-
抗生素是一类能抑制或杀灭微生物的化学物质,被广泛应用于人类和动物疾病预防和治疗[1]. 据全球药品销售数据库(IQVIA MIDASTM)统计,全球76个国家2000年至2015年间抗生素的使用量增长了65%,其中印度、中国和美国是全球最大的3个抗生素使用国,如果不加以控制,预计2030年抗生素的使用量将增长200%[2]. 抗生素被人和动物摄入后无法完全代谢,约30%—90%会以母体或活性代谢产物的形式随粪便和尿液排出体外,直接或间接进入受纳环境[3]. 研究发现,目前在用的大多数污水处理工艺对抗生素的去除能力有限,大量未经去除的抗生素随污水处理厂出水和活性污泥释放进入受纳水土环境[4]. 氟喹诺酮类、磺胺类及大环内酯类等抗生素在多种环境介质中频繁检出,其在污水处理厂出水、地表径流、地下水中的检出浓度可高达µg·L−1级,在土壤和沉积物中的检出浓度可高达mg·kg−1级[5 − 6]. 环境中残留的抗生素可对生物体产生不同程度的毒害作用,进而影响生态系统结构和功能的稳定性[7]. 此外,抗生素的环境残留还会诱导耐药性产生、增加耐药菌丰度和多样性、加速耐药基因和耐药性传播扩散,并进一步通过食物链(网)传递对人类和环境健康造成潜在威胁[8 − 9]. 近期,《柳叶刀》发表了对抗菌剂耐药性(antimicrobial resistance,AMR)全球影响的系统综述,强调AMR已成为一个全球性的健康威胁,亟需优化抗生素的使用并加强抗生素的污染控制[10]. 2021年,我国生态环境部已将抗生素列入《重点管控新污染物清单(2021版)》,“十四五”期间国家和地方生态环境部门将着手开展抗生素等新污染物的环境监测、风险评估和污染治理行动.
近年来,微藻介导的废水处理技术,因具有成本低、高效和环境友好等独特优势,日益引起广泛关注[11 − 14]. 研究证实,多种微藻具有降解抗生素的潜力,但其对部分难生物降解抗生素的去除效果有限[13, 15 − 16]. 通过添加合适碳源,构建基于微藻的共代谢体系可以促进难生物降解抗生素的有效去除[17 − 18]. 此外,还有研究发现微藻–细菌共生体系也可有效提高抗生素等污染物的去除效率[13, 15]. 而在自然水体中,微藻和细菌共生现象非常普遍[19],它们是否有助于抗生素等新污染物的自然削减也值得关注. 目前针对微藻–细菌共生体系在污水处理中的应用已展开了一些理论和应用研究[19],并在实验室水平和中试水平证实其技术上的有效性和可行性[20 − 21]. 本课题组前期也开展了斜生栅藻(Scenedesmus obliquus)、蛋白核小球藻(Chlorella pyrenoidosa)和尖细栅藻(Scenedesmus acuminatus)等多种淡水绿藻对激素、双酚化合物和抗生素等典型有机污染物的降解转化机理研究[18, 22 − 23],发现多种微藻具有降解有机污染物的潜力;此外,通过添加合适碳源构建微藻共代谢体系可以有效提高磺胺甲噁唑的去降解效果,并揭示了其降解转化规律、降解产物和路径. 同时我们也发现通过构建微藻–细菌共培养体系能有效促进抗生素降解,并结合转录水平和代谢水平等多组学技术正在开展微藻–细菌协同降解抗生素的机理研究. 基于已有研究进展,本文总结了微藻–细菌协同废水处理技术在抗生素去除中的研究结果,重点归纳了微藻–细菌共生协同降解抗生素可能的机理及其共适应机制,并对未来微藻–细菌共生体系的研究重点和发展方向进行展望.
