-
微塑料(MPs, 1 μm—5 mm) [1]和纳米塑料(NPs, < 1 μm) [2]的环境污染问题已成为一个全球性问题. 纳米塑料由于体积小、比表面积大,具有较强的流动性,不仅能够影响土壤的理化性质和结构,而且可以显著地在其表面吸附更多的污染物[2-5],如多环芳烃[6-7]、农用化学品[8]、多氯联苯[9]和四环素[10]等. 由于地膜和污水污泥产品的使用,农田中NPs的积累可能会对对土壤生态系统造成直接或间接的影响[11-14],并沿着食物链传递,可能威胁到土壤微生物和人类. 虽然有越来越多的证据表明环境中纳米塑料的存在及其带来的风险,但由于缺乏适当的检测方法,很少有人研究土壤基质中的纳米塑料,目前在纳米塑料的检测和定量方面仍存在知识空白[15-19]. 因此,迫切需要建立一种成本低且可靠的检测方法分析土壤基质中的纳米塑料[20].
目前,环境中纳米塑料最常见的分析过程是密度浮选分离样品、过滤预富集、对有机基质进行化学消解,使用透射电子显微镜(TEM)[21-22]、(微观)傅里叶变换红外光谱(FTIR)[23-24]和拉曼光谱(Raman)进行检测[25-27]. 但这些方法存在回收率低、成本高、样本量小、耗时长等缺点. 此外FTIR和Raman的空间分辨率分别为20 μm和1 μm,从而阻碍了它们在纳米塑料分析中的应用[28-34]. 目前,已经有一些技术,如纳米颗粒跟踪分析(NTA)[24,35],单颗粒电感耦合等离子体质谱(spICP-MS)[36],云点提取与热降解相结合技术,以及结合粒度分级的高分辨率分析技术已被用于量化纳米塑料. 然而,这些技术往往受到复杂的环境基质和低浓度的纳米塑料的限制[21]. 目前,热裂解气相色谱-质谱技术(Py-GC-MS)可以很好地用于复杂环境基质中纳米塑料的分析,并被认为是一种很有前景的分析方法[20-21, 37-42]. Py-GC-MS可以克服FTIR和Raman光谱的缺点[21,43-45],并已成功用于识别添加到水和土壤中的纳米塑料标准品. Wahl等[3]使用Py-GC-MS从农业土壤样品的水提取物中发现PE、PS和PVC纳米塑料. 最近,Zhou等[42]证明了通过蛋白质电冕耦合Py-GC-MS技术测定水中纳米塑料的可行性. Zhou等[20]首次提出了一种基于Triton X-45(TX-45)的浊点萃取(CPE)技术,用于水体环境中痕量纳米塑料的预富集,得出PS纳米塑料的回收率为84.6%—96.6%. 然而,关于土壤环境中纳米塑料的研究却微乎其微,这主要是因为它们的浓度水平较低,缺乏可靠的提取、预浓缩和定量方法[20,37,42]. 针对当前纳米塑料研究的不足,本研究可以为土壤中纳米塑料的检测和定量分析提供一定的技术支持.
本文的主要目的是建立一种从农田土壤中提取和定量纳米塑料的方法. 聚苯乙烯(PS)纳米塑料被选为纳米塑料模型,从浮选溶质的选择、消解液的类型和浓度3个方面对萃取过程进行了优化;研究了腐植酸(HA)和纳米塑料粒径对纳米塑料萃取效率的影响;评价了检测方法的精密度、重现性和检出限,并应用该技术对实际土壤样品中的纳米塑料进行检测和定量分析.
