-
雌激素作为环境中普遍存在的一类典型的内分泌干扰物(EDCs),具有分布广、浓度低、毒性强和风险高等特点[1 ‒ 2]. 该类有害化合物主要来源于污水处理厂和禽畜养殖场,它们在低剂量条件下就会导致水生生物雌性化甚至种群灭绝,已引起世界各国政府和公众的广泛关注[3]. 雌激素可通过粪肥还田、污水灌溉和地表径流等方式进入农业生态系统,其中畜禽粪污释放的雌激素约占总量的90%以上[4]. 中国每年约产生45亿t畜禽粪污,其中雌激素含量高达2.05 × 106 kg,远超美国和欧盟年均排放的畜禽粪污中雌激素(分别为4.9 × 104 kg和3.3 × 104 kg)总和[5]. 当农业生态系统中雌激素的浓度大于环境容量时,会对野生生物和人民健康构成严重危害. 已证实痕量浓度(1.0 ng·L−1)雌激素即可干扰生物体正常的代谢功能、影响有机体生殖发育,甚至导致物种癌变和死亡[6]. 因此,明确环境中雌激素污染现状、转化路径和生态风险极其重要.
目前,科学家已经探讨了沉积物和地表水中雌激素的来源、发生和环境归趋[7 ‒ 9],而关于粪肥源雌激素在农田土壤-作物生态系统内的存在形态、运移规律、降解机制和毒理风险的研究仍较少. 据报道生菜、萝卜和玉米等农产品均受到不同程度的粪肥源雌激素污染,其体内雌激素的残留量达到2.0 μg·kg−1以上[10 ‒ 12],高于联合国粮农组织/世界卫生组织(FAO/WHO)规定的儿童日摄入量最大值(0.5 μg·d−1). 由此可见,农产品中雌激素残留存在严重的膳食风险隐患.
本文概述了畜禽粪污中雌酮(E1)、17β-雌二醇(E2)、雌三醇(E3)、17α-炔雌醇(EE2)和双酚A(BPA)等5种代表性环境雌激素的污染现状和分布规律,总结了粪肥源雌激素在农田土壤-作物中的输运转化、吸收积累和降解机制,系统地评估了农业生态系统中雌激素对敏感生物和人群健康的污染风险,结果有望为消减农田土壤-作物雌激素污染风险奠定理论基础.
粪肥源雌激素在农田土壤-作物中污染特征、转运规律及毒理风险
Animal manure derived-estrogens in farmland soil-crop ecosystems: Pollution characteristics, transport regularities, and toxicological risks
-
摘要: 雌酮(E1)、17β-雌二醇(E2)、雌三醇(E3)、17α-炔雌醇(EE2)和双酚A(BPA)等作为畜禽粪污中雌激素活性较强的环境内分泌干扰物,可在农田土壤-作物系统内输运和累积,并对野生物种的生殖发育、遗传代谢,以及农产品的质量和安全构成巨大威胁. 目前,国际上关于粪肥源雌激素在农田土壤-作物中污染特征、转运规律及毒理风险的报道仍较少. 本文综述了5种代表性粪肥源雌激素在农田生态系统中的污染特征和时空分布规律,归纳了雌激素在农田土壤-作物中的迁移转化、吸收积累和代谢机理,系统地评估了农田生态系统中雌激素生物毒性效应及其风险模型,旨在为规避农田土壤-作物雌激素污染风险、生产绿色农产品和保障人民健康等奠定理论基础.Abstract: In livestock manure, estrogens such as estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and bisphenol A (BPA), act as a category of representative environmental endocrine disruptors with strong estrogenic activity. These estrogens can be migrated, transported, and accumulated in agroecosystems, which trigger a great threat to the reproductive development and inherited metabolic disorders, as well as the quality safety of agricultural products, thus arousing enormous pollution concerns. At present, there is little information available on the pollution characteristics, transport regularities, and toxicological risks of animal manure derived-estrogens in farmland soil-crop ecosystems. This study overviewed the pollution characteristics and temporal-spatial distribution of the above mentioned 5 kinds of typical manure derived-estrogens in agroecosystems. The uptake, accumulation, and metabolic mechanisms of estrogens in farmland soil-crop ecosystems were also summarized. Subsequently, the biotoxic effects of estrogens and their ecological risk models were systematically evaluated in farmland ecosystems. These findings provide a theoretical foundation for avoiding the estrogen-polluted risks of farmland soil-crop, yielding green agricultural products, and protecting public health.