微藻–细菌协同去除抗生素机理及其共适应机制
Synergistic removal of antibiotics by microalgae–bacteria consortium and its co-adaptation mechanisms
-
摘要: 环境中抗生素残留不仅会影响生态系统结构和功能,还会诱导细菌耐药性的产生和传播,威胁人类健康. 我国生态环境部已将抗生素列入《重点管控新污染物清单(2021版)》,抗生素的环境监测和去除技术研发是对其污染管控的关键. 微藻–细菌共生体系具有生态友好、可持续发展和环境毒性耐受能力强等特性,可有效去除重金属、抗生素和内分泌干扰物等污染物. 鉴于微藻–细菌协同污水处理技术在提高污染物去除效率和固碳方面均具有独特优势,本文总结了微藻–细菌协同技术在抗生素废水处理中的研究和应用进展,重点归纳了微藻–细菌协同去除抗生素的可能机理及其适应机制,并对微藻–细菌共生体系未来研究重点和发展方向进行展望,以期为微藻–细菌协同污水处理技术的推广应用和抗生素污染管控提供科学依据.Abstract: The residual of antibiotics in the environment could affect the structure and function of the ecosystem, and pose potential risks to human health by inducing the formation and spread of antibiotic resistance genes. Antibiotics have been included in the list of emerging contaminants under national control by China government, and exploring effective methods for the monitor and remove of antibiotics is essential to manage and control of antibiotics pollution. Previous studies have demonstrated that microalgae-bacteria consortium could effectively remove various contaminants, such as heavy metals, antibiotics and endocrine disruptors, due to its eco-friendly, sustainable development and tolerance to environmental toxicity. Microalgae-bacteria consortium is crucial for removal of contaminants in wastewater treatment, and exhibits a great potential in carbon sequestration. Herein, we reviewed the research advances on the application of microalgae-bacteria synergistic technology in antibiotics wastewater treatment, and focused on the possible inner mechanisms of microalgae-bacteria interactions in removal antibiotics, and their co-adaptation mechanisms under antibiotics selection pressure. Then, we presented some research challenges and proposed future directions of microalgae-bacteria symbiosis system. This systematic review provides scientific basis for the promotion and application of microalgae-bacteria consortium technology, and management and control of antibiotics pollution.
-
表 1 不同系统对多种抗生素的去除率
Table 1. Removal rates of various antibiotics by different systems
抗生素
Antibiotics初始浓度
Initial concentration系统
Systems处理时间/d
Treatment time去除率
Removal rate参考文献
References青霉素G
土霉素
多西环素
麻保沙星
磺胺二甲基嘧啶
硫粘菌素1920 ng·L−1
22400 ng·L−1
8570 ng·L−1
713 ng·L−1
4090 ng·L−1
35 ng·L−1微藻-细菌共生光
生物反应器11 89%
93%
95%
71%
44%
89%[32] 紫色光合细菌光
生物反应器77%
—
45%
-14%
-23%
74%克拉霉素
磺胺甲噁唑2 μg·L−1
20 μg·L−1微藻-细菌共生系统 11 100%
62%[31] 小球藻(Chlorella vulgaris) 12 78%
66%四环素
环丙沙星
磺胺嘧啶
磺胺甲噁唑20、100、500、
1000 μg·L−1栅藻(Scenedesmus almeriensis)+污水细菌 4 80%、80%、62%、75%
100%、64%、46%、43%
30%、26%、36%、12%
30%、17%、21%、0%[33] 磺胺甲噁唑 52 μg·L−1 微藻-细菌共生系统 7 54% [34] 磺胺甲噁唑 500 μg·L−1 悬浮式微藻-细菌共生系统
固定式微藻-细菌共生系统7 80%
95%[35] 磺胺甲噁唑 383 ng·L−1 高效率藻塘 4.5 85% [36] 四环素 100 μg·L−1 高效率藻塘 7 99% [37] 四环素 2 mg·L−1 高效率藻塘 46 69% [38] 环丙沙星 2 mg·L−1 高效率藻塘 7 97% [39] 土霉素
恩诺沙星0.1、1、5、10 mg·L−1
0.02、0.1、1、5 mg·L−1小球藻(Chlorella vulgaris)+地衣芽孢杆菌(Bacillus licheniformis) 10 98%–100%
11%–47%[24] 头孢氨苄
红霉素50 μg·L−1 引藻(Chlorella sorokiniana)+布列文尼迪单胞菌(Brevundimonas basaltis) 7 96%
92%[40] 红霉素 (661 ± 42)ng·L−1 微藻-细菌共生光生物反应器 7 85% [29] -
