea [J]. Journal of Marine Systems, 2018, 180: 9-23. doi: 10.1016/j.jmarsys.2017.12.003 [12] del CASTILLO C E, COBLE P G, MORELL J M, et al. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy [J]. Marine Chemistry, 1999, 66(1): 35-51. [13] MILLER W L, ZEPP R G. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle [J]. Geophysical Research Letters, 1995, 22(4): 417-420. doi: 10.1029/94GL03344 [14] MOPPER K, STAHOVEC W L. Sources and sinks of low molecular weight organic carbonyl compounds in seawater [J]. Marine Chemistry, 1986, 19(4): 305-321. doi: 10.1016/0304-4203(86)90052-6 [15] ROCHELLE-NEWALL E J, FISHER T R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay [J]. Marine Chemistry, 2002, 77(1): 23-41. doi: 10.1016/S0304-4203(01)00073-1 [16] FERRARI G M, DOWELL M D, GROSSI S, et al. Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region [J]. Marine Chemistry, 1996, 55(3): 299-316. [17] FERRARI G M. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions) [J]. Marine Chemistry, 2000, 70(4): 339-357. doi: 10.1016/S0304-4203(00)00036-0 [18] KOWALCZUK P, ZABŁOCKA M, SAGAN S, et al. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea [J]. OCEANOLOGIA, 2010, 52(3): 431-471. doi: 10.5697/oc.52-3.431 [19] FICHOT C G, BENNER R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters [J]. Geophysical Research Letters, 2011, 38(3): L03610. [20] YLÖSTALO P, SEPPÄLÄ J, KAITALA S, et al. Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland - Biogeochemical composition and spatial distribution within the salinity gradient [J]. Marine Chemistry, 2016, 186: 58-71. doi: 10.1016/j.marchem.2016.07.004 [21] OSBURN C L, BOYD T J, MONTGOMERY M T, et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters [J]. Frontiers in Marine Science, 2016, 2: 127. [22] MANNINO A, RUSS M E, HOOKER S B. Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight [J]. Journal of Geophysical Research Atmospheres, 2008, 113(C7): C07051. [23] BENNER R, OPSAHL S. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River plume [J]. Organic Geochemistry, 2001, 32(4): 597-611. doi: 10.1016/S0146-6380(00)00197-2 [24] 蒋超. 黄河口动力地貌过程及其对河流输入变化的响应[D]. 上海: 华东师范大学, 2020. JIANG C. Morphodynamic processes in the Yellow River Estuary and their responses to variation of riverine supply[D]. Shanghai: East China Normal University, 2020(in Chinese).
[25] 张龙军, 张向上, 王晓亮, 等. 黄河口有机碳的时空输运特征及其影响因素分析 [J]. 水科学进展, 2007, 18(5): 674-682. doi: 10.3321/j.issn:1001-6791.2007.05.007 ZHANG L J, ZHANG X S, WANG X L, et al. Spatial and temporal distribution of particulate and dissolved organic carbon in Yellow River Estuary [J]. Advances in Water Science, 2007, 18(5): 674-682(in Chinese). doi: 10.3321/j.issn:1001-6791.2007.05.007
[26] 张向上. 黄河口碳输运过程及其对莱州湾的影响[D]. 青岛: 中国海洋大学, 2007. ZHANG X S. The transport of inorganic and organic carbon in the Yellow River Estuary and its effect on Laizhou Bay[D]. Qingdao: Ocean University of China, 2007(in Chinese).
[27] YU Y G, SHI X F, WANG H J, et al. Effects of dams on water and sediment delivery to the sea by the Huanghe (Yellow River): The special role of Water-Sediment Modulation [J]. Anthropocene, 2013, 3: 72-82. doi: 10.1016/j.ancene.2014.03.001 [28] 寿玮玮, 宗海波, 丁平兴. 夏季黄河入海径流对黄河口及附近海域环流影响的数值研究 [J]. 海洋学报, 2016, 38(7): 1-13. SHOU W W, ZONG H B, DING P X. Numerical study of the circulation influenced by runoff input in the Huanghe(Yellow)River Estuary and adjacent waters in summer [J]. Acta Oceanologica Sinica, 2016, 38(7): 1-13(in Chinese).