基于热裂解气相色谱-质谱技术对农田土壤中纳米塑料的检测方法
Detection method of nanoplastics in farmland soils by pyrolysis−gas chromatography−mass spectrometry
-
摘要: 纳米塑料因其在环境中的普遍分布及其潜在的不利影响引起了人们的极大关注. 尽管纳米塑料已经在水生态系统中被检测到,但土壤中纳米塑料的检测和定量分析仍然是一个未解决的挑战. 因此,本文以聚苯乙烯(PS)颗粒作为土壤基质中纳米塑料(NPs)模型,基于热裂解-气相色谱-质谱(Py-GC-MS)技术,提出了一种灵敏、有效、低成本的萃取方法用于对纳米塑料的鉴定和定量. 从农田土壤中提取纳米塑料的过程包括密度浮选、碱性消解、水浴蒸发和膜过滤. 在采用10% KOH为消解液、ZnCl2 (ρ=1.6 g·cm−3)为浮选液的最佳萃取条件下,PS纳米塑料的萃取效率最高. 此外,为了验证所提出方法的可行性,采集并检测了6个实际土壤样品. 研究结果表明,在添加浓度为100 μg·g−1的25 nm聚苯乙烯纳米塑料的6个实际土壤样品中,PS纳米塑料的回收率为77.8%—88.3%. 检测结果显示,4个土壤样品中检测到PS纳米塑料,浓度为3.45—10.26 μg·g−1,其余2个样品没有检测到纳米塑料,这可能是由于PS纳米塑料的浓度低于检测限. 说明纳米塑料的分析检测方法是可行的. 因此,本研究为土壤基质中纳米塑料的分析提供了一种有效的方法.
-
关键词:
- 纳米塑料 /
- 检测 /
- 定量 /
- 农田土壤 /
- 热裂解-气相色谱-质谱.
Abstract: Nanoplastics have attracted extensive attention due to ubiquitous distribution in the environment and potential adverse impacts. Although nanoplastics have been detected in aquatic ecosystems, their detection and quantitative analysis in soil remain an unsolved challenge. Therefore, a sensitive, effective, and low-cost extraction procedure is put forward for identification and quantification of nanoplastics (NPs) based on Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) with polystyrene (PS) particles as a model NPs in soil samples. The procedures of extracting nanoplastics from farmland soils included density flotation, alkaline digestion, water bath evaporation and membrane filtration. The highest extraction efficiency for PS was achieved using the 10% KOH as digestion solution and ZnCl2 (ρ=1.6 g·cm−3) as flotation solution. Furthermore, six actual soil samples were collected and detected to verify the feasibility of the proposed approach. The results demonstrated that the recovery of PS was 77.8%—88.3% with 25 nm PS of 100 μg·g−1 added in six actual soil samples. The test results showed that PS were detected in four soil samples at concentrations ranging from 3.45 μg·g−1 to 10.26 μg·g−1, while no PS were detected in the other two samples, due to the concentration of PS was below the detection limit. The analysis and detection method of NPs was feasible. Therefore, this study provided an efficient method for nanoplastics analysis in soil.-
Key words:
- nanoplastics /
- detection /
- quantification /
- farmland soils /
- Py-GC-MS.
-
表 1 Py-GC-MS检测条件
Table 1. Conditions for Py-GC-MS detection
裂解炉
PyrolyzerFrontier EGA/PY-3030D 载气
Carrier gas氦气 裂解温度
Pyrolysis temperature600 ℃ 裂解炉与GC的界面温度
Interface temperature320 ℃ 气相色谱
Gas chromatographThermo TRACE GC ULTRA 分流比
Split ratio1:100 流量
Flow (const.)1 mL·min−1 毛细管柱
ColumnUltra ALLOY-5(30 m×0.25 mm×0.25 μm,5%二苯基聚硅氧烷+95%二甲基聚硅氧烷) GC进口温度
GC inlet temperature320 ℃ 传输线温度
Transfer line temperature280 ℃ GC-MS界面温度
Interface temperature320 ℃ 程序升温
Temperature program40 ℃(2 min), 以20 ℃·min−1加热到320 ℃(13 min) 质谱
Mass spectrometerThermo ISQ EI源电离能
EI ionization energy70 eV 源温度
Source temperature230 ℃ 扫描范围
Scanning range35—600 m/z 表 2 PS纳米塑料的热解行为及热解图信息
Table 2. Pyrolytic behavior of PS nanoplastics and pyrogram information
峰
Peak特征裂解产物
Characteristic decomposition product指标离子
Indicator ions(m/z)保留时间/min
Retention timeP1 苯乙烯单体(styrene) 51、78、104 5.24 P2 苯乙烯二聚体(styrene dimer) 91、104、115、130、193、208 11.26 P3 苯乙烯三聚体(styrene trimer) 91、117、194、207 14.54 m/z = 质荷比. m/z = mass to charge ratio. 表 3 不同浮选溶液条件下PS纳米塑料的回收率
