-
塑料制品因其成本低廉、耐腐蚀和持久性等特点在世界范围内得到广泛应用,同时塑料制品的低回收率和难降解等问题使之在环境中大量积累. 环境中塑料经物理、化学和生物形式降解为直径小于5 mm的塑料颗粒被称为微塑料(microplastics, MPs). 目前,人类已经在海洋[1]、河流[2 − 3]、湖泊[4 − 5]、生物[6 − 7]甚至人体[8 − 9]中检测到微塑料的存在. 微塑料具有尺寸小、孔隙率高、比表面积大、疏水性强等特点,使之能有效吸附环境中如有机污染物、重金属、农药、病原体等污染物. 鱼类作为水生环境中最常见的生物,经呼吸和摄食作用两种途径摄入微塑料[10]:呼吸作用将水体中微塑料沾附于鳃组织上;当食物和微塑料混在一起时,产生一种“味觉陷阱”,致使大多数随食物一同被吞食,进而在消化系统中积累. 微塑料对鱼类等水产品的污染已成为全球粮食安全的新问题[11],通过水产品摄入微塑料被认为是人类摄入化学添加剂和持续性有毒污染物的潜在途径[6]. 鱼类等水产品中微塑料的高效提取和准确定量是确定其污染程度的首要前提.
密度分离法利用微塑料与杂质的密度不同,通过添加不同密度盐溶液将目标微塑料从样品中分离出来. 经典的直接密度分离法[12 − 13]是在烧杯或锥形瓶中与盐溶液直接混合,静置后倾倒上清液,该方法简单方便、成本低,但在上清液转移过程中微塑料总不可避免地黏附于瓶壁上而无法收集,从而造成微塑料的损失. 目前,已有很多研究开发出许多密度分离装置,尽管其具有较高的回收率[14 − 16],但这些装置普遍存在结构繁琐、操作复杂、难以推广等问题. 本文借鉴分液漏斗分液的原理,将样品和浮选盐溶液转移进常见的分液漏斗中,在静置结束后将废弃液从下口排出,上清液从上口转移,瓶壁可多次冲洗,以避免黏附于瓶壁上微塑料的损失.
NR是一种低成本、无毒、疏水、光化学稳定的染料,相比于其他染料,NR具有对塑料吸附性高、荧光强度高、培育时间短及对多种聚合物亲和力好等优点[17]. 基于NR的微塑料荧光检测技术具有快速、灵敏度高、检测限低(已被应用于>3 μm微塑料检测)[18 − 20]、可实现自动化计数等优点,大大提高了目视检测的准确率,可能具有与FTIR/Roman等光谱工具同等的效力[17,21],该技术已被应用于水体[19 − 20]、生物[6,18,21] 、食品[22 − 24]等样本中微塑料检测. 但在生物样本中,NR同样能够染色未完全消解的有机物,如有机物去除过程中的脂肪、肥皂等,严重阻碍微塑料的鉴定[23,25].
某些富含大量脂质的生物组织在碱性溶液中发生皂化反应,消解过程中钾基盐形成凝胶状的软肥皂;浮选溶液如氯化钠或碘化钠浮选溶液的加入,产生钠基盐形成硬肥皂[26]. 生成的肥皂不仅会堵塞过滤器,而且会捕获部分微塑料,从而降低过滤效率和微塑料回收率[27]. 因此,有必要确定适当的方法以去除皂化反应生成的肥皂.
本文为建立富含脂质的生物样本中微塑料检测方法,对传统的KOH消解生物样本进行优化:采用分液漏斗双密度分离法以提高对不同密度和不同粒径微塑料的回收率;探寻皂化反应生成的肥皂的去除方法,以减少其对NR染色观察的影响;利用NR染色以提高微塑料识别的准确率. 建立鱼体中微塑料提取的实验流程,并应用到实际样本中,以期为鱼类等生物样本中微塑料的高效提取理论依据和技术支持.