[29] SPYRES G, NIMMO M, WORSFOLD P J, et al. Determination of dissolved organic carbon in seawater using high temperature catalytic oxidation techniques [J]. TrAC Trends in Analytical Chemistry, 2000, 19(8): 498-506. doi: 10.1016/S0165-9936(00)00022-4 [30] SHEN Y, BENNER R, ROBBINS L L, et al. Sources, distributions, and dynamics of dissolved organic matter in the Canada and Makarov Basins [J]. Frontiers in Marine Science, 2016, 3: 198. [31] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955 [32] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. [33] DALZELL B J, MINOR E C, MOPPER K M. Photodegradation of estuarine dissolved organic matter: A multi-method assessment of DOM transformation [J]. Organic Geochemistry, 2009, 40(2): 243-257. doi: 10.1016/j.orggeochem.2008.10.003 [34] WANG X, MA H, LI R, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River [J]. Global Biogeochemical Cycles, 2012: 26. [35] 邱爽, 刘志媛, 肖纯超, 等. 黄河利津站碳输运年内变化及入海通量估算 [J]. 海洋环境科学, 2013, 32(4): 486-490. QIU S, LIU Z Y, XIAO C C, et al. Inter-annual variations and fuxes of riverine carbon at Lijin hydrological station in lower Yellow River [J]. Marine Environmental Science, 2013, 32(4): 486-490(in Chinese).
[36] 刘兆冰. 渤海及入海河流水体中有色溶解有机物(CDOM)的时空分布研究[D]. 青岛: 山东科技大学, 2019. LIU Z B. Spatiotemporal distribution characteristics of chromophoric dissolved organic matters(CDOM) in the water of Bohai Sea and its surrounding rivers[D]. Qingdao: Shandong University of Science and Technology, 2019(in Chinese).
[37] 毕乃双, 杨作升, 王厚杰, 等. 黄河调水调沙期间黄河入海水沙的扩散与通量 [J]. 海洋地质与第四纪地质, 2010, 30(2): 27-34. BI N S, YANG Z S, WANG H J, et al. Characteristics of dispersal of the Yellow River water and sediment to the sea during water-sediment regulation period of the Yellow River and its dynamic mechanism [J]. Marine Geology & Quaternary Geology, 2010, 30(2): 27-34(in Chinese).
[38] HERBECK L S, UNGER D, KRUMME U, et al. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China [J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 375-388. doi: 10.1016/j.ecss.2011.05.004 [39] VODACEK A, HOGEL F E, SWIFT R N, et al. The use of in situ and airborne fluorescence measurements to determine UV absorption coefficients and DOC concentrations in surface waters [J]. Limnology and Oceanography, 1995, 40(2): 411-415. doi: 10.4319/lo.1995.40.2.0411 [40] ANDERSSON A, BRUGEL S, PACZKOWSKA J, et al. Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary [J]. Estuarine, Coastal and Shelf Science, 2018, 204: 225-235. doi: 10.1016/j.ecss.2018.02.032 [41] HE B Y, DAI M H, ZHAI W D, et al. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River Estuary, China [J]. Marine Chemistry, 2010, 119(1-4): 52-64. doi: 10.1016/j.marchem.2009.12.006 [42] GUO J Q, LIANG S K, WANG X K, et al. Distribution and dynamics of dissolved organic matter in the Changjiang Estuary and adjacent sea[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(12): e2020JG006161-1-e2020JG006161-19. [43] 刘兆冰, 梁文健, 秦礼萍, 等. 渤海和北黄海有色溶解有机物(CDOM)的分布特征和季节变化 [J]. 环境科学, 2019, 40(3): 1198-1208. LIU Z B, LIANG W J, QIN L P, et al. Distribution and seasonal variations of chromophoric dissolved organic matter (CDOM) in the Bohai Sea and the north Yellow Sea [J]. Environmental Science, 2019, 40(3): 1198-1208(in Chinese).