[1] THAKARE R, KESHARWANI P, DASGUPTA A, et al. Chapter 1 - Antibiotics: past, present, and future [M]//P KESHARWANI, S CHOPRA, A DASGUPTA. Drug Discovery Targeting Drug-Resistant Bacteria. Academic Press. 2020: 1-8. [2] KLEIN E Y, van BOECKEL T P, MARTINEZ E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): E3463-E3470. [3] WATKINSON A J, MURBY E J, COSTANZO S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling [J]. Water Research, 2007, 41(18): 4164-4176. doi: 10.1016/j.watres.2007.04.005 [4] CETECIOGLU Z, ATASOY M. Biodegradation and inhibitory effects of antibiotics on biological wastewater treatment systems[M]//BIDOIA E D, MONTAGNOLLI R N. Toxicity and Biodegradation Testing. New York, NY; Springer New York. 2018: 29-55. [5] RATHI B S, KUMAR P S, SHOW P L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research [J]. Journal of Hazardous Materials, 2021, 409: 124413. doi: 10.1016/j.jhazmat.2020.124413 [6] OBEROI A S, JIA Y Y, ZHANG H Q, et al. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review [J]. Environmental Science & Technology, 2019, 53(13): 7234-7264. [7] YANG Q L, GAO Y, KE J, et al. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods [J]. Bioengineered, 2021, 12(1): 7376-7416. doi: 10.1080/21655979.2021.1974657 [8] LI S N, ZHANG C F, LI F X, et al. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review [J]. Journal of Hazardous Materials, 2021, 411: 125148. doi: 10.1016/j.jhazmat.2021.125148 [9] LIU X H, ZHANG G D, LIU Y, et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China [J]. Environmental Pollution, 2019, 246: 163-173. doi: 10.1016/j.envpol.2018.12.005 [10] DEREJE N. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019 [J]. The Lancet, 2020, 396(10258): 1204-1222. doi: 10.1016/S0140-6736(20)30925-9 [11] LENG L J, WEI L, XIONG Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: A review [J]. Chemosphere, 2020, 238: 124680. doi: 10.1016/j.chemosphere.2019.124680 [12] NGUYEN H T H, MIN B. Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment [J]. Bioresource Technology, 2020, 316: 123928. doi: 10.1016/j.biortech.2020.123928 [13] SUTHERLAND D L, RALPH P J. Microalgal bioremediation of emerging contaminants - Opportunities and challenges [J]. Water Research, 2019, 164: 114921. doi: 10.1016/j.watres.2019.114921 [14] XIONG J Q, KURADE M B, JEON B H. Can microalgae remove pharmaceutical contaminants from water? [J]. Trends in Biotechnology, 2018, 36(1): 30-44. doi: 10.1016/j.tibtech.2017.09.003 [15] LI S N, SHOW P L, NGO H H, et al. Algae-mediated antibiotic wastewater treatment: A critical review [J]. Environmental Science and Ecotechnology, 2022, 9: 100145. doi: 10.1016/j.ese.2022.100145 [16] XIONG Q, HU L X, LIU Y S, et al. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems [J]. Environment International, 2021, 155: 106594. doi: 10.1016/j.envint.2021.106594 [17] XIONG J Q, KURADE M B, KIM J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana [J]. Journal of Hazardous Materials, 2017, 323: 212-219. doi: 10.1016/j.jhazmat.2016.04.073 [18] XIONG Q, LIU Y S, HU L X, et al. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa [J]. Water Research, 2020, 175: 115656. doi: 10.1016/j.watres.2020.115656 [19] RAMANAN R, KIM B H, CHO D H, et al. Algae-bacteria interactions: Evolution, ecology and emerging applications [J]. Biotechnology Advances, 2016, 34(1): 14-29. doi: 10.1016/j.biotechadv.2015.12.003 [20] ARBIB Z, de GODOS I, RUIZ J, et al. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production [J]. Science of the Total Environment, 2017, 589: 66-72. doi: 10.1016/j.scitotenv.2017.02.206 [21] MENNAA F Z, ARBIB Z, PERALES J A. Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: Growth, nutrient removal kinetics and biomass coagulation-flocculation [J]. Environmental Technology, 2019, 40(3): 342-355. doi: 10.1080/09593330.2017.1393011 [22] PENG F Q, YING G G, YANG B, et al. Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) by freshwater microalgae [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1705-1711. doi: 10.1002/etc.2589 [23] PENG F Q, YING G G, YANG B, et al. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification [J]. Chemosphere, 2014, 95: 581-588. doi: 10.1016/j.chemosphere.2013.10.013 [24] WANG Y, GONG X Y, HUANG D Y, et al. Increasing oxytetracycline and enrofloxacin concentrations on the algal growth and sewage purification performance of an algal-bacterial consortia system [J]. Chemosphere, 2022, 286: 131917. doi: 10.1016/j.chemosphere.2021.131917 [25] ZHANG B, LI W, GUO Y, et al. Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications [J]. Renewable and Sustainable Energy Reviews, 2020, 118: 109563. doi: 10.1016/j.rser.2019.109563 [26] XIAO G X, CHEN J Q, SHOW P L, et al. Evaluating the application of antibiotic treatment using algae-algae/activated sludge system [J]. Chemosphere, 2021, 282: 130966. doi: 10.1016/j.chemosphere.2021.130966 [27] LIU Y H, WANG Z Z, YAN K, et al. A new disposal method for systematically processing of ceftazidime: The intimate coupling UV/algae-algae treatment [J]. Chemical Engineering Journal, 2017, 314: 152-159. doi: 10.1016/j.cej.2016.12.110 [28] VILLAR-NAVARRO E, BAENA-NOGUERAS R M, PANIW M, et al. Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes [J]. Water Research, 2018, 139: 19-29. doi: 10.1016/j.watres.2018.03.072 [29] HOM-DIAZ A, JAÉN-GIL A, BELLO-LASERNA I, et al. Performance of a microalgal photobioreactor treating toilet wastewater: Pharmaceutically active compound removal and biomass harvesting [J]. Science of the Total Environment, 2017, 592: 1-11. doi: 10.1016/j.scitotenv.2017.02.224 [30] JAÉN-GIL A, HOM-DIAZ A, LLORCA M, et al. An automated on-line turbulent flow liquid-chromatography technology coupled to a high resolution mass spectrometer LTQ-Orbitrap for suspect screening of antibiotic transformation products during microalgae wastewater treatment [J]. Journal of Chromatography A, 2018, 1568: 57-68. doi: 10.1016/j.chroma.2018.06.027 [31] PROSENC F, PIECHOCKA J, ŠKUFCA D, et al. Microalgae-based removal of contaminants of emerging concern: Mechanisms in Chlorella vulgaris and mixed algal-bacterial cultures [J]. Journal of Hazardous Materials, 2021, 418: 126284. doi: 10.1016/j.jhazmat.2021.126284 [32] LÓPEZ-SERNA R, GARCÍA D, BOLADO S, et al. Photobioreactors based on microalgae-bacteria and purple phototrophic bacteria consortia: A promising technology to reduce the load of veterinary drugs from piggery wastewater [J]. Science of the Total Environment, 2019, 692: 259-266. doi: 10.1016/j.scitotenv.2019.07.126 [33] ZAMBRANO J, GARCíA-ENCINA P A, HERNÁNDEZ F, et al. Removal of a mixture of veterinary medicinal products by adsorption onto a Scenedesmus almeriensis microalgae-bacteria consortium [J]. Journal of Water Process Engineering, 2021, 43: 102226. doi: 10.1016/j.jwpe.2021.102226 [34] da SILVA RODRIGUES D A, da CUNHA C C R F, FREITAS M G, et al. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents [J]. Science of the Total Environment, 2020, 749: 141441. doi: 10.1016/j.scitotenv.2020.141441 [35] XIE B H, TANG X B, NG H Y, et al. Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: Performance, mechanism and shifts in bacterial and microalgal communities [J]. Chemical Engineering Journal, 2020, 388: 124217. doi: 10.1016/j.cej.2020.124217 [36] GARCÍA-GALÁN M J, ARASHIRO L, SANTOS L H M L M, et al. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems [J]. Journal of Hazardous Materials, 2020, 390: 121771. doi: 10.1016/j.jhazmat.2019.121771 [37] NORVILL Z N, TOLEDO-CERVANTES A, BLANCO S, et al. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds [J]. Bioresource Technology, 2017, 232: 35-43. doi: 10.1016/j.biortech.2017.02.011 [38] de GODOS I, MUÑOZ R, GUIEYSSE B. Tetracycline removal during wastewater treatment in high-rate algal ponds [J]. Journal of Hazardous Materials, 2012, 229/230: 446-449. doi: 10.1016/j.jhazmat.2012.05.106 [39] HOM-DIAZ A, NORVILL Z N, BLÁNQUEZ P, et al. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds [J]. Chemosphere, 2017, 180: 33-41. doi: 10.1016/j.chemosphere.2017.03.125 [40] da SILVA RODRIGUES D A, da CUNHA C C R F, DO ESPIRITO SANTO D R, et al. Removal of cephalexin and erythromycin antibiotics, and their resistance genes, by microalgae-bacteria consortium from wastewater treatment plant secondary effluents [J]. Environmental Science and Pollution Research International, 2021, 28(47): 67822-67832. doi: 10.1007/s11356-021-15351-x [41] YU Y, ZHOU Y Y, WANG Z L, et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment [J]. Scientific Reports, 2017, 7(1): 4168. doi: 10.1038/s41598-017-04128-3 [42] NGUYEN H T, YOON Y, NGO H H, et al. The application of microalgae in removing organic micropollutants in wastewater [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(12): 1187-1220. doi: 10.1080/10643389.2020.1753633 [43] KIKI C, RASHID A, WANG Y W, et al. Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways [J]. Journal of Hazardous Materials, 2020, 387: 121985. doi: 10.1016/j.jhazmat.2019.121985 [44] BAI X L, ACHARYA K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. [J]. Journal of Hazardous Materials, 2016, 315: 70-75. doi: 10.1016/j.jhazmat.2016.04.067 [45] LIU Y, WANG F, CHEN X, et al. Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels [J]. Ecotoxicology and Environmental Safety, 2015, 111: 138-145. doi: 10.1016/j.ecoenv.2014.10.011 [46] XIONG J Q, KURADE M B, JEON B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris [J]. Chemical Engineering Journal, 2017, 313: 1251-1257. doi: 10.1016/j.cej.2016.11.017 [47] BEN W W, QIANG Z M, YIN X W, et al. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater [J]. Journal of Environmental Sciences, 2014, 26(8): 1623-1629. doi: 10.1016/j.jes.2014.06.002 [48] OLIVEIRA G H D, SANTOS-NETO A J, ZAIAT M. Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments [J]. Bioprocess and Biosystems Engineering, 2016, 39(1): 115-124. doi: 10.1007/s00449-015-1495-3 [49] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026 [50] YANG S F, LIN C F, YU-CHEN LIN A, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions [J]. Water Research, 2011, 45(11): 3389-3397. doi: 10.1016/j.watres.2011.03.052 [51] DANESHVAR E, ZARRINMEHR M J, HASHTJIN A M, et al. Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption [J]. Bioresource Technology, 2018, 268: 523-530. doi: 10.1016/j.biortech.2018.08.032 [52] PI S S, LI A, WEI W, et al. Synthesis of a novel magnetic nano-scale biosorbent using extracellular polymeric substances from Klebsiella sp. J1 for tetracycline adsorption [J]. Bioresource Technology, 2017, 245: 471-476. doi: 10.1016/j.biortech.2017.08.190 [53] 吴科比, 周进, 蔡中华. 藻际环境微生态结构与功能的研究进展 [J]. 生命科学, 2021, 33(5): 535-545. WU K B, ZHOU J, CAI Z H. Review of algal phycosphere: Structure and ecological function [J]. Chinese Bulletin of Life Sciences, 2021, 33(5): 535-545(in Chinese).
