-
有机磷酸酯(OPEs)是近年来受到人们广泛关注的一类新有机污染物,其作为阻燃剂和增塑剂被应用于各类产品中,如建筑材料、家具、润滑剂、纺织品以及电子产品等[1-4]. OPEs是磷酸酯类衍生物,多具有磷酸三酯的共同骨架结构,根据取代基酯键的不同OPEs可大致分为烷基取代磷酸酯(Alkyl-OPEs),氯代磷酸酯(Cl-OPEs)和芳基取代磷酸酯(Aryl-OPEs)[5],其中,Cl-OPEs阻燃效率更高主要被用于生产阻燃剂,而非Cl-OPEs多用于生产增塑剂[6]. 据报道投入全球生产和使用的OPEs超过40种,而从2011年到2015年,仅作为阻燃剂的OPEs生产量已从50万吨增长到68万吨[7-8]. 由于部分OPEs对生态安全与人体健康造成了潜在的威胁,目前有一些传统的OPEs(如磷酸三氯乙基酯(TCEP))已经在产品生产中被禁止,进而导致对新型OPEs的需求持续增加,如基于磷酸三苯酯(TPHP)结构衍生出的双酚A双(磷酸二苯酯) (BPA-BDPP)和磷酸甲苯二苯酯(CDP)等[9-10]. 近年来,新型OPEs在环境中的污染也逐渐引起了环境学者的重视,表1列出了工业上应用的一些传统和新型OPEs及其理化性质和主要用途[9-13].
由于OPEs多是以简单的物理添加而非化学键合方式加于各类产品中,很容易通过磨损、渗滤、蒸发、溶解等途径扩散至大气、水以及土壤等环境介质中[14-15]. 大气中OPEs以干/湿沉降或者气-液/气-固交换进入水环境或者土壤,土壤中OPEs可通过地表径流或者灌溉等方式进入水体. 由于具有疏水性,大部分进入水中的OPEs会被悬浮物吸附而进入生物相以及沉积物中. 吸附在沉积物上的OPEs还可以再悬浮而再次进入到水相,成为流动的污染物. 目前,OPEs已在空气[16-19]、饮用水和表层水体[20-21]、沉积物[22-25]以及人体[26]等多种介质中频繁检出. 毒理学相关研究也逐渐报道OPEs具有神经毒性[27-29]、发育毒性[30-32]、生殖毒性[33-35]以及致癌性[36]等,从而对生态环境和人体健康造成潜在的危害.
现有的综述研究多集中于OPEs在环境中的检出方法、分布情况、毒性和部分介质中的风险评估等方面[37-40],有关OPEs迁移转化的报道非常有限. 而OPEs在环境中的归趋决定了其对生态环境以及人体健康的影响,是当今环境科学基础研究的热点之一. 基于此,本文综述了近年来OPEs在环境中可能发生的迁移转化过程,并就当前研究的不足和将来的研究方向提出一些思考和展望,旨在为今后OPEs的生态风险评估和污染管控提供支撑. 目前,环境中OPEs的迁移转化过程主要包括大气传输沉降、地表地下径流扩散、界面交换与吸附解吸、水解和光解,以及生物富集、植物吸收和代谢转化和微生物降解等.
新污染物有机磷酸酯生物地球化学过程的研究进展
Research progress on biogeochemical process of emerging contaminants organophosphate esters
-
摘要: 有机磷酸酯(organophosphate esters,OPEs)作为阻燃剂和增塑剂广泛应用于建筑材料和电子产品等材料,随着生产和使用量的增加,导致其普遍存在于各种环境介质中. 作为一类新污染物,OPEs的环境行为及归趋引起了越来越多环境学者的关注. 本文系统阐述了OPEs在环境中可能发生的物理、化学和生物过程. 现有研究表明:(1) OPEs自身理化性质和结构(疏水性和π-π效应)是影响其迁移转化过程的重要因素;(2) 复杂的介质环境 (温度、pH值、溶解性有机质、氧化活性物种等)能够影响OPEs的大气传输/沉降、吸附/解吸、水解、光解、生物富集和植物吸收等过程;(3) OPEs在迁移转化中能生成二酯或单酯类产物(化学键断裂)、羟基化产物、甲氧基化产物以及其他小分子化合物等. 针对目前的研究现状建议未来可重点关注OPEs在小型生态系统中多介质中的迁移转化过程与机制以及在迁移转化过程中生成产物的理化特性与生物效应等.Abstract: Organophosphate esters (OPEs) are the most widely used flame retardants and plasticizers in building materials and electronic products, etc. The increasing widespread use and production have resulted in their ubiquitous occurrence in the environment. As emerging contaminants, the environmental behaviors and fates of OPEs are attracting the attention of more and more scholars. In this article, the physical, chemical and biological processes of OPEs that may occur in the environment are systematically reviewed. Firstly, the physicochemical properties and structure of OPEs (hydrophobicity and π-π interaction) are important factors that influence their migration and transformation processes. Secondly, the complex media environment including temperature, pH, dissolved organic matter, oxidatively active species, etc. will affect the atmospheric transport/ deposition, adsorption/desorption, hydrolysis, photolysis, bioconcentration and plant uptake of OPEs. Thirdly, diester or monoester products from breakage of chemical bonds, hydroxylation products, methoxylation products, and other small molecule compounds can be generated by OPEs in the processes of migration and transformation. The study puts forward a prospect for future research on the migration and transformation processes and mechanisms of OPEs in multi-media of microecosystems as well as the physicochemical properties and biological effects of the products generated during the migration and transformation.
