-
工业废水的种类繁多,难降解污染物含量高,经常规物化及生化工艺处理后,一般难以达标排放. 深度处理是工业废水达标排放的必要工艺,主要有芬顿技术[1-2]、臭氧催化[3]、电化学高级氧化[4],但这些技术存在药剂加量大、反应时间长、投资成本高等缺陷[5]. 近一二十年,兴起了一种叫做“COD去除剂”的药剂,其主要成分是氯酸钠. 工程应用发现,投加该药剂可显著降低水中COD,使得工业废水无需经过深度处理即可实现“达标”排放. 投加“COD去除剂”工艺操作简单,试剂成本较低,无需复杂的硬件设施,因此应用较为普遍[6].
经实践证明,投加氯酸盐并不能真实地去除水中COD. 更为重要的是氯酸盐是一种迁移性强、潜在毒性大、暴露途径多的污染物,对食品安全和人体健康构成巨大威胁[7-8]. 因此,投加氯酸盐已被环境保护部门判定为违法行为. 例如,2020年9—11月,陕西省生态环境厅查清神木市污水处理厂累计投加131余吨“COD去除剂”处理污水和不正常运行水污染防治设施等环境违法行为,地方生态环境局对该污水处理厂使用“COD去除剂”构成“通过篡改、伪造监测数据逃避监管的方式违法排放污染物”和不正常运行水污染防治设施等违法行为进行立案处罚,处以20万元和40万元罚款,并责令立即停止违法行为,同时将该污水处理厂涉嫌环境违法的问题移送公安部门[9].
目前,人们已经意识到氯酸盐对于COD测定存在掩蔽作用,但并没有提出避免氯酸盐干扰COD测定的方法. 要消除氯酸盐对COD测定的影响,最直接的方法是去除氯酸盐,但前提条件是不影响水中COD的数值. 目前,已有许多技术用来去除水中氯酸盐,包括生物电化学还原[10]、电还原[11]、活性炭[12]、和生物降解等方法,但是这些方法操作复杂,反应条件苛刻,同时存在改变原始COD含量的可能性. 对此,本文提出了一种以亚硫酸盐为还原剂的COD测定的预处理工艺,即通过投加相应的亚硫酸氢钠完全还原去除氯酸盐,进而测出真实的COD值;同时考察了温度和[
${\rm{SO}}_3^{2-} $ ]/[${\rm{ClO}}_3^ - $ ]摩尔比对于该方法的影响,确定了最佳温度和[${\rm{SO}}_3^{2-} $ ]/[${\rm{ClO}}_3^ - $ ]摩尔比;根据ESR分析推测出该方法的反应路径,并通过TOC和三维荧光分析验证了该方法的切实可靠,为完善COD测定方法及理论提供参考.
氯酸盐屏蔽废水COD测定的消除策略及反应机制
Elimination strategy and reaction mechanism for the interference of chlorate on COD
-
摘要: 向废水中投加氯酸盐,即所谓的“COD(化学需氧量)去除剂”,可降低COD检测值,呈现出水符合COD排放标准的假象. 从本质上而言,氯酸盐的添加并未实际去除COD,而仅仅是作为氧化剂减少了在高温消解过程中重铬酸钾的消耗量,导致测定的COD数值偏小,因此氯酸盐只是起到了掩蔽作用. 为消除氯酸盐对COD的掩蔽作用,提出了一种以亚硫酸盐为还原剂的预处理工艺:根据氯酸盐含量投加相应的亚硫酸氢钠进行去除,进而测定出真实的COD. 结果表明,当[
${\rm{SO}}_3^{2-} $ ]/[ClO3−]摩尔比为5—6、温度为60 °C时,经过1 h的反应可以有效的消除氯酸盐对COD测定的影响,此时${\rm{SO}}_3^{2-} $ 和${\rm{ClO}}_3^- $ 同步耗尽. 基于ESR(电子自旋共振)分析,可知氯酸盐与亚硫酸盐首先通过单电子转移反应生成${\rm{SO}}_3^{\cdot-} $ ,生成的${\rm{SO}}_3^{\cdot−} $ 与溶解氧进一步发生反应生成${\rm{SO}}_4^{\cdot-} $ ,而${\rm{ClO}}_3^- $ 的还原中间体(ClO2、${\rm{ClO}}_2^- $ 和ClO−)可与亚硫酸根继续通过氧转移反应而被还原,最终产物为Cl−;通过反应前后的三维荧光光谱图发现生成的自由基虽然可以氧化部分有机物,但是并未发生矿化反应,因此经处理后所测定的COD值即为真实值. 总而言之,本研究所提出的亚硫酸盐消除氯酸盐对COD测定干扰的方法切实可行,为完善COD测定方法及理论提供参考.Abstract: Deliberate addition of mildly oxidative chlorate (${\rm{ClO}}_3^- $ ), so-called “COD (chemical oxygen demand) degrader”, into wastewater induces the false COD reduction, which would bring about false appearance of effluents meeting the COD discharge standards. In essence, chlorate doesn’t really remove COD but just masks the COD determination process, where it acts as an alternative oxidant to dichromate and therefore the consumption of dichromate is reduced. Herein, a pretreatment process using sulfite as reducing agent was proposed to reduce chlorate and therefore eliminate the masking effect of chlorate on COD determination. It was demonstrated that the COD value could be restored well after 1 h reduction of${\rm{ClO}}_3^- $ by sulfite at 60 °C with the [sulfite]/[chlorate] molar ratio value of 5—6, accompanying the synchronously complete depletion of these two reactants. Based on ESR (electron spin-resonance spectroscopy) analysis, the reaction between${\rm{ClO}}_3^- $ and sulfite mainly proceeded via one-electron transfer process with the generation of${\rm{SO}}_3^{\cdot-} $ , the subsequent formation of${\rm{SO}}_4^{\cdot-} $ derived from the oxidation of${\rm{SO}}_3^{\cdot-} $ by the dissolved O2. The${\rm{ClO}}_3^- $ reduction intermediates, such as ClO2,${\rm{ClO}}_2^- $ and ClO−, could be further reduced by sulfite via oxygen transfer process with Cl− as the final product. Although the three-dimensional fluorescence spectra indicating that the generated free radicals could oxidize part of the organic matter, no mineralization reaction occurred, so the COD value measured after the treatment is the true value. In general, this study pioneered an effective pretreatment method using sulfite as reducing agent to eliminate the interference of chlorate on COD determination and provide reference for improving COD determination method and theory.-
Key words:
- chlorate /
- COD /
- masking effect /
- sulfites /
- free radicals
-
图 3 [
${\rm{SO}}_3^{2-} $ ]/[${\rm{ClO}}_3^ - $ ]摩尔比对ClO3−-亚硫酸盐体系中COD(a)和Δ[${\rm{SO}}_3^{2-} $ ]/Δ [${\rm{ClO}}_3^ - $ ](b)的影响.Figure 3. Effect of [
${\rm{SO}}_3^{2-} $ ]/[${\rm{ClO}}_3^ - $ ] molar ratio on COD (a) and Δ[${\rm{SO}}_3^{2-} $ ]/Δ [${\rm{ClO}}_3^ - $ ] (b) in the${\rm{ClO}}_3^ - $ -sulfite system.表 1 氯酸盐电化学生成的研究汇总
Table 1. Summary of Electrochemical Chlorate Formation in Previous Studies
水样
Water treated阳极
Anode电流密度/(mA·cm−2)
Current density[COD]0/[COD]t/
(mg·L−1)处理时间/h
t[Cl−]0
/
(mmol·L−1)[ClO3−]max/ (mmol·L−1) 参考文献
References尿液
UrineTi/RuOx-IrOx 100 — 8 105 26 [24] TDIROF 20 1710/600 25 35 25 [25] BDD 20 1710/100 17.5 35 20 [25] 厕所废水
LatrineTiO2/IrO2 15 500/(<30) 12 100 73 [26] BDD 15 500/(<30) 2 30 12 [26] TDIROF,热分解氧化铱膜. TDIROF,Thermally decomposed iridium oxide film. -
[1] 郭庆英, 刘晓茜, 李晶. 芬顿高级氧化用于工业污水厂深度处理提标改造 [J]. 中国给水排水, 2019, 35(10): 64-67. doi: 10.19853/j.zgjsps.1000-4602.2019.10.012 GUO Q Y, LIU X Q, LI J. Application of Fenton advanced oxidation process for upgrading and reconstruction project of an industrial wastewater treatment plant [J]. China Water & Wastewater, 2019, 35(10): 64-67(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2019.10.012
[2] SU T, WANG Z K, ZHOU K, et al. Advanced treatment of secondary effluent organic matters (EfOM) from an industrial park wastewater treatment plant by Fenton oxidation combining with biological aerated filter [J]. Science of the Total Environment, 2021, 784: 147204. doi: 10.1016/j.scitotenv.2021.147204 [3] IKHLAQ A, BROWN D R, KASPRZYK-HORDERN B. Mechanisms of catalytic ozonation: An investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water [J]. Applied Catalysis B:Environmental, 2013, 129: 437-449. doi: 10.1016/j.apcatb.2012.09.038 [4] GANZOURY M A, GHASEMIAN S, ZHANG N, et al. Mixed metal oxide anodes used for the electrochemical degradation of a real mixed industrial wastewater [J]. Chemosphere, 2022, 286: 131600. doi: 10.1016/j.chemosphere.2021.131600 [5] 赵传勋, 李德辉, 余黄杰, 等. 