Table 3. The recovery parameters of PS nanoplastics in different flotation solutions
浮选溶液
Flotation solution
typesPS添加浓度/
(μg·g−1)
PS spike concentration检测浓度/(μg·g−1)
Detection concentration回收率/%
Recovery平均回收率
(平均值±SDa) /%
Average recovery1 2 3 1 2 3 NaCl 100 68.4 62.7 59.6 68.4 62.7 59.6 63.6±4.5 ZnCl2 100 79.6 84.2 89.2 79.6 84.2 89.2 84.3±4.8 NaI 100 80.5 85.6 91.1 80.5 85.6 91.1 85.7±5.3 a:SD为标准偏差. a: SD is the standard deviation. 表 4 不同类型、不同浓度消解液中PS纳米塑料的回收率参数
Table 4. The recovery parameters of PS nanoplastics in different types and concentrations of digestion liquid
消解溶液
Digestion
solution浓度/%
ConcentrationPS添加浓度/(μg·g−1)
PS spike concentration检测浓度/(μg·g−1)
Detection concentration回收率/%
Recovery平均回收率
(平均值±SDa)/%
Average recovery1 2 3 1 2 3 KOH 2 100 50.5 58.9 48.4 50.5 58.9 48.4 52.6±5.6 5 100 54.9 63.7 60.6 54.9 63.7 60.6 59.7±4.5 7 100 63.7 65.9 69.2 63.7 65.9 69.2 66.3±2.8 KOH 10 100 78.1 80.5 86.3 78.1 80.5 86.3 81.6±4.2 15 100 87.4 83.4 76.9 87.4 83.4 76.9 82.6±5.3 H2O2 5 100 46.3 41.9 38.4 46.3 41.9 38.4 42.2±4.0 10 100 47.8 49.4 46.9 47.8 49.4 46.9 48.0±1.3 20 100 68.9 65.2 60.5 68.9 65.2 60.5 64.9±4.2 30 100 77.4 76.8 75.9 77.4 76.8 75.9 76.7±0.75 40 100 78.9 73.8 74.6 78.9 73.8 74.6 75.8±2.7 a:SD为标准偏差. a: SD is the standard deviation. 表 5 不同粒径条件下PS纳米塑料的回收率(n = 5)
Table 5. The recovery of PS nanoplastics with different particle sizes (n = 5)
粒径尺寸/nm
Particle sizesPS添加浓度/(μg·g−1)
PS spike concentration检测浓度/(μg·g−1)
Detection concentration回收率/%
Recovery平均回收率
(平均值±SDa)/%
Average recovery1 2 3 4 5 1 2 3 4 5 25 100 88.5 94.3 92.6 78.2 84.3 88.5 94.3 92.6 78.2 84.3 87.58±6.5 100 100 92.3 84.6 77.5 93.8 96.2 92.3 84.6 77.5 93.8 96.2 88.88±7.7 800 100 94.3 87.9 81.4 92.7 88.4 94.3 87.9 81.4 92.7 88.4 88.94±5.02 a. SD为标准偏差. a. SD is the standard deviation. 表 6 不同DOM浓度下PS纳米塑料的回收率 (n =5)
Table 6. The recovery of PS nanoplastics at different DOM concentrations (n =5)
DOM浓度/(mg·L−1)
DOM ConcentrationPS添加浓度/(μg·g−1)
PS spike concentration检测浓度/(μg·g−1)
Detection concentration回收率/%
Recovery平均回收率
(平均值±SD)a/%
Average recovery1 2 3 4 5 1 2 3 4 5 0 100 85.6 78.9 90.4 84.9 95.8 85.6 78.9 90.4 84.9 95.8 87.1±6.3 5 100 84.6 76.4 87.9 93.6 91.6 84.6 76.4 87.9 93.6 91.6 86.8±6.8 10 100 91.5 82.7 80.4 74.9 90.3 91.5 82.7 80.4 74.9 90.3 84.0±7.0 20 100 78.1 90.4 93.5 79.3 88.6 78.1 90.4 93.5 79.3 88.6 86.0±6.9 40 100 84.4 90.3 91.5 85.8 91.6 84.4 90.3 91.5 85.8 91.6 88.7±3.8 a. SD为标准偏差. a. SD is the standard deviation. 表 7 PS纳米塑料相关校准数据
Table 7. Calibration related data for the PS nanoplastics
聚合物类型
Polymer typePS 指标化合物
Indicator compoundstyrene trimer 保留时间/min
Retention time14.54 指示离子
Indicator ion m/z91 进样量范围/mg
Sampling range0.1—10 标准曲线方程
Calibration functionsY=4.35×107X-3.69×107 R2 0.9995 RSD/%,(n=5) 7.04 LOD/μg 0.012 LOQ/μg 0.04 注:R² =相关系数,RSD% =相对标准偏差,LOD =检出限,LOQ =定量限,X=PS的质量, Y=色谱峰面积. 表 8 萃取PS纳米塑料方法的性能参数
Table 8. Performance parameters of extraction methods for PS nanoplastics
样品编号
Sample No.PS添加浓度/(μg·g−1)
PS spike concentration检测浓度/(μg·g−1)
Detection concentration回收率/%
Recovery1 1 0.843 84.3 2 1 0.862 86.2 3 1 0.811 81.1 4 1 0.823 82.3 5 1 0.865 86.5 平均回收率(平均值±SD)a/% 84.02 ± 2.73 RSD/% 3.25 表 9 土壤样品的测定结果
Table 9. Determination results of soil samples
样品名称
Sample name采样位置坐标
Sampling coordinatesPS添加浓度
/(μg·g−1)
PS spike concentration检测浓度
/(μg·g−1)
Detection concentration回收率/%