-
表 1 环境介质中常见和新型OPEs的理化性质和主要用途[9-13]
Table 1. Physicochemical properties and main application of traditional and emerging organophosphate esters in environments
化合物
Compounds简称
AbbreviationCAS 25 ℃时水
中溶解度/
( mg·L−1)
Solubility25 ℃时
蒸气压/
(mm Hg )
Vapor pressure正辛醇-
水分配
系数lg Kow正辛醇-空
气分配系数
lg Koa主要用途
Main
application传统
OPEs磷酸三乙酯(Triethyl phosphate) TEP 78-40-0 — 3.93 × 10−1 0.80 5.6 阻燃剂 磷酸三丙酯
(Tri-n-propyl phosphate)TPP 513-08-6 6.43× 103 2.31 × 10−2 2.35 6.42 阻燃剂、增塑剂 磷酸三丁酯
(Tri-n-butyl phosphate)TnBP 126-73-8 7.36 3.49 × 10−3 3.82 8.24 消泡剂、增塑剂 磷酸三-(2-氯乙基)酯
(Tris(2-chloroethyl) phosphate)TCEP 115-96-8 7.00 × 103 3.91 × 10−4 1.63 7.42 阻燃剂 磷酸三-氯(2-氯异丙基)酯
(Tris(2-chloroisopropyl) phosphate)TCIPP 13674-84-5 1.20 × 103 5.64 × 10−5 2.89 8.20 阻燃剂 磷酸三(1,3-二氯-2-丙基)酯
(Tris(1,3-dichloroisopropyl) phosphate)TDCIPP 13674-87-8 7.00 2.86 × 10−7 3.65 10.6 阻燃剂 磷酸三(2-丁氧乙基)酯
(Tris(2-butoxyethyl) phosphate )TBOEP 78-51-3 1.10 × 103 1.23 × 10−6 3.00 13.0 增塑剂、消泡剂 磷酸三苯酯(Triphenyl phosphate) TPHP 115-86-6 1.90 4.72 × 10−7 4.70 8.45 消泡剂、增塑剂 新型
OPEs磷酸三异癸酯 triisodecyl phosphate TiDeP 29733-20-8 — 2.74 × 10−6 12.4 14.1 阻燃剂 磷酸三壬基酚酯
Trisnonylphenol phosphateTNPP 26523-78-4 — 2.74 × 10−6 18.1 20.8 阻燃剂 双酚A双(磷酸二苯酯)
(Bisphenol A bis(diphenyl phosphate))BPA-BDPP 5945-33-5 阻燃剂 磷酸甲酚二苯酯
(Cresyl diphenyl phosphate)CDP 26444-49-5 增塑剂、阻燃剂 磷酸三(2,4-二-叔-丁基苯基)酯 (tris(2,4-di-tert-butylphenyl) phosphate) AO168 95906-11-9 — 2.74 × 10−6 16.2 19.5 阻燃剂 双(2,4-二叔丁基苯基)异戊四醇磷酸二酯(bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate) AO626 97994-11-1 — 2.74 × 10−6 9.8 19.9 阻燃剂 表 2 不同介质上OPEs的吸附
Table 2. Adsorption of OPEs on different media
吸附介质
Adsorption medium模型化合物
Model compounds吸附动力学模型
Adsorption dynamic model吸附等温线
Adsorption isotherm气-固 不锈钢介质[65] TCEP Freundich等温式 液-固 沸石吸附剂[66] TCEP Langmuir等温式 沉积物[67] TPHP 准二级动力学模型 Langmuir等温式 微塑料[68] TnBP, TCEP 准二级动力学模型 Freundich等温式 TCEP 准二级动力学模型 Langmuir等温式 石墨烯纳米材料[69] TCP 准二级动力学模型 Langmuir等温式 碳纳米管[70] TnBP, TCEP, TPHP Dubinin–Ashtakhov 模型 树脂[71] TPHP 准二级动力学模型 Langmuir等温式 土壤[72] TDCP, TCIPP 准二级动力学模型 -
[1] 高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展 [J]. 生态毒理学报, 2015, 10(2): 56-68. doi: 10.7524/AJE.1673-5897.20150103001 GAO X Z, XU Y P, WANG Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 56-68(in Chinese). doi: 10.7524/AJE.1673-5897.20150103001
[2] MIYAKE Y, TOKUMURA M, WANG Q, et al. Identification of novel phosphorus-based flame retardants in curtains purchased in Japan using orbitrap mass spectrometry [J]. Environmental Science & Technology Letters, 2018, 5(7): 448-455. [3] ISETUN S, NILSSON U, COLMSJÖ A. Evaluation of solid-phase microextraction with PDMS for air sampling of gaseous organophosphate flame-retardants and plasticizers [J]. Analytical and Bioanalytical Chemistry, 2004, 380(2): 319-324. doi: 10.1007/s00216-004-2760-5 [4] ISETUN S, NILSSON U, COLMSJÖ A, et al. Air sampling of organophosphate triesters using SPME under non-equilibrium conditions [J]. Analytical and Bioanalytical Chemistry, 2004, 378(7): 1847-1853. doi: 10.1007/s00216-003-2489-6 [5] GREAVES A K, LETCHER R J. A review of organophosphate esters in the environment from biological effects to distribution and fate [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(1): 2-7. doi: 10.1007/s00128-016-1898-0 [6] ANDRESEN J A, GRUNDMANN A, BESTER K. Organophosphorus flame retardants and plasticisers in surface waters [J]. Science of the Total Environment, 2004, 332(1/2/3): 155-166. [7] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 2015, 196: 29-46. doi: 10.1016/j.envpol.2014.09.012 [8] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [9] LIU X T, CHEN D, YU Y J, et al. Novel organophosphate esters in airborne particulate matters: Occurrences, precursors, and selected transformation products [J]. Environmental Science & Technology, 2020, 54(21): 13771-13777. [10] TAN H L, CHEN D, PENG C F, et al. Novel and traditional organophosphate esters in house dust from South China: Association with hand wipes and exposure estimation [J]. Environmental Science & Technology, 2018, 52(19): 11017-11026. [11] CAO Z G, ZHAO L C, ZHANG Y C, et al. Influence of air pollution on inhalation and dermal exposure of human to organophosphate flame retardants: A case study during a prolonged haze episode [J]. Environmental Science & Technology, 2019, 53(7): 3880-3887. [12] SUN Y, LIU L Y, SVERKO E, et al. Organophosphate flame