[54] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review [J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [55] XIAO R, ZHENG Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications [J]. Biotechnology Advances, 2016, 34(7): 1225-1244. doi: 10.1016/j.biotechadv.2016.08.004 [56] WANG L F, LI Y, WANG L, et al. Responses of biofilm microorganisms from moving bed biofilm reactor to antibiotics exposure: Protective role of extracellular polymeric substances [J]. Bioresource Technology, 2018, 254: 268-277. doi: 10.1016/j.biortech.2018.01.063 [57] ZHANG H Q, JIA Y Y, KHANAL S K, et al. Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge, anaerobic sludge, and sulfate-reducing bacteria sludge systems [J]. Environmental Science & Technology, 2018, 52(11): 6476-6486. [58] SONG C, SUN X F, XING S F, et al. Characterization of the interactions between tetracycline antibiotics and microbial extracellular polymeric substances with spectroscopic approaches [J]. Environmental Science and Pollution Research, 2014, 21(3): 1786-1795. doi: 10.1007/s11356-013-2070-6 [59] SUN M, LIN H, GUO W, et al. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa [J]. Journal of Ocean University of China, 2017, 16(6): 1167-1174. doi: 10.1007/s11802-017-3367-8 [60] XIONG J Q, KURADE M B, JEON B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium [J]. Environmental Pollution, 2017, 226: 486-493. doi: 10.1016/j.envpol.2017.04.044 [61] HENA S, GUTIERREZ L, CROUÉ J P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review [J]. Journal of Hazardous Materials, 2021, 403: 124041. doi: 10.1016/j.jhazmat.2020.124041 [62] BAI X L, ACHARYA K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water [J]. Science of the Total Environment, 2017, 581/582: 734-740. doi: 10.1016/j.scitotenv.2016.12.192 [63] GE L, DENG H. Degradation of two fluoroquinolone antibiotics photoinduced by Fe(III)-microalgae suspension in an aqueous solution [J]. Photochemical & Photobiological Sciences, 2015, 14(4): 693-699. [64] KUMAR M S, KABRA A N, MIN B, et al. Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana [J]. Environmental Science and Pollution Research International, 2016, 23(2): 1091-1099. doi: 10.1007/s11356-015-4681-6 [65] FU X G, WANG H J, BAI Y, et al. Systematic degradation mechanism and pathways analysis of the immobilized bacteria: Permeability and biodegradation, kinetic and molecular simulation [J]. Environmental Science and Ecotechnology, 2020, 2: 100028. doi: 10.1016/j.ese.2020.100028 [66] XIE P, HO S H, PENG J, et al. Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products (PPCPs) residues and biodiesel production [J]. Science of the Total Environment, 2019, 688: 253-261. doi: 10.1016/j.scitotenv.2019.06.062 [67] XIE P, CHEN C, ZHANG C F, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae [J]. Water Research, 2020, 172: 115475. doi: 10.1016/j.watres.2020.115475 [68] PENG J, HE Y Y, ZHANG Z Y, et al. Removal of levofloxacin by an oleaginous microalgae Chromochloris zofingiensis in the heterotrophic mode of cultivation: Removal performance and mechanism [J]. Journal of Hazardous Materials, 2022, 425: 128036. doi: 10.1016/j.jhazmat.2021.128036 [69] FUENTES J L, GARBAYO I, CUARESMA M, et al. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds [J]. Marine Drugs, 2016, 14(5): 100. doi: 10.3390/md14050100 [70] BUCHAN A, LECLEIR G R, GULVIK C A, et al. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms [J]. Nature Reviews Microbiology, 2014, 12(10): 686-698. doi: 10.1038/nrmicro3326 [71] 翟春梅, 刘常宏, 吕路. 铜绿微囊藻与藻际细菌Ma-B1菌株的相互作用 [J]. 环境科学研究, 2014, 27(7): 704-710. ZHAI C M, LIU C H, LYU L. Interaction between Microcystis aeruginosa and bacterium Ma-B1 strain within phycosphere [J]. Research of Environmental Sciences, 2014, 27(7): 704-710(in Chinese).