污水COD达标深度处理技术研究进展 [J]. 北京石油化工学院学报, 2021, 29(3): 61-66. doi: 10.19770/j.cnki.issn.1008-2565.2021.02.0012 ZHAO C X, LI D H, YU H J, et al. Research progress of the wastewater COD advanced treatment technology for meeting the standard requirements [J]. Journal of Beijing Institute of Petrochemical Technology, 2021, 29(3): 61-66(in Chinese). doi: 10.19770/j.cnki.issn.1008-2565.2021.02.0012
[6] MENG X S, KHOSO S A, LYU F, et al. Study on the influence and mechanism of sodium chlorate on COD reduction of minerals processing wastewater [J]. Minerals Engineering, 2019, 134: 1-6. doi: 10.1016/j.mineng.2019.01.009 [7] 方齐乐, 陈宝梁. 新型环境污染物高氯酸盐的环境化学行为、食品安全及健康风险 [J]. 科学通报, 2013, 58(26): 2626-2642. doi: 10.1360/972013-195 FANG Q L, CHEN B L. Environmental transport behaviors of perchlorate as an emerging pollutant and their effects on food safety and health risk [J]. Chinese Science Bulletin, 2013, 58(26): 2626-2642(in Chinese). doi: 10.1360/972013-195
[8] 张小磊, 苍岩, 宋伟, 等. 二氧化氯预氧化含藻水过程中副产物的生成规律 [J]. 环境化学, 2019, 38(2): 306-316. doi: 10.7524/j.issn.0254-6108.2018040203 ZHANG X L, CANG Y, SONG W, et al. By-product formation in algae-containing water pre-oxidized by chlorine dioxide [J]. Environmental Chemistry, 2019, 38(2): 306-316(in Chinese). doi: 10.7524/j.issn.0254-6108.2018040203
[9] 仲和. 污水处理厂使用“COD去除剂”被认定为数据造假[J]. 中国环境监察, 2021(S1): 69. ZHONG H. The use of "COD removers" in sewage treatment plants was found to be data fraud [J]. China Environment Supervision, 2021(Sup 1): 69(in Chinese).
[10] TORRES-ROJAS F, MUÑOZ D, TAPIA N, et al. Bioelectrochemical chlorate reduction by Dechloromonas agitata CKB [J]. Bioresource Technology, 2020, 315: 123818. doi: 10.1016/j.biortech.2020.123818 [11] LAKHIAN V, DICKSON-ANDERSON S E. Reduction of bromate and chlorate contaminants in water using aqueous phase Corona discharge [J]. Chemosphere, 2020, 255: 126864. doi: 10.1016/j.chemosphere.2020.126864 [12] GONCE N, VOUDRIAS E A. Removal of chlorite and chlorate ions from water using granular activated carbon [J]. Water Research, 1994, 28(5): 1059-1069. doi: 10.1016/0043-1354(94)90191-0 [13] 中华人民共和国环境保护部. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399—2007[S]. 北京: 中国环境科学出版社, 2008. Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of the chemical oxygen demand-Fast digestion-Spectrophotometric method: HJ/T 399—2007[S]. Beijing: China Environment Science Press, 2008(in Chinese).