鱼富脂胃肠道中微塑料检测
Detection of microplastics in gastrointestinal tract of lipid-rich fish
-
摘要: 为建立富含脂质的生物样本中微塑料的检测方法,以鱼胃肠道为研究对象,选取不同粒径(10—100 μm、100—500 μm、500—1000 μm和1—5 mm)、不同密度(ρ<1.15 g·cm−3、ρ>1.3 g·cm−3)的6种微塑料为验证对象,对传统KOH消解法中回收率低、皂化反应干扰、计数不准确等问题进行优化. 结果表明,分液漏斗双密度浮选法能有效减少微塑料损失和降低泥沙等干扰,回收率达91%—100%;100 ℃热水和乙醇联用对皂化反应产生的肥皂的去除效率达98%±1.08%,生物样品的消解效率达99%±0.56%;尼罗红(Nile Red,NR)染色后,不同类型微塑料在不同滤光片下能观察到明显的荧光;除部分聚酰胺(PA)微塑料部分颜色变黄,该方法对PA、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)的红外光谱和羰基指数(carbonyl index,CI)无明显影响;实际样本应用表明,该方法对不同河段、不同种类的野生鱼类样本的消解率达97%—100%,对微塑料的检出率(84.70%)显著高于传统的体视显微镜镜检法(54.64%).Abstract: In order to establish the detection method of microplastics in lipid-rich biological samples, taking the gastrointestinal tract of fish as the research object, 6 types of microplastics with different particle sizes (10—100 μm, 100—500 μm, 500—1000 μm and 1—5 mm) and different density (ρ<1.15 g·cm−3, ρ>1.3 g·cm−3) were selected as the verification object, and the problems of low recovery, saponification reaction interference and inaccurate counting in the traditional KOH digestion method were optimized. The results showed that the separation funnel double-density flotation method can effectively reduce the loss of microplastics and the interference of sediment, and the recovery rate was 91%—100%. The removal efficiency of soap induced by saponification reaction occurred by the combination of 100 ℃ hot water and ethanol was 98%±1.08%, and the digestion efficiency of biological samples was 99%±0.56%. We find different types of microplastic stained with Nile Red present distinguishable fluorescence under different light filters. Except that some polyamide (PA) microplastics turn yellow, this method has no obvious effect on the infrared spectrum and carbonyl index of PA, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyvinyl chloride (PVC). The actual sample application showed that the digestion rate of this method for different reaches and different kinds of wild fish samples was 97%—100%, and the detection rate of microplastics (84.70%) was significantly higher than that of traditional stereomicroscope (54.64%).
-
Key words:
- microplastics /
- lipid /
- density flotation /
- saponification reaction /
- Nile Red.
-
图 6 (A)和(B)分别为体视法和NR法检测得到不同形状微塑料的占比,(C)和(D)分别为体视法和NR法检测得到微塑料的粒径分布频数直方图及曲线拟合
Figure 6. (A)and(B)show the proportions of microplastics with different shapes detected by the stereomicroscope method and the NR method respectively, (C) and (D) obtained histogram and curve fitting of particle size distribution frequency of microplastics detected by stereomicroscope method and NR method respectively
图 8 (A)PE颗粒在蓝色滤光片下的荧光图像及其红外光谱图,(B)PP薄膜在蓝色滤光片下的荧光图像及其红外光谱图,(C)PET纤维在紫色滤光片下的荧光图像及其红外光谱图,(D)PA纤维在绿色滤光片下的荧光图像及其红外光谱图
Figure 8. (A)Fluorescence image and infrared spectrum of PE particle under blue filter,(B)Fluorescence image and infrared spectrum of PP film under blue filter,(C)Fluorescence image and infrared spectrum of PET fiber under purple filter and(D)Fluorescence image and infrared spectrum of PA fiber under green filter
表 1 不同组回收率验证实验的微塑料添加量及回收率
Table 1. The amount and recovery of microplastics in different recovery verification experiments
分组
Group粒径
Size种类及量
Type and quantity回收率/%
