-
近年来,我国畜牧业持续稳定发展,规模化、标准化、产业化进程不断加快,而畜禽养殖粪污的污染问题已经成为当前畜牧养殖业急需解决的重点问题. 畜禽养殖过程中会产生大量氨(NH3)与温室气体,其中氧化亚氮(N2O)、二氧化碳(CO2)、甲烷(CH4)已成为引起全球气温变暖的主要温室气体[1-2],所排放的氨可通过大气干、湿沉降回到陆地和水体,造成土壤酸化和水体富营养化[3-4]. 此外,氨还会与空气中某些酸性物质反应形成氯化铵、硫酸铵、硝酸铵等细小颗粒物并危害人类健康[5-6].
粪污露天堆置是养殖场粪污处理过程中的常见手段之一,而堆置过程中不仅会造成营养元素的大量流失[7],还导致大气和土壤污染严重. 降低粪便存储过程中氨与温室气体排放的措施包括调节粪便pH值的酸化法、添加微生物制剂、表面覆盖材料和添加吸附剂等. 研究表明,醋糟、木屑、锯末、稻草、生物炭、聚乙烯膜等物料均可不同程度地降低畜禽粪便的氨排放[8-10]. 例如,作为一种酸性有机物料,醋糟可通过降低禽粪便表层 pH和阻隔气体挥发降低畜禽粪便中的氨挥发[11];生物炭则主要是通过较大的比表面积和多孔结构等特征吸附氮素以降低氮素[12-13]. 此外,添加微生物制剂可以加速有机废弃物中的纤维素、木质素、糖类及粗蛋白分解,提高速效养分含量,减少堆肥时间和堆肥成本,提高堆肥品质并降低土传病害[14-15],而其对粪污存储中氨和各种温室气体排放的影响尚不明晰.
针对我国鸡粪存储环节的氮素损失和温室气体减排措施研究与评估不足等问题[16-18],本研究系统研究了酸性醋糟、生物炭和菌剂对鸡粪进行覆盖(喷施)或混合处理对鸡粪存储过程中氨和不同温室气体排放的影响,揭示了实验材料施用技术对鸡粪存储过程中长生命周期温室气体(long-lived climate pollutants,LLCPs,如N2O、CO2)、短生命周期温室气体(short-lived climate pollutants,SLCPs,如CH4)的权衡(trade-off)及其总排放影响的技术特点,通过与处理鸡粪的生物安全方面的评价相结合,为规模化养鸡场鸡粪绿色管理和循环利用提供重要技术支持.
生物炭、醋糟、菌剂对鸡粪存储中理化性质、氨和温室气体排放的影响
Impacts of biochar, vinegar residue and microbial inoculant on the physicochemical properties, ammonia and greenhouse gas emissions of stored chicken manure
-
摘要: 降低畜禽粪便存储过程中氨与温室气体排放是推动养殖业绿色发展的重要环节. 本研究应用动态箱技术探讨了醋糟覆盖(CZ1)、醋糟混合(CZ2)、生物炭覆盖(BC1)、生物炭混合(BC2)、菌剂喷洒(JJ1)和菌剂混合(JJ2)等处理方法对自然堆存鸡粪的发芽指数、氮素气态损失以及长生命周期(N2O)和短生命周期(CH4)温室气体排放的影响. 结果表明:(1)鸡粪存储过程中氮素损失最主要方式是NH3排放(>98.0%),温室气体主要以直接和间接N2O排放为主(>85.0%);(2)与对照相比,添加菌剂使得鸡粪存储中氮素气态损失和温室气体排放分别增加了39.4%—63.3%和19.3%—36.7%,醋糟和生物炭处理的氮素气态损失则分别降低了12.4%—32.2%和31.2%—36.2%,温室气体排放降低了23.0%—35.9%和47.5%—49.9%,但醋糟混合处理有增加CH4排放的风险;(3)与醋糟相比,生物炭覆盖和混合处理均可同步降低长生命周期气体N2O和短生命周期CH4排放;(4)醋糟、生物炭处理均可降低鸡粪EC,并提高鸡粪氨氮含量和种子发芽指数. 综上,与菌剂和醋糟相比,生物炭覆盖或混合均是降低鸡粪存储过程中氨和温室气体排放、提高鸡粪农田施用安全性的有效措施.Abstract: Reducing ammonia and greenhouse gas emissions from chicken manure storage is of great importance to promote the green development of livestock industry. This study investigated the impacts of management practices including vinegar residue covering (CZ1), vinegar residue mixing (CZ2), biochar covering (BC1), biochar mixing (BC2), microbial inoculant spraying (JJ1) and microbial inoculants mixing (JJ2) on the germination index, gaseous nitrogen loss and greenhouse gas emissions (including nitrous oxide (N2O) and methane (CH4)) of the naturally stacked chicken manure compared to the CK without any control. The results showed that: nitrogen loss of the chicken manure storage was dominated by the NH3 emissions (>98.0%), and the greenhouse gas emissions were dominated by the direct and indirect N2O emissions (>85.0%). Compared to the CK, the application of microbial inoculant enhanced the N losses and greenhouse gas emissions by 39.4%—63.3% and 19.3%—36.7%, respectively. However, the application of vinegar residue and biochar reduced the N losses by 12.4%—32.2% and 31.2%—36.2%, respectively, and reduced the greenhouse gas emissions by 23.0%—35.9% and 47.5%—49.9%, respectively; meanwhile, the risk of enhanced CH4 emission with the vinegar residue addition was noticed. Of the vinegar and biochar application, the latter practice can both reduce long-lived (N2O) and short-lived (CH4) climate pollutants simultaneously. Additionally, applying vinegar residue and biochar improved the quality of chicken manure at the aspects of electrical conductivity, ammonical nitrogen content and germination index. In conclusion, biochar covering or mixing methods are effective measures to reduce NH3 and greenhouse gas emissions from chicken manure storage and can improve the safety of chicken manure utilization in farmland.