[14] 王德明. 水体TOC与CODCr、BOD5、CODMn相关性研究 [J]. 化学分析计量, 2010, 19(3): 61-64. doi: 10.3969/j.issn.1008-6145.2010.03.050 WANG D M. Study on the correlation of toc with codcr, bod5 and codmn in water [J]. Chemical Analysis and Meterage, 2010, 19(3): 61-64(in Chinese). doi: 10.3969/j.issn.1008-6145.2010.03.050
[15] 缪佳, 陈开榜, 朱佳, 等. 氯酸盐对电镀废水COD检测的掩蔽机理初步分析 [J]. 中国给水排水, 2018, 34(23): 80-84. doi: 10.19853/j.zgjsps.1000-4602.2018.23.016 MIAO J, CHEN K B, ZHU J, et al. Preliminary analysis of masking mechanism of chlorate on COD detection in electroplating wastewater [J]. China Water & Wastewater, 2018, 34(23): 80-84(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2018.23.016
[16] 陈开榜. 氯酸盐对电镀废水COD检测掩蔽机理分析[D]. 杭州: 浙江工业大学, 2018: 44-45. CHEN K B. Study on the masking mechanism of chlorate on electroplating wastewater COD(cr) detection[D]. Hangzhou: Zhejiang University of Technology, 2018: 44-45. (in Chinese)[知网硕士中文][知网硕士英文] [17] 国家环境保护总局. 污水综合排放标准: GB 8978—1996[S]. 北京: 中国标准出版社, 1998. State Environmental Protection Administration of the People's Republic of China. Integrated wastewater discharge standard: GB 8978—1996[S]. Beijing: Standards Press of China, 1998(in Chinese).
[18] QIAO J L, FENG L Y, DONG H Y, et al. Overlooked role of sulfur-centered radicals during bromate reduction by sulfite [J]. Environmental Science & Technology, 2019, 53(17): 10320-10328. [19] ZAMORA P L, VILLAMENA F A. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions [J]. The Journal of Physical Chemistry. A, 2012, 116(26): 7210-7218. doi: 10.1021/jp3039169 [20] BRANDT C, van ELDIK R. Transition metal-catalyzed oxidation of sulfur(IV) oxides. atmospheric-relevant processes and mechanisms [J]. Chemical Reviews, 1995, 95(1): 119-190. doi: 10.1021/cr00033a006 [21] TIMMINS G S, LIU K J, BECHARA E J H, et al. Trapping of free radicals with direct in vivo EPR detection: A comparison of 5, 5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4•− [J]. Free Radical Biology and Medicine, 1999, 27(3/4): 329-333. [22] DAVIES M J, GILBERT B C, STELL J K, et al. Nucleophilic substitution reactions of spin adducts. Implications for the correct identification of reaction intermediates by EPR/spin trapping [J]. Journal of the Chemical Society, Perkin Transactions 2, 1992(3): 333. doi: 10.1039/p29920000333 [23] HALPERIN J, TAUBE H. The transfer of oxygen atoms in oxidation—reduction reactions. III. the reaction of halogenates with sulfite in aqueous solution [J]. Journal of the American Chemical Society, 1952, 74(2): 375-380. doi: 10.1021/ja01122a026 [24] 王飞, 刘峻峰, 张杰, 等. 电化学氧化对尿液处理过程中消毒副产物的生成控制和去除 [J]. 环境工程学报, 2021, 15(9): 2973-2984, 2846. doi: 10.12030/j.cjee.202104054 WANG F, LIU J F, ZHANG J, et al. Control and removal of disinfection by-products(DBPs) during electrochemical oxidation of urine [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2973-2984, 2846(in Chinese). doi: 10.12030/j.cjee.202104054
[25] ZÖLLIG H, REMMELE A, FRITZSCHE C, et al. Formation of chlorination byproducts and their emission pathways in chlorine mediated electro-oxidation of urine on active and nonactive type anodes [J]. Environmental Science & Technology, 2015, 49(18): 11062-11069. [26] JASPER J T, YANG Y, HOFFMANN M R. Toxic byproduct formation during electrochemical treatment of latrine wastewater [J]. Environmental Science & Technology, 2017, 51(12): 7111-7119. [27] RITTMANN B E. Aerobic biological treatment. Water treatment processes [J]. Environmental Science & Technology, 1987, 21(2): 128-136. [28] WANG X, DAIGGER G, LEE D J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature [J]. Science Advances, 2018, 4(8): eaaq0210. doi: 10.1126/sciadv.aaq0210