retardants in college dormitory dust of northern Chinese cities: Occurrence, human exposure and risk assessment [J]. Science of the Total Environment, 2019, 665: 731-738. doi: 10.1016/j.scitotenv.2019.02.098 [13] WANG Y, SUN H W, ZHU H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China [J]. Science of the Total Environment, 2018, 625: 1056-1064. doi: 10.1016/j.scitotenv.2018.01.013 [14] ABDALLAH M A E, COVACI A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure [J]. Environmental Science & Technology, 2014, 48(9): 4782-4789. [15] WANG G G, LIU Y, ZHAO X D, et al. Geographical distributions and human exposure of organophosphate esters in college library dust from Chinese cities [J]. Environmental Pollution, 2019, 255: 113332. doi: 10.1016/j.envpol.2019.113332 [16] RAUERT C, SCHUSTER J K, ENG A, et al. Global atmospheric concentrations of brominated and chlorinated flame retardants and organophosphate esters [J]. Environmental Science & Technology, 2018, 52(5): 2777-2789. [17] SALAMOVA A, MA Y N, VENIER M, et al. High levels of organophosphate flame retardants in the great lakes atmosphere [J]. Environmental Science & Technology Letters, 2014, 1(1): 8-14. [18] SHOEIB M, AHRENS L, JANTUNEN L, et al. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada [J]. Atmospheric Environment, 2014, 99: 140-147. doi: 10.1016/j.atmosenv.2014.09.040 [19] WONG F, de WIT C A, NEWTON S R. Concentrations and variability of organophosphate esters, halogenated flame retardants, and polybrominated diphenyl ethers in indoor and outdoor air in Stockholm, Sweden [J]. Environmental Pollution, 2018, 240: 514-522. doi: 10.1016/j.envpol.2018.04.086 [20] KHAN M U, LI J, ZHANG G, et al. First insight into the levels and distribution of flame retardants in potable water in Pakistan: An underestimated problem with an associated health risk diagnosis [J]. Science of the Total Environment, 2016, 565: 346-359. doi: 10.1016/j.scitotenv.2016.04.173 [21] GUO J H, ROMANAK K, WESTENBROEK S, et al. Current-use flame retardants in the water of lake Michigan tributaries [J]. Environmental Science & Technology, 2017, 51(17): 9960-9969. [22] CRISTALE J, ARAGÃO BELÉ T G, LACORTE S, et al. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian City [J]. Environmental Pollution, 2018, 237: 695-703. doi: 10.1016/j.envpol.2017.10.110 [23] GIULIVO M, CAPRI E, KALOGIANNI E, et al. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European River basins [J]. Science of the Total Environment, 2017, 586: 782-791. doi: 10.1016/j.scitotenv.2017.02.056 [24] MA Y X, XIE Z Y, LOHMANN R, et al. Organophosphate ester flame retardants and plasticizers in ocean sediments from the north Pacific to the Arctic ocean [J]. Environmental Science & Technology, 2017, 51(7): 3809-3815. [25] SUTTON R, da CHEN, SUN J, et al. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary [J]. Science of the Total Environment, 2019, 652: 212-223. doi: 10.1016/j.scitotenv.2018.10.096 [26] MEEKER J D, COOPER E M, STAPLETON H M, et al. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations [J]. Environmental Health Perspectives, 2013, 121(5): 580-585. doi: 10.1289/ehp.1205907 [27] DISHAW L V, HUNTER D L, PADNOS B, et al. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio) [J]. Toxicological Sciences, 2014, 142(2): 445-454. doi: 10.1093/toxsci/kfu194 [28] JAREMA K A, HUNTER D L, SHAFFER R M, et al. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish [J]. Neurotoxicology and Teratology, 2015, 52: 194-209. doi: 10.1016/j.ntt.2015.08.010 [29] HAN Z H, WANG Q W, FU J, et al. Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate [J]. Aquatic Toxicology, 2014, 150: 175-181. doi: 10.1016/j.aquatox.2014.03.013 [30] BEHL M, HSIEH J H, SHAFER T J, et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity [J]. Neurotoxicology and Teratology, 2015, 52: 181-193. doi: 10.1016/j.ntt.2015.09.003 [31] DU Z K, WANG G W, GAO S X, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators [J]. Aquatic Toxicology, 2015, 161: 25-32. doi: 10.1016/j.aquatox.2015.01.027 [32] FARHAT A, CRUMP D, CHIU S, et al. In ovo effects of two organophosphate flame retardants—TCPP and TDCPP—on pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102. doi: 10.1093/toxsci/kft100 [33] KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors [J]. Toxicology, 2013, 314(1): 76-83. doi: 