Recovery rate1 10—100 μm PA、PS、PE、PP各0.1 g 91.97±1.71 2 100—500 μm PA、PS、PE、PP各0.1 g 90.55±1.69 3 500—1000 μm PA、PS、PE、PP各0.1 g 100.67±1.53 4 1—5 mm PA、PS、PE、PP各0.1 g 100.4±6.41 5 10—100 μm PET、PVC各0.1 g 95±5.93 6 100—500 μm PET、PVC各0.1 g 93±4.05 7 500—1000 μm PET、PVC各0.1 g 96.8±0.8 8 1—5 mm PET、PVC各0.1 g 99.87±0.23 表 2 不同类型的聚合物在不同滤光片下的荧光图像(20×)
Table 2. Fluorescence images of different types of polymers under different filters (20×)
表 3 野外环境中不同鱼类的消解率,体视法和NR法测定微塑料的丰度及检出率
Table 3. The digestion rate of different fish in the wild environment, the abundance and detection rate of microplastics determined by the stereomicroscope method and the NR method
种类
Type经度
Longitude纬度
Latitude鱼长/cm
Length of fish鱼重/g
Weight of fish消解率/%
Digestion rate微塑料丰度/(个·条−1)
Abundance of microplastics微塑料检出率/%
Detection rate of microplastics体视
StereomicroscopeNR 体视
StereomicroscopeNR 鲫鱼 117.197783 29.263332 14.6 23.7 98.64 32 35 60 80 117.381327 29.675387 14.5 18.92 99.38 11 15 60 100 116.505457 29.029374 17.2 20.43 100 25 31 50 80 草鱼 117.510502 29.704057 18.7 38.5 99.73 11 12 40 80 116.505457 29.029374 19.4 30.73 98.32 14 16 60 100 117.510502 29.704057 15.6 22.78 98.07 16 19 62.5 75 黄花鱼 117.197783 29.263332 18.6 49.79 97.74 17 17 66.67 83.33 117.510502 29.704057 13.6 36.68 97.90 13 15 60 100 翘嘴鲌 117.381327 29.675387 13.3 12.62 99.65 16 20 62.5 87.5 117.381327 29.675387 11.3 7.84 99.49 10 15 60 80 117.776792 29.898412 9.3 5.27 100 9 15 33.33 66.67 鳊鱼 117.776792 29.898412 7.8 5.96 100 26 38 40 70 117.510502 29.704057 14.7 16.35 98.79 14 14 60 100 117.510502 29.704057 13.8 12.53 99.14 11 17 50 83.33 平均 99.06 16.07 19.93 54.64 84.70 -
[1] PENG X, CHEN M, CHEN S, et al. Microplastics contaminate the deepest part of the world’s ocean[J]. Geochemical Perspectives Letters, 2018: 1-5. [2] HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707: 135601. doi: 10.1016/j.scitotenv.2019.135601 [3] TREILLES R, GASPERI J, TRAMOY R, et al. Microplastic and microfiber fluxes in the Seine River: Flood events versus dry periods[J]. Science of the Total Environment, 2022, 805: 150123. doi: 10.1016/j.scitotenv.2021.150123 [4] WANG W F, YUAN W K, CHEN Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545. doi: 10.1016/j.scitotenv.2018.03.211 [5] ZHANG Q J, LIU T, LIU L, et al. Distribution and sedimentation of microplastics in Taihu Lake[J]. Science of the Total Environment, 2021, 795: 148745. doi: 10.1016/j.scitotenv.2021.148745 [6] IMASHA H U E, BABEL S. Microplastics contamination in commercial green mussels from selected wet markets in Thailand[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(3): 449-459. doi: 10.1007/s00244-021-00886-4 [7] PARVIN F, JANNAT S, TAREQ S M. Abundance, characteristics and variation of microplastics in different freshwater fish species from Bangladesh[J]. Science of the Total Environment, 2021, 784: 147137. doi: 10.1016/j.scitotenv.2021.147137 [8] LESLIE H A, van VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199. doi: 10.1016/j.envint.2022.107199 [9] YAN Z H, LIU Y F, ZHANG T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1): 414-421. [10] 韩旭. 微塑料在斑马鱼不同组织中的生物累积[D]. 大连: 大连海事大学, 2020. HAN X. Bioaccumulation of microplastics in different tissues of zebrafish[D]. Dalian: Dalian Maritime University, 2020 (in Chinese).