-
Key words:
- animal manure /
- agroecological environment /
- estrogen pollution /
- transport pathways /
- health risks.
-
表 1 畜禽粪污中5种典型雌激素的理化性能
Table 1. The physicochemical properties of 5 representative estrogens in animal manure
雌激素
Estrogens化学式
Chemical structure分子式
Molecular formula分子量
Molecular weight溶解度/(mg·L−1)Solubility 辛醇水分配系数(lgKow) E1 C18H22O2 270.37 13.0 3.43 E2 C18H24O2 272.38 13.3 3.94 E3 C18H24O3 288.38 13.3 2.81 EE2 C20H24O2 296.40 4.8 4.12 BPA C15H16O2 228.29 120.0 3.32 -
[1] 韩进, 程鹏飞, 周贤, 等. 基于畜禽粪便的有机肥中雌激素污染特征[J]. 农业资源与环境学报, 2019, 36(5): 673-678. doi: 10.13254/j.jare.2018.0264 HAN J, CHENG P F, ZHOU X, et al. Characteristics of estrogen contamination in organic fertilizers derived from livestock manures[J]. Journal of Agricultural Resources and Environment, 2019, 36(5): 673-678 (in Chinese). doi: 10.13254/j.jare.2018.0264
[2] 王梦杰, 李建华, 彭建彪, 等. 过氧化物酶对水中17β-雌二醇光降解的影响机制[J]. 环境化学, 2021, 40(11): 3351-3359. doi: 10.7524/j.issn.0254-6108.2021041604 WANG M J, LI J H, PENG J B, et al. The effect mechanism of peroxidase on the photodegradation of 17β-estradiol in water[J]. Environmental Chemistry, 2021, 40(11): 3351-3359 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021041604
[3] WILLIAMS G P, DARBRE P D. Low-dose environmental endocrine disruptors, increase aromatase activity, estradiol biosynthesis and cell proliferation in human breast cells[J]. Molecular and Cellular Endocrinology, 2019, 486: 55-64. doi: 10.1016/j.mce.2019.02.016 [4] KHANAL S K, XIE B, THOMPSON M L, et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems[J]. Environmental Science & Technology, 2006, 40(21): 6537-6546. [5] GUDDA F O, ATEIA M, WAIGI M G, et al. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study[J]. Journal of Environmental Management, 2022, 301: 113708. doi: 10.1016/j.jenvman.2021.113708 [6] ADEEL M, SONG X M, WANG Y Y, et al. Environmental impact of estrogens on human, animal and plant life: A critical review[J]. Environment International, 2017, 99: 107-119. doi: 10.1016/j.envint.2016.12.010 [7] PRAVEENA S M, LUI T S, HAMIN N, et al. Occurrence of selected estrogenic compounds and estrogenic activity in surface water and sediment of Langat River (Malaysia)[J]. Environmental Monitoring and Assessment, 2016, 188(7): 442. doi: 10.1007/s10661-016-5438-5 [8] HU Y, YAN X, SHEN Y, et al. Occurrence, behavior and risk assessment of estrogens in surface water and sediments from Hanjiang River, Central China[J]. Ecotoxicology, 2019, 28(2): 143-153. doi: 10.1007/s10646-018-2007-4 [9] BILAL M, BARCELÓ D, IQBAL H M N. Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources[J]. Science of the Total Environment, 2021, 800: 149635. doi: 10.1016/j.scitotenv.2021.149635 [10] LI Y B, SALLACH J B, ZHANG W, et al. Insight into the distribution of pharmaceuticals in soil-water-plant systems[J]. Water Research, 2019, 152: 38-46. doi: 10.1016/j.watres.2018.12.039 [11] 陈兴财, 张丰松, 李艳霞, 等. 类固醇雌激素在土壤-植物体系中的迁移转化及其毒理效应[J]. 生态学报, 2021, 41(6): 2525-2535. CHEN X C, ZHANG F S, LI Y X, et al. Transport and transformation of steroid estrogens in soil-plant systems and their toxicological effects on plant[J]. Acta Ecologica Sinica, 2021, 41(6): 2525-2535 (in Chinese).