-
Key words:
- chicken manure storage /
- ammonia /
- greenhouse gases /
- biochar /
- vinegar residue.
-
图 5 不同处理下鸡粪pH值和电导率变化
Figure 5. Changes of pH value and electronic conductivity (EC) of stored chicken manure under different treatments. In the bar chart, small letters indicate the significant difference between treatments at the beginning, and uppercase letters indicate the significant difference between treatments at the end, α=0.052
图 6 不同处理下鸡粪总氮、总氨氮、有机碳和发芽指数的变化
Figure 6. Changes of total nitrogen , total ammonia nitrogen, organic carbon and germination index of stored chicken manure under different treatments. Small letters in bars indicate the significant difference between treatments at the beginning, and uppercase letters indicate the significant difference between treatments at the end, α=0.05
图 8 不同管理技术对鸡粪存储氮损失(N loss)、温室气体排放(GHG_N2O:N2O的CO2-e排放,GHG_CH4:CH4的CO2-e排放,GHG_t:N2O和CH4总和的CO2-e排放)及其种子发芽指数(GI)的综合影响
Figure 8. Comprehensive effects of different management techniques on storage nitrogen loss(N loss), greenhouse gas emissions(GHG_N2O: CO2-e emissions from N2O, GHG_CH4: CO2-e emissions from CH4, GHG_t: CO2-e emissions combined for N2O and CH4)and germination index(GI)of chicken manure
表 1 鸡粪、醋糟、生物炭的基本理化性质
Table 1. Basic physical and chemical properties of chicken manure, vinegar grains and biochar
实验材料
Tested materialspH 含水率/%
Water content有机碳/%
Organic carbon全氮/%
Total nitrogen鸡粪
Chicken manure8.3 68.6 35.3 2.4 醋糟
Vinegar residue3.6 62.4 34.8 1.2 生物炭
Biochar2.9 4.3 30.9 0.6 表 2 不同处理的物料配比
Table 2. Material ratios of different treatments
实验处理
Treatments鸡粪与物料
Chicken manure and added materials处理方式
Application methodsCK 3.5 kg鸡粪 自然存储 CZ1 3.5 kg鸡粪+0.5 kg醋糟 在鸡粪表面覆盖 CZ2 3.5 kg鸡粪+0.5 kg醋糟 与鸡粪充分混合 BC1 3.5 kg鸡粪+0.5 kg生物炭 与表层鸡粪混合 BC2 3.5 kg鸡粪+0.5 kg生物炭 与鸡粪混合均匀 JJ1 3.5 kg鸡粪+3.5 g菌剂原液 原液稀释40倍,表面喷洒 JJ2 3.5 kg鸡粪+3.5 g菌剂原液 原液稀释40倍,混合均匀 -
[1] 巴士迪, 张克强, 杨增军, 等. 奶牛粪便翻堆式与槽式堆肥过程气体排放规律及养分损失原位监测 [J]. 生态环境学报, 2021, 30(2): 420-429. doi: 10.16258/j.cnki.1674-5906.2021.02.023 BA S D, ZHANG K Q, YANG Z J, et al. The In-situ monitoring of gas emissions and nutrient losses from turning and trough composting of dairy manure [J]. Ecology and Environmental Sciences, 2021, 30(2): 420-429(in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.02.023
[2] IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds. )][R]. IPCC, Geneva, Switzerland: 151. [3] LIAO W H, LIU C J, JIA S Y, et al. Comparing NH3 emissions under different cattle housing conditions in cold regions in China with an inverse dispersion technique [J]. Agricultural and Forest Meteorology, 2021, 301-302: 108355. doi: 10.1016/j.agrformet.2021.108355 [4] 李昂臻, 陈思旭, 李海燕, 等. 北方某省会城市主要水库富营养化程度、特征和防治对策 [J]. 环境化学, 2020, 39(9): 2529-2539. doi: 10.7524/j.issn.0254-6108.2020040902 LI A Z, CHEN S X, LI H Y, et al. Characteristics and evaluation of eutrophication in major reservoirs of a northern city in China [J]. Environmental Chemistry, 2020, 39(9): 2529-2539(in Chinese). doi: 10.7524/j.issn.0254-6108.2020040902