[44] 梁文健, 秦礼萍, 刘兆冰, 等. 东黄渤海11-12月有色溶解有机质的分布特征 [J]. 海洋环境科学, 2019, 38(6): 905-910. doi: 10.12111/j.mes20190613 LIANG W J, QIN L P, LIU Z B, et al. Spatial distribution of colored dissolved organic matter (CDOM) in the Bohai, Yellow and East China Seas in November and December [J]. Marine Environmental Science, 2019, 38(6): 905-910(in Chinese). doi: 10.12111/j.mes20190613
[45] GREEN S A, BLOUGH N V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters [J]. Limnology and Oceanography, 1994, 39(8): 1903-1916. doi: 10.4319/lo.1994.39.8.1903 [46] FICHOT C G, BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins [J]. Limnology and Oceanography, 2012, 57(5): 1453-1466. doi: 10.4319/lo.2012.57.5.1453 [47] OPSAHL S, BENNER R. Photochemical reactivity of dissolved lignin in river and ocean waters [J]. Limnology and Oceanography, 1998, 43(6): 1297-1304. doi: 10.4319/lo.1998.43.6.1297 [48] TZORTZIOU M, OSBURN C L, NEALE P J. Photobleaching of dissolved organic material from a tidal marsh-estuarine system of the Chesapeake Bay [J]. Photochemistry and Photobiology, 2007, 83(4): 782-792. doi: 10.1111/j.1751-1097.2007.00142.x [49] VODACEK A, BLOUGH N V, DEGRANDPRE M D, et al. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation [J]. Limnology and Oceanography, 1997, 42(4): 674-686. doi: 10.4319/lo.1997.42.4.0674 [50] GU D J, ZHANG L J, JIANG L Q. The effects of estuarine processes on the fluxes of inorganic and organic carbon in the Yellow River Estuary [J]. Journal of Ocean University of China, 2009, 8(4): 352-358. doi: 10.1007/s11802-009-0352-x [51] YANG Z S, JI Y J, BI N S, et al. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 173-181. doi: 10.1016/j.ecss.2010.06.005 [52] YANG L, ZHANG J, LIU K, et al. Spatiotemporal variability, size and photoreactivity of chromophoric dissolved organic matter in the Bohai Sea and the northern Yellow Sea [J]. Journal of Marine Systems, 2020, 205: 103316. doi: 10.1016/j.jmarsys.2020.103316 [53] STEDMON C A, MARKAGER S, KAAS H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters [J]. Estuarine, Coastal and Shelf Science, 2000, 51(2): 267-278. doi: 10.1006/ecss.2000.0645 [54] WEN Z D, SONG K S, SHANG Y X, et al. Natural and anthropogenic impacts on the DOC characteristics in the Yellow River continuum [J]. Environmental Pollution, 2021, 287: 117231. doi: 10.1016/j.envpol.2021.117231 [55] del VECCHIO R, BLOUGH N V. Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight [J]. Marine Chemistry, 2004, 89(1): 169-187. [56] CHEN Z Q, LI Y, PAN J M. Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China [J]. Continental Shelf Research, 2004, 24(16): 1845-1856. doi: 10.1016/j.csr.2004.06.011 [57] 李奕洁. 长江口及邻近海域溶解有机物光化学降解行为研究[D]. 天津: 天津科技大学, 2015. LI Y J. Study on the photodegradation of dissolved organic matter in the Yangtze Estuary and its adjacent sea[D]. Tianjin: Tianjin University of Science & Technology, 2015(in Chinese).