[12] CHEN X C, LI Y X, JIANG L S, et al. Uptake, accumulation, and translocation mechanisms of steroid estrogens in plants[J]. Science of the Total Environment, 2021, 753: 141979. doi: 10.1016/j.scitotenv.2020.141979 [13] 李艳, 潘杰, 梁紫薇, 等. 基于定位栏试验的奶牛粪便中雌激素含量特征[J]. 中国环境科学, 2022, 42(1): 119-126. doi: 10.3969/j.issn.1000-6923.2022.01.014 LI Y, PAN J, LIANG Z W, et al. Characterizing the estrogen content in cow feces based on gestation crate experiment[J]. China Environmental Science, 2022, 42(1): 119-126 (in Chinese). doi: 10.3969/j.issn.1000-6923.2022.01.014
[14] 梁紫薇, 李艳, 胡嘉梧, 等. 基于代谢笼试验的鸡粪中雌激素排放特征研究[J]. 农业环境科学学报, 2022, 41(2): 434-440. doi: 10.11654/jaes.2021-0633 LIANG Z W, LI Y, HU J W, et al. Emission characteristics of estrogens in chicken manure based on the metabolic cage test[J]. Journal of Agro-Environment Science, 2022, 41(2): 434-440 (in Chinese). doi: 10.11654/jaes.2021-0633
[15] JOHNSON A C, WILLIAMS R J, MATTHIESSEN P. The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study[J]. Science of the Total Environment, 2006, 362(1/2/3): 166-178. [16] 李艳霞, 韩伟, 林春野, 等. 畜禽养殖过程中雌激素的排放及其环境行为[J]. 生态学报, 2010, 30(4): 1058-1065. LI Y X, HAN W, LIN C Y, et al. Excretion of estrogens in the livestock and poultry production and their environmental behaviors[J]. Acta Ecologica Sinica, 2010, 30(4): 1058-1065 (in Chinese).
[17] 宋晓明. 农业土壤中类固醇雌激素的潜在风险与归趋机理研究[D]. 沈阳: 沈阳大学, 2018. SONG X M. Study on potential risks and fate mechanism of steroid estrogen in agricultural soil[D]. Shenyang: Shenyang University, 2018 (in Chinese).
[18] 冯承莲, 汪浩, 王颖, 等. 基于不同毒性终点的双酚A(BPA)预测无效应浓度(PNEC)研究[J]. 生态毒理学报, 2015, 10(1): 119-129. FENG C L, WANG H, WANG Y, et al. Predicted No effect concentration of bisphenol a(BPA) based on different toxicological endpoints[J]. Asian Journal of Ecotoxicology, 2015, 10(1): 119-129 (in Chinese).
[19] 李晓曼, 黄斌, 孙雯雯, 等. 类固醇雌激素环境行为研究进展[J]. 环境化学, 2014, 33(8): 1276-1286. doi: 10.7524/j.issn.0254-6108.2014.08.022 LI X M, HUANG B, SUN W W, et al. Research progress on the environmental behavior of steroid estrogens[J]. Environmental Chemistry, 2014, 33(8): 1276-1286 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.08.022
[20] 贺德春, 胡嘉梧, 梁紫薇, 等. 同位素内标-高效液相色谱-串联质谱法测定畜禽粪便中6种雌激素[J]. 生态环境学报, 2021, 30(2): 383-390. doi: 10.16258/j.cnki.1674-5906.2021.02.018 HE D C, HU J W, LIANG Z W, et al. Determination of six estrogens in livestock manures by isotope internal standard-high performance liquid chromatography coupled with tandem mass spectrometry[J]. Ecology and Environmental Sciences, 2021, 30(2): 383-390 (in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.02.018
[21] 张克强, 杜连柱, 杜会英, 等. 国内外畜禽养殖粪肥还田利用研究进展[J]. 农业环境科学学报, 2021, 40(11): 2472-2481, 2591. doi: 10.11654/jaes.2021-1031 ZHANG K Q, DU L Z, DU H Y, et al. Application of livestock and poultry waste to agricultural land: A review[J]. Journal of Agro-Environment Science, 2021, 40(11): 2472-2481, 2591 (in Chinese). doi: 10.11654/jaes.2021-1031
[22] 薛敏, 王安, 王瑜, 等. 分子印迹固相萃取技术检测江水、尿液及牛奶中雌激素残留[J]. 分析化学, 2011, 39(6): 793-798. XUE M, WANG A, WANG Y, et al. Application of molecularly imprinted solid phase extraction for determination of estrogens in river water, milk and urine samples[J]. Chinese Journal of Analytical Chemistry, 2011, 39(6): 793-798 (in Chinese).