[5] 刘学军, 沙志鹏, 宋宇, 等. 我国大气氨的排放特征、减排技术与政策建议 [J]. 环境科学研究, 2021, 34(1): 149-157. doi: 10.13198/j.issn.1001-6929.2020.11.14 LIU X J, SHA Z P, SONG Y, et al. China’s atmospheric ammonia emission characteristics, mitigation options and policy recommendations [J]. Research of Environmental Sciences, 2021, 34(1): 149-157(in Chinese). doi: 10.13198/j.issn.1001-6929.2020.11.14
[6] 王雪君, 高志岭, 刘学军, 等. 养殖场、农田和道路大气PM2.5中水溶性离子污染特征分析 [J]. 环境化学, 2017, 36(11): 2398-2407. doi: 10.7524/j.issn.0254-6108.2017032001 WANG X J, GAO Z L, LIU X J, et al. Composition analysis of water-soluble ions in atmospheric PM2.5 from dairy farm, farmland and road [J]. Environmental Chemistry, 2017, 36(11): 2398-2407(in Chinese). doi: 10.7524/j.issn.0254-6108.2017032001
[7] DAI X R, SAHA C K, NI J Q, et al. Characteristics of pollutant gas releases from swine, dairy, beef, and layer manure, and municipal wastewater [J]. Water Research, 2015, 76: 110-119. doi: 10.1016/j.watres.2015.02.050 [8] HOLLY M A, LARSON R A. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure [J]. Water, Air, & Soil Pollution, 2017, 228(11): 434. [9] 江滔, SCHUCHARDT F, 李国学. 冬季堆肥中翻堆和覆盖对温室气体和氨气排放的影响 [J]. 农业工程学报, 2011, 27(10): 212-217. doi: 10.3969/j.issn.1002-6819.2011.10.037 JIANG T, SCHUCHARDT F, LI G X. Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 212-217(in Chinese). doi: 10.3969/j.issn.1002-6819.2011.10.037
[10] 朱海生, 左福元, 董红敏, 等. 覆盖材料和厚度对堆存牛粪氨气和温室气体排放的影响 [J]. 农业工程学报, 2015, 31(6): 223-229. ZHU H S, ZUO F Y, DONG H M, et al. Effects of covering materials and sawdust covering depths on ammonia and greenhouse gas emissions from cattle manure during storage [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 223-229(in Chinese).
[11] 李顺义, 张红娟, 郭夏丽, 等. 畜禽粪便堆肥过程中氨挥发及调控措施 [J]. 农机化研究, 2010, 32(1): 13-17. doi: 10.3969/j.issn.1003-188X.2010.01.004 LI S Y, ZHANG H J, GUO X L, et al. Ammonia volatilization and the regulation measures in the livestock manure compost [J]. Journal of Agricultural Mechanization Research, 2010, 32(1): 13-17(in Chinese). doi: 10.3969/j.issn.1003-188X.2010.01.004
[12] 黄向东, 薛冬. 添加竹炭对猪粪堆肥过程中升温脱水及氮素损失的影响 [J]. 应用生态学报, 2014, 25(4): 1057-1062. doi: 10.13287/j.1001-9332.2014.0113 HUANG X D, XUE D. Effects of bamboo biochar addition on temperature rising, dehydration and nitrogen loss during pig manure composting [J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1057-1062(in Chinese). doi: 10.13287/j.1001-9332.2014.0113
[13] LEHMANN J, Da SILVA J P Jr, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2): 343-357. doi: 10.1023/A:1022833116184 [14] 胡菊, 秦莉, 吕振宇, 等. VT菌剂接种堆肥的作用效果及生物效应[J]. 农业环境科学学报, 2006, 25(增刊2): 604-608. HU J, QIN L, LV Z Y, et al. Function and field test of compost inoculated with VT microbes[J]. Journal of Agro-Environment Science, 2006, 25(Sup 2): 604-608 (in Chinese).