[72] VILLA J A, RAY E E, BARNEY B M. Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032 [J]. FEMS Microbiology Letters, 2014, 351(1): 70-77. doi: 10.1111/1574-6968.12347 [73] GUERRA-RENTERIA A S, GARCÍA-RAMÍREZ M A, GÓMEZ-HERMOSILLO C, et al. Metabolic pathway analysis of nitrogen and phosphorus uptake by the consortium between C. vulgaris and P. aeruginosa [J]. International Journal of Molecular Sciences, 2019, 20(8): 1978. doi: 10.3390/ijms20081978 [74] LI S N, ZHANG C F, LI F H, et al. Recent advances of algae-bacteria consortia in aquatic remediation[J]. Critical Reviews in Environmental Science and Technology, 2022: 1-25. [75] HE X Y, WANG J P, ABDOLI L, et al. Mg2+/Ca2+ promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater [J]. Colloids and Surfaces B:Biointerfaces, 2016, 146: 289-295. doi: 10.1016/j.colsurfb.2016.06.029 [76] FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. doi: 10.1038/nrmicro2415 [77] RAMANAN R, KANG Z, KIM B H, et al. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats [J]. Algal Research, 2015, 8: 140-144. doi: 10.1016/j.algal.2015.02.003 [78] YOU X Q, XU N, YANG X, et al. Pollutants affect algae-bacteria interactions: A critical review [J]. Environmental Pollution, 2021, 276: 116723. doi: 10.1016/j.envpol.2021.116723 [79] MUKHERJEE S, BASSLER B L. Bacterial quorum sensing in complex and dynamically changing environments [J]. Nature Reviews Microbiology, 2019, 17(6): 371-382. doi: 10.1038/s41579-019-0186-5 [80] PRESCOTT R D, DECHO A W. Flexibility and adaptability of quorum sensing in nature [J]. Trends in Microbiology, 2020, 28(6): 436-444. doi: 10.1016/j.tim.2019.12.004 [81] CHEN X Y, HU Z, QI Y, et al. The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation [J]. Bioresource Technology, 2019, 292: 122017. doi: 10.1016/j.biortech.2019.122017 [82] LI X J, CAI F S, LUAN T G, et al. Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum [J]. Science of the Total Environment, 2019, 689: 287-294. doi: 10.1016/j.scitotenv.2019.06.162 [83] 周真真. 小球藻促生菌的促藻生长机制与应用[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2021. ZHOU Z Z. The mechanism and application of the consortia of Chlorella sorokiniana and its growth-promotion bacteria[D]. Beijing: Institute of Process Engineering. Chinese Academy of Sciences. 2021(in Chinese).