10.1016/j.tox.2013.09.004 [34] WANG Q W, LAM J C W, HAN J, et al. Developmental exposure to the organophosphorus flame retardant tris(1, 3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish [J]. Aquatic Toxicology, 2015, 160: 163-171. doi: 10.1016/j.aquatox.2015.01.014 [35] ZHU Y, MA X F, SU G Y, et al. Environmentally relevant concentrations of the flame retardant tris(1, 3-dichloro-2-propyl) phosphate inhibit growth of female zebrafish and decrease fecundity [J]. Environmental Science & Technology, 2015, 49(24): 14579-14587. [36] European Commission, 2014. Commission directive 2014/79/EU of 20 June 2014 amending appendix C of annex II to directive 2009/48/EC of the European Parliament and of the council on the safety of toys, as regards TCEP, TCPP and TDCP. Off. J. Eur. Union 182, 49–51. [37] WANG X, ZHU Q Q, YAN X T, et al. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment [J]. Science of the Total Environment, 2020, 731: 139071. doi: 10.1016/j.scitotenv.2020.139071 [38] YANG J W, ZHAO Y Y, LI M H, et al. A review of a class of emerging contaminants: The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs) [J]. International Journal of Molecular Sciences, 2019, 20(12): 2874. doi: 10.3390/ijms20122874 [39] PATISAUL H B, BEHL M, BIRNBAUM L S, et al. Beyond cholinesterase inhibition: Developmental neurotoxicity of organophosphate ester flame retardants and plasticizers [J]. Environmental Health Perspectives, 2021, 129(10): 105001. doi: 10.1289/EHP9285 [40] HOU R, XU Y P, WANG Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research [J]. Chemosphere, 2016, 153: 78-90. doi: 10.1016/j.chemosphere.2016.03.003 [41] MIHAJLOVIĆ I, FRIES E. Atmospheric deposition of chlorinated organophosphate flame retardants (OFR) onto soils [J]. Atmospheric Environment, 2012, 56: 177-183. doi: 10.1016/j.atmosenv.2012.03.054 [42] CASTRO-JIMÉNEZ J, GONZÁLEZ-GAYA B, PIZARRO M, et al. Organophosphate ester flame retardants and plasticizers in the global oceanic atmosphere [J]. Environmental Science & Technology, 2016, 50(23): 12831-12839. [43] SÜHRING R, DIAMOND M L, SCHERINGER M, et al. Organophosphate esters in Canadian Arctic air: Occurrence, levels and trends [J]. Environmental Science & Technology, 2016, 50(14): 7409-7415. [44] SÜHRING R, WOLSCHKE H, DIAMOND M L, et al. Distribution of organophosphate esters between the gas and particle phase-model predictions vs measured data [J]. Environmental Science & Technology, 2016, 50(13): 6644-6651. [45] NA G S, HOU C, LI R J, et al. Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean [J]. Marine Pollution Bulletin, 2020, 157: 111243. doi: 10.1016/j.marpolbul.2020.111243 [46] MÖLLER A, STURM R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the Polar Regions: Evidence for global occurrence [J]. Environmental Science & Technology, 2012, 46(6): 3127-3134. [47] SALAMOVA A, HERMANSON M H, HITES R A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site [J]. Environmental Science & Technology, 2014, 48(11): 6133-6140. [48] LIU Y C, LIGGIO J, HARNER T, et al. Heterogeneous OH initiated oxidation: A possible explanation for the persistence of organophosphate flame retardants in air [J]. Environmental Science & Technology, 2014, 48(2): 1041-1048. [49] MARKLUND A, ANDERSSON B, HAGLUND P. Traffic as a source of organophosphorus flame retardants and plasticizers in snow [J]. Environmental Science & Technology, 2005, 39(10): 3555-3562. [50] REGNERY J, PÜTTMANN W. Organophosphorus flame retardants and plasticizers in rain and snow from middle Germany [J]. CLEAN - Soil, Air, Water, 2009, 37(4/5): 334-342. [51] LI J, XIE Z Y, MI W Y, et al. Organophosphate esters in air, snow, and seawater in the north Atlantic and the Arctic [J]. Environmental Science & Technology, 2017, 51(12): 6887-6896. [52] FRIES E, MIHAJLOVIĆ I. Pollution of soils with organophosphorus flame retardants and plasticizers [J]. Journal of Environmental Monitoring:JEM, 2011, 13(10): 2692-2694. doi: 10.1039/c1em10538h [53] MIHAJLOVI I, MILORADOV M V, FRIES E. Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil [J]. Environmental Science & Technology, 2011, 45(6): 2264-2269. [54] 侯超. 极地大气有机磷酸酯介质分配机制研究[D]. 上海: 上海海洋大学, 2020. HOU C. Research on the medium partitioning mechanism of atmospheric organophosphate esters in polar regions[D]. Shanghai: Shanghai Ocean University, 2020(in Chinese).