[15] 胡菊. VT菌剂在好氧堆肥中的作用机理及肥效研究[D]. 北京: 中国农业大学, 2005. HU J. The mechanism of aerobic composting with the inoculation of VT agent and the field testing of composting products[D]. Beijing: China Agricultural University, 2005 (in Chinese).
[16] CHEN H Y, AWASTHI S K, LIU T, et al. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting [J]. Journal of Hazardous Materials, 2020, 389: 121908. doi: 10.1016/j.jhazmat.2019.121908 [17] 谢军飞, 李玉娥, 董红敏, 等. 堆肥处理蛋鸡粪时温室气体排放与影响因子关系 [J]. 农业工程学报, 2003, 19(1): 192-195. doi: 10.3321/j.issn:1002-6819.2003.01.049 XIE J F, LI Y, DONG H M, et al. Influence of different factors on greenhouse gas emissions in composting of layer-hen manure with closed composting bins [J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(1): 192-195(in Chinese). doi: 10.3321/j.issn:1002-6819.2003.01.049
[18] JIA X Y, WANG M, YUAN W Q, et al. The influence of biochar addition on chicken manure composting and associated methane and carbon dioxide emissions [J]. BioResources, 2016, 11(2): 5255-5264. [19] 候玉勇. 菌糠对猪粪好氧堆肥理化性质的影响及对腐熟特性的评价研究[D]. 阿拉尔: 塔里木大学, 2021. HOU Y Y. Effect of fungus chaff on physicochemical properties of pig manure aerobic composting and evaluation of its ripening characteristics[D]. Ala'er: Tarim University, 2021 (in Chinese).
[20] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000(in Chinese).
[21] 中华人民共和国农业农村部. 有机肥料: NY/T525-2021[S]. 北京: 中国农业出版社, 2021. Ministry of Agriculture of the PRC. Organic fertilizer: NY/T525-2021[S]. Beijing: China Agriculture Press, 2021(in Chinese).
[22] 罗一鸣, 魏宗强, 孙钦平, 等. 沸石作为添加剂对鸡粪高温堆肥氨挥发的影响 [J]. 农业工程学报, 2011, 27(2): 243-247. LUO Y M, WEI Z Q, SUN Q P, et al. Effects of zeolite addition on ammonia volatilization in chicken manure composting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 243-247(in Chinese).
[23] 张金瑞. 典型覆盖物对堆存牛粪氨气和温室气体排放影响研究[D]. 保定: 河北农业大学, 2019. ZHANG J R. Study on the impact of the typical covering on the ammonia and greenhouse gases emissions from cattle manure[D]. Baoding: Hebei Agricultural University, 2019 (in Chinese).
[24] 李路路, 董红敏, 朱志平, 等. 酸化处理对猪场原水和沼液存储过程中气体排放的影响 [J]. 农业环境科学学报, 2016, 35(4): 774-784. doi: 10.11654/jaes.2016.04.023 LI L L, DONG H M, ZHU Z P, et al. Effects of acidification on gas emissions from raw pig slurry and biogas liquid during storage [J]. Journal of Agro-Environment Science, 2016, 35(4): 774-784(in Chinese). doi: 10.11654/jaes.2016.04.023
[25] 曹喜涛, 黄为一, 常志州, 等. 鸡粪堆肥中氮转化微生物变化特征的初步研究 [J]. 土壤肥料, 2004(4): 40-43. CAO X T, HUANG W Y, CHANG Z Z, et al. Nitrogen transformations and the successions of microbial community during chicken manure composting [J]. Soils and Fertilizers, 2004(4): 40-43(in Chinese).