Recovery黄瓜大棚 41°46' N 123°52' E 0 3.45 100 87.5 87.5 ± 3.5 西红柿大棚 41°48' N , 123°45' E 0 5.72 100 82.4 82.4 ± 5.7 辣椒大棚 42°6' N , 123°32' E 0 10.26 100 79.6 79.6 ± 6.3 玉米地 41°46' N , 123°52' E 0 N.D. 100 88.3 88.3 ± 4.6 西瓜地 42°7' N , 123°30' E 0 9.71 100 77.8 77.8 ± 5.2 黄豆地 41°33' N , 123°21' E 0 N.D. 100 82.6 82.6 ± 6.8 N.D. 表示未检出. N.D. means not detected. -
[1] FRIAS J P G L, NASH R. Microplastics: Finding a consensus on the definition [J]. Marine Pollution Bulletin, 2019, 138: 145-147. doi: 10.1016/j.marpolbul.2018.11.022 [2] LIAN J P, WU J N, ZEB A, et al. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L. )? [J]. Environmental Pollution, 2020, 263: 114498. doi: 10.1016/j.envpol.2020.114498 [3] WAHL A, le JUGE C, DAVRANCHE M, et al. Nanoplastic occurrence in a soil amended with plastic debris [J]. Chemosphere, 2021, 262: 127784. doi: 10.1016/j.chemosphere.2020.127784 [4] de SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. doi: 10.1111/gcb.14020 [5] PIEHL S, LEIBNER A, LÖDER M G J, et al. Identification and quantification of macro- and microplastics on an agricultural farmland [J]. Scientific Reports, 2018, 8: 17950. doi: 10.1038/s41598-018-36172-y [6] RICHARD H, CARPENTER E J, KOMADA T, et al. Biofilm facilitates metal accumulation onto microplastics in estuarine waters [J]. Science of the Total Environment, 2019, 683: 600-608. doi: 10.1016/j.scitotenv.2019.04.331 [7] ZHOU Y F, LIU X N, WANG J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China [J]. Science of the Total Environment, 2019, 694: 133798. doi: 10.1016/j.scitotenv.2019.133798 [8] RODRÍGUEZ-SEIJO A, SANTOS B, da SILVA E A F, et al. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms [J]. Environmental Chemistry, 2019, 16: 8-17. doi: 10.1071/EN18162 [9] VELZEBOER I, KWADIJK C J A F, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014, 48(9): 4869-4876. [10] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113 [11] HARATA K, KITAGAWA S, IIGUNI Y, et al. Identification of polymer species in a complex mixture by pyrolysis-gas chromatography-atmospheric pressure chemical ionization-high resolution time-of-flight mass spectrometry as a basis for environmental microplastic analysis [J]. Journal of Analytical and Applied Pyrolysis, 2020, 148: 104828. doi: 10.1016/j.jaap.2020.104828 [12] IVLEVA N P, WIESHEU A C, NIESSNER R. Microplastic in aquatic ecosystems [J]. Angewandte Chemie International Edition, 2017, 56(7): 1720-1739. doi: 10.1002/anie.201606957 [13] de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance [J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. [14] NG E L, HUERTA LWANGA E, ELDRIDGE S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems [J]. Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341 [15] GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil [J]. Environment International, 2020, 137: 105263. doi: 10.1016/j.envint.2019.105263 [16] YU L, ZHANG J D, LIU Y, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China [J]. Science of the Total Environment, 2021, 756: 143860. doi: 10.1016/j.scitotenv.2020.143860 [17] HARMS I K, DIEKÖTTER T, TROEGEL S, et al. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany [J]. Science of the Total Environment, 2021, 758: 143615. doi: 10.1016/j.scitotenv.2020.143615 [18] SHEN M C, ZHANG Y X, ZHU Y, et al. Recent advances in toxicological research of nanoplastics in the environment: A review [J]. Environmental Pollution, 2019, 252: 511-521. doi: 10.1016/j.envpol.2019.05.102 [19] SANA S S, DOGIPARTHI L K, GANGADHAR L, et al. Effects of microplastics and nanoplastics on marine environment and human health [J]. Environmental Science and Pollution Research International, 2020, 27(36): 44743-44756. doi: 10.1007/s11356-020-10573-x [20] ZHOU X X, HAO L T, WANG H Y, et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry [J]. Analytical Chemistry, 2019, 91(3): 1785-1790. doi: 10.1021/acs.analchem.8b04729 [21] ZHOU X X, HE S, GAO Y, et al. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals [J]. Environmental Science & Technology, 2021, 55(5): 3032-3040. [22] SOBHANI Z, ZHANG X, GIBSON C, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm [J]. Water Research, 2020, 174: 115658. doi: 10.1016/j.watres.2020.115658 [23] HERNANDEZ L M, XU E G, LARSSON H, et al. Plastic teabags release billions of microparticles and nanoparticles into tea [J]. Environmental Science & Technology, 2019, 53(21): 12300-12310. [24] GONZÁLEZ-PLEITER M, TAMAYO-BELDA M, PULIDO-REYES G, et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments [J]. Environmental Science:Nano, 2019, 6(5): 1382-1392. doi: 10.1039/C8EN01427B [25] FANG C, SOBHANI Z, ZHANG X, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (ii): Smaller than the diffraction limit of laser? [J]. Water Research, 2020, 183: 116046. doi: 10.1016/j.watres.2020.116046 [26] GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers for small microplastics and nanoplastics identification in seawater [J]. Environmental Science & Technology, 2019, 53(15): 9003-9013. [27] ZHANG W, DONG Z Q, ZHU L, et al. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy [J]. ACS Nano, 2020, 14(7): 7920-7926. doi: 10.1021/acsnano.0c02878 [28] CAI H W, XU E G, DU F N, et al. Analysis of environmental nanoplastics: Progress and challenges [J]. Chemical Engineering Journal, 2021, 410: 128208. doi: 10.1016/j.cej.2020.128208 [29] GANGADOO S, OWEN S, RAJAPAKSHA P, et al. Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea [J]. Science of the Total Environment, 2020, 732: 138792. doi: 10.1016/j.scitotenv.2020.138792 [30] PIVOKONSKY M, CERMAKOVA L, NOVOTNA K, et al. Occurrence of microplastics in raw and treated drinking water [J]. Science of the Total Environment, 2018, 643: 1644-1651. doi: 10.1016/j.scitotenv.2018.08.102 [31] ZHENG S, ZHAO Y F, LIANGWEI W H, et al. Characteristics of microplastics ingested by zooplankton from the Bohai Sea, China [J]. Science of the Total Environment, 2020, 713: 136357. doi: 10.1016/j.scitotenv.2019.136357 [32] MATERI\U0107 D, KASPER-GIEBL A, KAU D, et al. Micro- and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range [J]. Environmental Science & Technology, 2020, 54(4): 2353-2359. [33] RIBEIRO F, OKOFFO E D, O'BRIEN J W, et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry [J]. Environmental Science & Technology, 2020, 54(15): 9408-9417. [34] KUSCH P. Challenges in the analysis of micro- and nanoplastics//Handbook of Microplastics in the Environments[M]. Cham: Springer International Publishing, 2022: 477-501. [35] SCHWAFERTS C, SOGNE V, WELZ R, et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers [J]. Analytical Chemistry, 2020, 92(8): 5813-5820. doi: 10.1021/acs.analchem.9b05336 [36] JIMÉNEZ-LAMANA