[84] WANG B, YAO M M, ZHOU J, et al. Growth and toxin production of Gambierdiscus spp. can be regulated by quorum-sensing bacteria [J]. Toxins, 2018, 10(7): 257. doi: 10.3390/toxins10070257 [85] ZHANG B, GUO Y, LENS P N L, et al. Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation [J]. Science of the Total Environment, 2019, 659: 372-383. doi: 10.1016/j.scitotenv.2018.12.250 [86] van OOSTENDE N, MOERDIJK-POORTVLIET T C W, BOSCHKER H T S, et al. Release of dissolved carbohydrates by Emiliania huxleyi and formation of transparent exopolymer particles depend on algal life cycle and bacterial activity [J]. Environmental Microbiology, 2013, 15(5): 1514-1531. doi: 10.1111/j.1462-2920.2012.02873.x [87] JI X Y, JIANG M Q, ZHANG J B, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater [J]. Bioresource Technology, 2018, 247: 44-50. doi: 10.1016/j.biortech.2017.09.074 [88] MITSUTANI A, YAMASAKI I, KITAGUCHI H, et al. Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis [J]. Phycologia, 2001, 40(3): 286-291. doi: 10.2216/i0031-8884-40-3-286.1 [89] MANEFIELD M, RASMUSSEN T B, HENZTER M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover[J]. Microbiology (Reading, England), 2002, 148(Pt 4): 1119-1127. [90] DOBRETSOV S, TEPLITSKI M, ALAGELY A, et al. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry [J]. Environmental Microbiology Reports, 2010, 2(6): 739-744. doi: 10.1111/j.1758-2229.2010.00169.x [91] SAWADA I, MASEDA H, NAKAE T, et al. A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa [J]. Microbiology and Immunology, 2004, 48(5): 435-439. doi: 10.1111/j.1348-0421.2004.tb03533.x [92] KWON D H, LU C D. Polyamines increase antibiotic susceptibility in Pseudomonas aeruginosa [J]. Antimicrobial Agents and Chemotherapy, 2006, 50(5): 1623-1627. doi: 10.1128/AAC.50.5.1623-1627.2006 [93] ROY R, TIWARI M, DONELLI G, et al. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action [J]. Virulence, 2018, 9(1): 522-554. doi: 10.1080/21505594.2017.1313372 [94] ZHAO X H, YU Z X, DING T. Quorum-sensing regulation of antimicrobial resistance in bacteria [J]. Microorganisms, 2020, 8(3): 425. doi: 10.3390/microorganisms8030425 [95] 欧剑虹, 谢志雄, 等. 水平基因转移 [J]. 遗传, 2003, 25(5): 623-627. OU J H, XIE Z X, CHEN X D, et al. Horizontal gene transfer [J]. Hereditas(Beijing), 2003, 25(5): 623-627(in Chinese).
[96] KOUZUMA A, WATANABE K. Exploring the potential of algae/bacteria interactions [J]. Current Opinion in Biotechnology, 2015, 33: 125-129. doi: 10.1016/j.copbio.2015.02.007 [97] SCHÖNKNECHT G, CHEN W H, TERNES C M, et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote [J]. Science, 2013, 339(6124): 1207-1210. doi: 10.1126/science.1231707 [98] RAYMOND J A, REMIAS D. Ice-binding proteins in a chrysophycean snow alga: Acquisition of an essential gene by horizontal gene transfer [J]. Frontiers in Microbiology, 2019, 10: 2697. doi: 10.3389/fmicb.2019.02697 [99] KEELING P J, PALMER J D. Horizontal gene transfer in eukaryotic evolution [J]. Nature Reviews Genetics, 2008, 9(8): 605-618. doi: 10.1038/nrg2386 [100] KEELING P J. Functional and ecological impacts of horizontal gene transfer in eukaryotes [J]. Current Opinion in Genetics & Development, 2009, 19(6): 613-619. [101] LUKAČIŠINOVÁ M, BOLLENBACH T. Toward a quantitative understanding of antibiotic resistance evolution [J]. Current Opinion in Biotechnology, 2017, 46: 90-97. doi: 10.1016/j.copbio.2017.02.013 [102] ZHANG Q, ZHANG Z Y, LU T, et al. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems [J]. Communications Biology, 2020, 3: 737. doi: 10.1038/s42003-020-01468-1 [103] MICHELON W, da SILVA M L B, MATTHIENSEN A, et al. Microalgae produced during phycoremediation of swine wastewater contains effective bacteriostatic compounds against antibiotic-resistant bacteria [J]. Chemosphere, 2021, 283: 131268. doi: 10.1016/j.chemosphere.2021.131268 [104] LITTLE S M, SENHORINHO G N A, SALEH M, et al. Antibacterial compounds in green microalgae from extreme environments: A review [J]. ALGAE, 2021, 36(1): 61-72. doi: 10.4490/algae.2021.36.3.6