[26] 李慧杰, 王一明, 林先贵, 等. 沸石和过磷酸钙对鸡粪条垛堆肥甲烷排放的影响及其机制 [J]. 土壤, 2017, 49(1): 63-69. doi: 10.13758/j.cnki.tr.2017.01.010 LI H J, WANG Y M, LIN X G, et al. Effects of adding zeolite and superphosphate on greenhouse gas emission and methanogens during chicken manure composting [J]. Soils, 2017, 49(1): 63-69(in Chinese). doi: 10.13758/j.cnki.tr.2017.01.010
[27] 谢军飞, 李玉娥. 不同堆肥处理猪粪温室气体排放与影响因子初步研究 [J]. 农业环境科学学报, 2003, 22(1): 56-59. doi: 10.3321/j.issn:1672-2043.2003.01.016 XIE J F, LI Y. Release of greenhouse gases from composting treatments on piggery excreta [J]. Journal of Agro-Environmental Science, 2003, 22(1): 56-59(in Chinese). doi: 10.3321/j.issn:1672-2043.2003.01.016
[28] 孙凯佳, 戚鑫, 付彤, 等. 塑料薄膜覆盖对牛粪便温室气体排放的影响 [J]. 农业工程学报, 2015, 31(3): 262-267. doi: 10.3969/j.issn.1002-6819.2015.03.035 SUN K J, QI X, FU T, et al. Effects of plastic sheet covering on greenhouse gas emission from beef cattle manure during storage [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 262-267(in Chinese). doi: 10.3969/j.issn.1002-6819.2015.03.035
[29] HE X Q, CHEN L J, HAN L J, et al. Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting [J]. Bioresource Technology, 2017, 245: 309-317. doi: 10.1016/j.biortech.2017.08.076 [30] GUO R, LI G X, JIANG T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost [J]. Bioresource Technology, 2012, 112: 171-178. doi: 10.1016/j.biortech.2012.02.099 [31] 刘立, 张朝升, 赵美花. 生物炭对好氧堆肥化处理影响的研究进展 [J]. 环境科学与技术, 2018, 41(9): 170-175,182. LIU L, ZHANG C S, ZHAO M H. Impacts of biochar on aerobic composting: A review [J]. Environmental Science & Technology, 2018, 41(9): 170-175,182(in Chinese).
[32] 陈是吏, 袁京, 李国学, 等. 过磷酸钙和双氰胺联用减少污泥堆肥温室气体及NH3排放 [J]. 农业工程学报, 2017, 33(6): 199-206. CHEN S L, YUAN J, LI G X, et al. Combination of superphosphate and dicyandiamide decreasing greenhouse gas and NH3 emissi ons during sludge composting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 199-206(in Chinese).
[33] CHEN M L, WANG C, WANG B R, et al. Enzymatic mechanism of organic nitrogen conversion and ammonia formation during vegetable waste composting using two amendments [J]. Waste Management, 2019, 95: 306-315. doi: 10.1016/j.wasman.2019.06.027 [34] YANG Y, WANG G Y, LI G X, et al. Selection of sensitive seeds for evaluation of compost maturity with the seed germination index [J]. Waste Management, 2021, 136: 238-243. doi: 10.1016/j.wasman.2021.09.037 [35] 黄国锋, 钟流举, 张振钿, 等. 猪粪堆肥化处理过程中的氮素转变及腐熟度研究 [J]. 应用生态学报, 2002, 13(11): 1459-1462. doi: 10.3321/j.issn:1001-9332.2002.11.025 HUANG G F, ZHONG L J, ZHANG Z T, et al. On nitrogen transformations and maturity during composting of pig manure [J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1459-1462(in Chinese). doi: 10.3321/j.issn:1001-9332.2002.11.025
[36] 罗一鸣, 张丽丽, 吴迪梅, 等. VT菌剂对规模养猪场粪便高温堆肥腐熟进程的影响[J]. 环境工程, 2015, 33(增刊1): 610-614. LUO Y M, ZHANG L L, WU D M, et al. Effects of VT microbes on high-temperature composting process of pig manure[J]. Environmental Engineering, 2015, 33(Sup 1): 610-614 (in Chinese).
[37] 朱金霞, 周文生, 乔长晟, 等. 微生物菌剂对玉米秸秆堆腐发酵过程的影响 [J]. 安徽农业科学, 2022, 50(11): 45-49. doi: 10.3969/j.issn.0517-6611.2022.11.013 ZHU J X, ZHOU W S, QIAO C S, et al. Effect of microbial agents on corn straw composting fermentation process [J]. Journal of Anhui Agricultural Sciences, 2022, 50(11): 45-49(in Chinese). doi: 10.3969/j.issn.0517-6611.2022.11.013
[38] SMITH M A, CAIN M, ALLEN M R. Further improvement of warming-equivalent emissions calculation [J]. npj Climate and Atmospheric Science, 2021, 4: 19. doi: 10.1038/s41612-021-00169-8 [39] CAIN M, LYNCH J, ALLEN M R, et al. Improved calculation of warming-equivalent emissions for short-lived climate pollutants [J]. npj Climate and Atmospheric Science, 2019, 2(1): 29. doi: 10.1038/s41612-019-0086-4 [40] RIDOUTT B, LEHNERT S A, DENMAN S, et al. Potential GHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots [J]. Journal of Cleaner Production, 2022, 337: 130499. doi: 10.1016/j.jclepro.2022.130499