J, MARIGLIANO L, ALLOUCHE J, et al. A novel strategy for the detection and quantification of nanoplastics by single particle inductively coupled plasma mass spectrometry (ICP-MS) [J]. Analytical Chemistry, 2020, 92(17): 11664-11672. doi: 10.1021/acs.analchem.0c01536 [37] TER HALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the north Atlantic subtropical gyre [J]. Environmental Science & Technology, 2017, 51(23): 13689-13697. [38] OKOFFO E D, O'BRIEN S, RIBEIRO F, et al. Plastic particles in soil: State of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts [J]. Environmental Science. Processes & Impacts, 2021, 23(2): 240-274. [39] FISCHER M, SCHOLZ-BÖTTCHER B M. Microplastics analysis in environmental samples–recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data [J]. Analytical Methods, 2019, 11(18): 2489-2497. doi: 10.1039/C9AY00600A [40] PATIL S M, RANE N R, BANKOLE P O, et al. An assessment of micro- and nanoplastics in the biosphere: A review of detection, monitoring, and remediation technology [J]. Chemical Engineering Journal, 2022, 430: 132913. doi: 10.1016/j.cej.2021.132913 [41] PENG C, TANG X J, GONG X Y, et al. Development and application of a mass spectrometry method for quantifying nylon microplastics in environment [J]. Analytical Chemistry, 2020, 92(20): 13930-13935. doi: 10.1021/acs.analchem.0c02801 [42] ZHOU X X, HE S, GAO Y, et al. Protein Corona-mediated extraction for quantitative analysis of nanoplastics in environmental waters by pyrolysis gas chromatography/mass spectrometry [J]. Analytical Chemistry, 2021, 93(17): 6698-6705. doi: 10.1021/acs.analchem.1c00156 [43] FADARE O O, WAN B, GUO L H, et al. Microplastics from consumer plastic food containers: Are we consuming it? [J]. Chemosphere, 2020, 253: 126787. doi: 10.1016/j.chemosphere.2020.126787 [44] MITRANO D M, BELTZUNG A, FREHLAND S, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems [J]. Nature Nanotechnology, 2019, 14(4): 362-368. doi: 10.1038/s41565-018-0360-3 [45] NGUYEN B, CLAVEAU-MALLET D, HERNANDEZ L M, et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples [J]. Accounts of Chemical Research, 2019, 52(4): 858-866. doi: 10.1021/acs.accounts.8b00602 [46] FISCHER M, SCHOLZ-BÖTTCHER B M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry [J]. Environmental Science & Technology, 2017, 51(9): 5052-5060. [47] CAO J H, ZHAO X N, GAO X D, et al. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: A review [J]. Journal of Environmental Management, 2021, 294: 112997. doi: 10.1016/j.jenvman.2021.112997 [48] THIELE C J, HUDSON M D, RUSSELL A E. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size [J]. Marine Pollution Bulletin, 2019, 142: 384-393. doi: 10.1016/j.marpolbul.2019.03.003 [49] KARAMI A, GOLIESKARDI A, CHOO C K, et al. A high-performance protocol for extraction of microplastics in fish [J]. Science of the Total Environment, 2017, 578: 485-494. doi: 10.1016/j.scitotenv.2016.10.213 [50] STEINMETZ Z, KINTZI A, MUÑOZ K, et al. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry [J]. Journal of Analytical and Applied Pyrolysis, 2020, 147: 104803. doi: 10.1016/j.jaap.2020.104803 [51] DUEMICHEN E, EISENTRAUT P, CELINA M, et al. Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products [J]. Journal of Chromatography A, 2019, 1592: 133-142. doi: 10.1016/j.chroma.2019.01.033