[55] RODGERS T F M, TRUONG J W, JANTUNEN L M, et al. Organophosphate ester transport, fate, and emissions in Toronto, Canada, estimated using an updated multimedia urban model [J]. Environmental Science & Technology, 2018, 52(21): 12465-12474. [56] WANG X L, ZHU L Y, ZHONG W J, et al. Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake, China [J]. Journal of Hazardous Materials, 2018, 360: 43-50. doi: 10.1016/j.jhazmat.2018.07.082 [57] SCHREDER E D, la GUARDIA M J. Flame retardant transfers from US households (dust and laundry wastewater) to the aquatic environment [J]. Environmental Science & Technology, 2014, 48(19): 11575-11583. [58] DENG M J, KUO D T F, WU Q H, et al. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China [J]. Environmental Pollution, 2018, 236: 137-145. doi: 10.1016/j.envpol.2018.01.042 [59] WOUDNEH M B, BENSKIN J P, WANG G H, et al. Quantitative determination of 13 organophosphorous flame retardants and plasticizers in a wastewater treatment system by high performance liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2015, 1400: 149-155. doi: 10.1016/j.chroma.2015.04.026 [60] FRIES E, PÜTTMANN W. Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany) [J]. Journal of Environmental Monitoring, 2003, 5(2): 346-352. doi: 10.1039/b210342g [61] FRIES E, PUTTMANN W. Occurrence of organophosphate esters in surface water and ground water in Germany [J]. Journal of Environmental Monitoring, 2001, 3(6): 621-626. doi: 10.1039/b105072a [62] ZHENG H Y, CAI M H, YANG C, et al. Terrigenous export and ocean currents' diffusion of organophosphorus flame retardants along China's adjacent seas [J]. Environmental Pollution, 2022, 299: 118873. doi: 10.1016/j.envpol.2022.118873 [63] FANG L D, LIU A F, ZHENG M G, et al. Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas [J]. Environmental Pollution, 2022, 302: 119017. doi: 10.1016/j.envpol.2022.119017 [64] ZHANG L J, WANG Y, TAN F, et al. Tidal variability of polycyclic aromatic hydrocarbons and organophosphate esters in the coastal seawater of Dalian, China [J]. Science of the Total Environment, 2020, 708: 134441. doi: 10.1016/j.scitotenv.2019.134441 [65] LIANG Y, LIU X, ALLEN M R. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces [J]. Chemosphere, 2018, 193: 754-762. doi: 10.1016/j.chemosphere.2017.11.080 [66] GRIECO S A, RAMARAO B V. Removal of TCEP from aqueous solutions by adsorption with zeolites [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 434: 329-338. doi: 10.1016/j.colsurfa.2013.04.042 [67] WANG P F, LI D D, FAN X L, et al. Sorption and desorption behaviors of triphenyl phosphate (TPhP) and its degradation intermediates on aquatic sediments [J]. Journal of Hazardous Materials, 2020, 385: 121574. doi: 10.1016/j.jhazmat.2019.121574 [68] CHEN S P, TAN Z R, QI Y S, et al. Sorption of tri-n-butyl phosphate and tris(2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater [J]. Marine Pollution Bulletin, 2019, 149: 110490. doi: 10.1016/j.marpolbul.2019.110490 [69] LIU J, XIA S Y, LÜ X, et al. Adsorption of tricresyl phosphate onto graphene nanomaterials from aqueous solution [J]. Water Science and Technology, 2017, 76(6): 1565-1573. doi: 10.2166/wst.2017.317 [70] YAN W, YAN L, DUAN J M, et al. Sorption of organophosphate esters by carbon nanotubes [J]. Journal of Hazardous Materials, 2014, 273: 53-60. doi: 10.1016/j.jhazmat.2014.03.030 [71] WANG W, DENG S B, LI D Y, et al. Adsorptive removal of organophosphate flame retardants from water by non-ionic resins [J]. Chemical Engineering Journal, 2018, 354: 105-112. doi: 10.1016/j.cej.2018.08.002 [72] ZHENG C L, FENG S S, WANG Q R, et al. Application of SPME-GC/MS to study the sorption of organophosphate esters on peat soil [J]. Water, Air, & Soil Pollution, 2016, 227(7): 1-12. [73] WANG W, DENG S B, LI D Y, et al. Sorption behavior and mechanism of organophosphate flame retardants on activated carbons [J]. Chemical Engineering Journal, 2018, 332: 286-292. doi: 10.1016/j.cej.2017.09.085 [74] HO Y S, MCKAY G. The sorption of lead(II) ions on peat [J]. Water Research, 1999, 33(2): 578-584. doi: 10.1016/S0043-1354(98)00207-3 [75] PANG L, LIU J F, YIN Y G, et al. Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to Daphnia magna [J]. Environmental Toxicology and Chemistry, 2013, 32(12): 2755-2761. doi: 10.1002/etc.2360 [76] CRISTALE J, ÁLVAREZ-MARTÍN A, RODRÍGUEZ-CRUZ S, et al. Sorption and desorption of organophosphate esters with different hydrophobicity by soils [J]. Environmental Science and Pollution Research International, 2017, 24(36): 27870-27878. doi: 10.1007/s11356-017-0360-0 [77] BLUMENTHAL E, HERBERT J B M. The mechanism of the hydrolysis of trimethyl orthophosphate [J]. Transactions of the Faraday Society, 1945, 41: 611. doi: 10.1039/tf9454100611 [78] SU G Y, LETCHER R J, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution: PH-dependent hydrolysis, kinetics, and pathways [J]. Environmental Science & Technology, 2016, 50(15): 8103-8111. [79] SU G Y, CRUMP D, LETCHER R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519. [80] SMOLEN J M, STONE A T. Divalent metal ion-catalyzed hydrolysis of phosphorothionate ester pesticides and their corresponding oxonates [J]. Environmental Science & Technology, 1997, 31(6): 1664-1673. [81] FANG Y D, KIM E, STRATHMANN T J. Mineral- and base-catalyzed hydrolysis of organophosphate flame retardants: Potential major fate-controlling sink in soil and aquatic environments [J]. Environmental Science & Technology, 2018, 52(4): 1997-2006. [82] BALDWIN D S, BEATTIE J K, COLEMAN L M, et al. Hydrolysis of an organophosphate ester by manganese dioxide [J]. Environmental Science & Technology, 2001, 35(4): 713-716. [83] LIU Q F, LIGGIO J, LI K, et al. Understanding the impact of relative humidity and coexisting soluble iron on the OH-initiated heterogeneous oxidation of organophosphate flame retardants [J]. Environmental Science & Technology, 2019, 53(12): 6794-6803. [84] ZHANG Q Y, WANG Y, ZHANG C, et al. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism [J]. Environmental Research, 2022, 204: 112122. doi: 10.1016/j.envres.2021.112122 [85] SUN S B, JIANG J Q, ZHAO H X, et al. Photochemical reaction of tricresyl phosphate (TCP) in aqueous solution: Influencing factors and photolysis products [J]. Chemosphere, 2020, 241: 124971. doi: 10.1016/j.chemosphere.2019.124971 [86] CRISTALE J, DANTAS R F, de LUCA A, et al. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water [J]. Journal of Hazardous Materials, 2017, 323: 242-249. doi: 10.1016/j.jhazmat.2016.05.019 [87] REGNERY J, PÜTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany [J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024 [88] XU X X, CHEN J, QU R J, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways [J]. Chemosphere, 2017, 185: 833-843. doi: 10.1016/j.chemosphere.2017.07.090 [89] 刘佳. 有机磷酸酯阻燃剂污染现状及降解过程研究进展 [J]. 应用化工, 2018, 47(12): 2705-2710,2714. doi: 10.3969/j.issn.1671-3206.2018.12.036 LIU J. Review of contamination status and degradation processes of organophosphate ester(OPE) flame retardants [J]. Applied Chemical Industry, 2018, 47(12): 2705-2710,2714(in Chinese). doi: 10.3969/j.issn.1671-3206.2018.12.036
[90] ANTONOPOULOU M, KARAGIANNI P, KONSTANTINOU I K. Kinetic and mechanistic study of photocatalytic degradation of flame retardant Tris (1-chloro-2-propyl) phosphate (TCPP) [J]. Applied Catalysis B:Environmental, 2016, 192: 152-160. doi: 10.1016/j.apcatb.2016.03.039 [91] RUAN X C, AI R, JIN X, et al. Photodegradation of tri (2-chloroethyl) phosphate in aqueous solution by UV/H2O2 [J]. Water, Air, & Soil Pollution, 2012, 224(1): 1-10. [92] WATTS M J, LINDEN K G. Advanced oxidation kinetics of aqueous trialkyl phosphate flame retardants and plasticizers [J]. Environmental Science & Technology, 2009, 43(8): 2937-2942. [93] YUAN X J, LACORTE S, CRISTALE J, et al. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments [J]. Separation and Purification Technology, 2015, 156: 1028-1034. doi: 10.1016/j.seppur.2015.09.052 [94] ANTONOPOULOU M, GIANNAKAS A, BAIRAMIS F, et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts [J]. Chemical Engineering Journal, 2017, 318: 231-239. doi: 10.1016/j.cej.2016.06.124 [95] KONSTAS P S, HELA D, GIANNAKAS A, et al. Photocatalytic degradation of organophosphate flame retardant TBEP: Kinetics and identification of transformation products by orbitrap mass spectrometry [J]. International Journal of Environmental Analytical Chemistry, 2019, 99(4): 297-309. doi: 10.1080/03067319.2019.1593399 [96] LIU J, YE J S, CHEN Y F, et al. UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: Intermediate products and residual toxicity [J]. Chemosphere, 2018, 190: 225-233. doi: 10.1016/j.chemosphere.2017.09.111 [97] KIM T S, KIM J K, CHOI K, et al. Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion [J]. Chemosphere, 2006, 62(6): 926-933. doi: 10.1016/j.chemosphere.2005.05.038 [98] ZHAO H X, JIANG J Q, WANG Y L, et al. Monohydroxylated polybrominated diphenyl ethers (OH-PBDEs) and dihydroxylated polybrominated biphenyls (di-OH-PBBs): Novel photoproducts of 2, 6-dibromophenol [J]. Environmental Science & Technology, 2015, 49(24): 14120-14128. [99] SAEGER V W, HICKS O, KALEY R G, et al. Environmental fate of selected phosphate esters [J]. Environmental Science & Technology, 1979, 13(7): 840-844. [100] WANG X L, ZHONG W J, XIAO B W, et al. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism [J]. Environment International, 2019, 125: 25-32. doi: 10.1016/j.envint.2019.01.018 [101] HOU R, LIU C, GAO X Z, et al. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China [J]. Environmental Pollution, 2017, 229: 548-556. doi: 10.1016/j.envpol.2017.06.097 [102] ROBINSON S A, YOUNG S D, BRINOVCAR C, et al. Ecotoxicity assessment and bioconcentration of a highly brominated organophosphate ester flame retardant in two amphibian species [J]. Chemosphere, 2020, 260: 127631. doi: 10.1016/j.chemosphere.2020.127631 [103] HALLANGER I G, SAGERUP K, EVENSET A, et al. Organophosphorous flame retardants in biota from svalbard, Norway [J]. Marine Pollution Bulletin, 2015, 101(1): 442-447. doi: 10.1016/j.marpolbul.2015.09.049 [104] LI Y, KANG Q Y, CHEN R C, et al. 2-ethylhexyl diphenyl phosphate and its hydroxylated metabolites are anti-androgenic and cause adverse reproductive outcomes in male Japanese medaka (Oryzias latipes) [J]. Environmental Science & Technology, 2020, 54(14): 8919-8925. [105] ZHANG R J, YU K F, LI A, et al. Occurrence, phase distribution, and bioaccumulation of organophosphate esters (OPEs) in mariculture farms of the Beibu Gulf, China: A health risk assessment through seafood consumption [J]. Environmental Pollution, 2020, 263: 114426. doi: 10.1016/j.envpol.2020.114426 [106] BEKELE T G, ZHAO H X, WANG Y, et al. Measurement and prediction of bioconcentration factors of organophosphate flame retardants in common carp (Cyprinus carpio) [J]. Ecotoxicology and Environmental Safety, 2018, 166: 270-276. doi: 10.1016/j.ecoenv.2018.09.089 [107] WANG Q W, LAM J C W, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001 [108] WANG G W, SHI H H, DU Z K, et al. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio) [J]. Environmental Pollution, 2017, 229: 177-187. doi: 10.1016/j.envpol.2017.05.075 [109] XIE J L, PEI N C, SUN Y X, et al. Bioaccumulation and translocation of organophosphate esters in a mangrove nature reserve from the Pearl River Estuary, South China [J]. Journal of Hazardous Materials, 2022, 427: 127909. doi: 10.1016/j.jhazmat.2021.127909 [110] LIU Y E, LUO X J, ZAPATA CORELLA P, et al. Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer [J]. Environmental Pollution, 2019, 255: 113286. doi: 10.1016/j.envpol.2019.113286 [111] KIM J W, ISOBE T, CHANG K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines [J]. Environmental Pollution, 2011, 159(12): 3653-3659. doi: 10.1016/j.envpol.2011.07.020 [112] da CHEN, LETCHER R J, CHU S G. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry [J]. Journal of Chromatography A, 2012, 1220: 169-174. doi: 10.1016/j.chroma.2011.11.046 [113] BRANDSMA S H, LEONARDS P E G, LESLIE H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web [J]. Science of the Total Environment, 2015, 505: 22-31. doi: 10.1016/j.scitotenv.2014.08.072 [114] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b [115] HOU R, HUANG C, RAO K F, et al. Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes [J]. Environmental Science & Technology, 2018, 52(5): 3202-3210. [116] GREAVES A K, SU G Y, LETCHER R J. Environmentally relevant organophosphate triesters in herring gulls: in vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay [J]. Toxicology and Applied Pharmacology, 2016, 308: 59-65. doi: 10.1016/j.taap.2016.08.007 [117] STROBEL A, LETCHER R J, WILLMORE W G, et al. Structure-dependent in vitro metabolism of alkyl-substituted analogues of triphenyl phosphate in east Greenland polar bears and ringed seals [J]. Environmental Science & Technology Letters, 2018, 5(4): 214-219. [118] ZHANG Q, JI S J, CHAI L H, et al. Metabolic mechanism of aryl phosphorus flame retardants by cytochromes P450: A combined experimental and computational study on triphenyl phosphate [J]. Environmental Science & Technology, 2018, 52(24): 14411-14421. [119] BEKELE T G, ZHAO H X, WANG Q Z, et al. Bioaccumulation and trophic transfer of emerging organophosphate flame retardants in the marine food webs of Laizhou Bay, North China [J]. Environmental Science & Technology, 2019, 53(22): 13417-13426. [120] DING Y, HAN M W, WU Z Q, et al. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea [J]. Environment International, 2020, 143: 105919. doi: 10.1016/j.envint.2020.105919 [121] GREAVES A K, LETCHER R J, da CHEN, et al. Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America [J]. Environmental Research, 2016, 150: 255-263. doi: 10.1016/j.envres.2016.06.006 [122] FU J, FU K H, CHEN Y, et al. Long-range transport, trophic transfer, and ecological risks of organophosphate esters in remote areas [J]. Environmental Science & Technology, 2021, 55(15): 10192-10209. [123] ZHANG Y, ZHENG X B, WEI L F, et al. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment [J]. Science of the Total Environment, 2018, 630: 164-170. doi: 10.1016/j.scitotenv.2018.02.215 [124] WAN W N, HUANG H L, LV J T, et al. Uptake, translocation, and biotransformation of organophosphorus esters in wheat (Triticum aestivum L. ) [J]. Environmental Science & Technology, 2017, 51(23): 13649-13658. [125] WAN W N, ZHANG S Z, HUANG H L, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China [J]. Environmental Pollution, 2016, 214: 349-353. doi: 10.1016/j.envpol.2016.04.038 [126] LIU Q, WANG X L, YANG R Y, et al. Uptake kinetics, accumulation, and long-distance transport of organophosphate esters in plants: Impacts of chemical and plant properties [J]. Environmental Science & Technology, 2019, 53(9): 4940-4947. [127] GONG X Y, WANG Y, PU J, et al. The environment behavior of organophosphate esters (OPEs) and di-esters in wheat (Triticum aestivum L. ): Uptake mechanism, in vivo hydrolysis and subcellular distribution [J]. Environment International, 2020, 135: 105405. doi: 10.1016/j.envint.2019.105405 [128] WANG Q Z, ZHAO H X, BEKELE T G, et al. Organophosphate esters (OPEs) in wetland soil and Suaeda salsa from intertidal Laizhou Bay, North China: Levels, distribution, and soil-plant transfer model [J]. Science of the Total Environment, 2021, 764: 142891. doi: 10.1016/j.scitotenv.2020.142891 [129] KOJIMA H, TAKEUCHI S, van den EEDE N, et al. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors [J]. Toxicology Letters, 2016, 245: 31-39. doi: 10.1016/j.toxlet.2016.01.004 [130] TAKAHASHI S, KAWASHIMA K, KAWASAKI M, et al. Enrichment and characterization of chlorinated organophosphate ester-degrading mixed bacterial cultures [J]. Journal of Bioscience and Bioengineering, 2008, 106(1): 27-32. doi: 10.1263/jbb.106.27 [131] BERNE C, MONTJARRET B, GUOUNTTI Y, et al. Tributyl phosphate degradation by Serratia odorifera [J]. Biotechnology Letters, 2004, 26(8): 681-686. doi: 10.1023/B:BILE.0000023030.69207.c0 [132] IYER R, IKEN B, DAMANIA A. A comparison of organophosphate degradation genes and bioremediation applications [J]. Environmental Microbiology Reports, 2013, 5(6): 787-798. doi: 10.1111/1758-2229.12095 [133] ADELOWO F E, OLU-AROTIOWA O A, AMUDA O S. Biodegradation of glyphosate by fungi species [J]. Advances in Bioscience and Bioengineering, 2014, 2(1): 104-118. [134] ARFARITA N, DJUHARI D, PRASETYA B, et al. The application of Trichoderma viride strain frp 3 for biodegradation of glyphosate herbicide in contaminated land [J]. AGRIVITA Journal of Agricultural Science, 2016, 38(3): 275-281. [135] FIRDOUS S, IQBAL S, ANWAR S. Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology [J]. Pedosphere, 2020, 30(5): 618-627. doi: 10.1016/S1002-0160(17)60381-3 [136] BERNE C, ALLAINMAT B, GARCIA D. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria [J]. Biotechnology Letters, 2005, 27(8): 561-566. doi: 10.1007/s10529-005-2882-7