[23] DUAN S W, IWANOWICZ L R, NOGUERA-OVIEDO K, et al. Evidence that watershed nutrient management practices effectively reduce estrogens in environmental waters[J]. The Science of the Total Environment, 2021, 758: 143904. doi: 10.1016/j.scitotenv.2020.143904 [24] DELGADO C L. Rising consumption of meat and milk in developing countries has created a new food revolution[J]. The Journal of Nutrition, 2003, 133(11): 3907S-3910S. doi: 10.1093/jn/133.11.3907S [25] 袁哲军, 张洪昌, 胡双庆, 等. 典型雌激素在水稻土中的吸附特征及高岭土和猪粪DOM对吸附的影响[J]. 环境化学, 2018, 37(4): 652-660. doi: 10.7524/j.issn.0254-6108.2017082102 YUAN Z J, ZHANG H C, HU S Q, et al. Adsorption of typical estrogens to paddy soils and influence of Kaolin and pig manure DOM[J]. Environmental Chemistry, 2018, 37(4): 652-660 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017082102
[26] 宋晓明, 杨悦锁, 温玉娟, 等. 雌激素在地下环境中的归宿及其生态调控[J]. 中国环境科学, 2016, 36(9): 2828-2840. doi: 10.3969/j.issn.1000-6923.2016.09.042 SONG X M, YANG Y S, WEN Y J, et al. Fate and ecological regulation of steroidal estrogens in subsurface environment[J]. China Environmental Science, 2016, 36(9): 2828-2840 (in Chinese). doi: 10.3969/j.issn.1000-6923.2016.09.042
[27] LI S Y, LIU J, WILLIAMS M A, et al. Metabolism of 17β-estradiol by Novosphingobium sp. ES2-1 as probed via HRMS combined with 13C3-labeling[J]. Journal of Hazardous Materials, 2020, 389: 121875. doi: 10.1016/j.jhazmat.2019.121875 [28] MOREIRA I S, LEBEL A, PENG X Z, et al. Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS[J]. Biodegradation, 2021, 32(5): 511-529. doi: 10.1007/s10532-021-09948-9 [29] LI S Y, LIU J, SUN K, et al. Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines[J]. Environmental Pollution, 2020, 260: 114063. doi: 10.1016/j.envpol.2020.114063 [30] 魏瑞成, 李金寒, 何龙翔, 等. 雌激素胁迫对萝卜种子萌芽和幼苗生长及其累积效应的影响[J]. 草业学报, 2013, 22(5): 190-197. doi: 10.11686/cyxb20130522 WEI R C, LI J H, HE L X, et al. Effects of estrogen stress on seed germination, seedling growth and accumulation in radish[J]. Acta Prataculturae Sinica, 2013, 22(5): 190-197 (in Chinese). doi: 10.11686/cyxb20130522
[31] CARD M L, SCHNOOR J L, CHIN Y P. Uptake of natural and synthetic estrogens by maize seedlings[J]. Journal of Agricultural and Food Chemistry, 2012, 60(34): 8264-8271. doi: 10.1021/jf3014074 [32] ADEEL M, YANG Y S, WANG Y Y, et al. Uptake and transformation of steroid estrogens as emerging contaminants influence plant development[J]. Environmental Pollution, 2018, 243: 1487-1497. doi: 10.1016/j.envpol.2018.09.016 [33] STUMPE B, MARSCHNER B. Factors controlling the biodegradation of 17β-estradiol, estrone and 17α-ethinylestradiol in different natural soils[J]. Chemosphere, 2009, 74(4): 556-562. doi: 10.1016/j.chemosphere.2008.09.072 [34] NAMIKI S, OTANI T, MOTOKI Y, et al. Differential uptake and translocation of organic chemicals by several plant species from soil[J]. Journal of Pesticide Science, 2018, 43(2): 96-107. doi: 10.1584/jpestics.D17-088 [35] CHEN L, ZHANG S Z, HUANG H L, et al. Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Triticum aestivum L. )[J]. Environmental Science & Technology, 2009, 43(24): 9136-9141. [36] STAPLES C, FRIEDERICH U, HALL T, et al. Estimating potential risks to terrestrial invertebrates and plants exposed to bisphenol A in soil amended with activated sludge biosolids[J]. Environmental Toxicology and Chemistry, 2010, 29(2): 467-475. doi: 10.1002/etc.49 [37] SUN K, HABTESELASSIE M Y, LIU J, et al. Subcellular distribution and biotransformation of phenanthrene in pakchoi after inoculation with endophytic Pseudomonas sp. as probed using HRMS coupled with isotope-labeling[J]. Environmental Pollution, 2018, 237: 858-867. doi: 10.1016/j.envpol.2017.11.039 [38] SCHMIDT B, SCHUPHAN I. Metabolism of the environmental estrogen bisphenol A by plant cell suspension cultures[J]. Chemosphere, 2002, 49(1): 51-59. doi: 10.1016/S0045-6535(02)00142-X [39] CARD M L, SCHNOOR J L, CHIN Y P. Transformation of natural and synthetic estrogens by maize seedlings[J]. Environmental Science & Technology, 2013, 47(10): 5101-5108. [40] MARTÍN J, CAMACHO-MUÑOZ D, SANTOS J L, et al. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal[J]. Journal of Hazardous Materials, 2012, 239/240: 40-47. doi: 10.1016/j.jhazmat.2012.04.068 [41] 褚莹倩, 陈溪, 张晓林, 等. 中国地表水环境中药物与个人护理品生态风险评价的研究进展[J]. 生态毒理学报, 2021, 16(4): 80-92. CHU Y Q, CHEN X, ZHANG X L, et al. Ecological risk assessment of pharmaceutical and personal care products in the surface water of China: A review[J]. Asian Journal of Ecotoxicology, 2021, 16(4): 80-92 (in Chinese).
[42] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342. doi: 10.1016/j.talanta.2005.09.037 [43] 孙艳, 黄璜, 胡洪营, 等. 污水处理厂出水中雌激素活性物质浓度与生态风险水平[J]. 环境科学研究, 2010, 23(12): 1488-1493. doi: 10.13198/j.res.2010.12.46.suny.005 SUN Y, HUANG H, HU H Y, et al. Concentration of estrogen active substances and ecological risk level in effluent of sewage treatment plant[J]. Research of Environmental Sciences, 2010, 23(12): 1488-1493 (in Chinese). doi: 10.13198/j.res.2010.12.46.suny.005
[44] 韩进, 程鹏飞, 周贤, 等. 畜禽粪便堆肥过程中雌激素降解特征[J]. 农业资源与环境学报, 2019, 36(5): 679-686. doi: 10.13254/j.jare.2018.0346 HAN J, CHENG P F, ZHOU X, et al. Characteristics of estrogen degradation in livestock manures during composting[J]. Journal of Agricultural Resources and Environment, 2019, 36(5): 679-686 (in Chinese). doi: 10.13254/j.jare.2018.0346
[45] ZHOU X, WANG J, LU C, et al. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment[J]. Chemosphere, 2020, 255: 127006. doi: 10.1016/j.chemosphere.2020.127006 [46] ARNON S, DAHAN O, ELHANANY S, et al. Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater[J]. Environmental Science & Technology, 2008, 42(15): 5521-5526.