[11] MISTRI M, SFRISO A A, CASONI E, et al. Microplastic accumulation in commercial fish from the Adriatic Sea[J]. Marine Pollution Bulletin, 2022, 174: 113279. doi: 10.1016/j.marpolbul.2021.113279 [12] LIANG T, LEI Z Y, FUAD M T I, et al. Distribution and potential sources of microplastics in sediments in remote lakes of Tibet, China[J]. Science of the Total Environment, 2022, 806: 150526. doi: 10.1016/j.scitotenv.2021.150526 [13] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [14] 徐舟影, 陈奥飞, 赵胤祺, 等. 武汉城市污水中微塑料的分离、鉴定及其微观特征分析[J]. 环境科学研究, 2021, 34(3): 637-645. doi: 10.13198/j.issn.1001-6929.2020.07.17 XU Z Y, CHEN A F, ZHAO Y Q, et al. Separation, identification and microscopic characteristics analysis of microplastics in Wuhan municipal sewage[J]. Research of Environmental Sciences, 2021, 34(3): 637-645 (in Chinese). doi: 10.13198/j.issn.1001-6929.2020.07.17
[15] CLAESSENS M, van CAUWENBERGHE L, VANDEGEHUCHTE M B, et al. New techniques for the detection of microplastics in sediments and field collected organisms[J]. Marine Pollution Bulletin, 2013, 70(1/2): 227-233. [16] IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments[J]. Limnology and Oceanography: Methods, 2012, 10(7): 524-537. doi: 10.4319/lom.2012.10.524 [17] SHRUTI V C, PÉREZ-GUEVARA F, ROY P D, et al. Analyzing microplastics with Nile red: Emerging trends, challenges, and prospects[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127171. [18] IANNILLI V, PASQUALI V, SETINI A, et al. First evidence of microplastics ingestion in benthic amphipods from Svalbard[J]. Environmental Research, 2019, 179: 108811. doi: 10.1016/j.envres.2019.108811 [19] TONG H Y, JIANG Q Y, HU X S, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252: 126493. doi: 10.1016/j.chemosphere.2020.126493 [20] WIGGIN K J, HOLLAND E B. Validation and application of cost and time effective methods for the detection of 3–500 μm sized microplastics in the urban marine and estuarine environments surrounding Long Beach, California[J]. Marine Pollution Bulletin, 2019, 143: 152-162. doi: 10.1016/j.marpolbul.2019.03.060 [21] DOWARAH K, PATCHAIYAPPAN A, THIRUNAVUKKARASU C, et al. Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet[J]. Marine Pollution Bulletin, 2020, 153: 110982. doi: 10.1016/j.marpolbul.2020.110982 [22] MASON S A, WELCH V G, NERATKO J. Synthetic polymer contamination in bottled water[J]. Frontiers in Chemistry, 2018, 6: 407. doi: 10.3389/fchem.2018.00407 [23] SHIM W J, SONG Y K, HONG S H, et al. Identification and quantification of microplastics using Nile Red staining[J]. Marine Pollution Bulletin, 2016, 113(1/2): 469-476. [24] YARANAL N A, SUBBIAH S, MOHANTY K. Identification, extraction of microplastics from edible salts and its removal from contaminated seawater[J]. Environmental Technology & Innovation, 2021, 21: 101253. [25] PRATA J C, SEQUEIRA I F, MONTEIRO S S, et al. Preparation of biological samples for microplastic identification by Nile Red[J]. Science of the Total Environment, 2021, 783: 147065. doi: 10.1016/j.scitotenv.2021.147065 [26] KONKOL K L, RASMUSSEN S C. An ancient cleanser: Soap production and use in antiquity[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2015: 245-266. [27] DAWSON A L, MOTTI C A, KROON F J. Solving a sticky situation: Microplastic analysis of lipid-rich tissue[J]. Frontiers in Environmental Science, 2020, 8: 563565. doi: 10.3389/fenvs.2020.563565 [28] NELMS S E, GALLOWAY T S, GODLEY B J, et al. Investigating microplastic trophic transfer in marine top predators[J]. Environmental Pollution, 2018, 238: 999-1007. doi: 10.1016/j.envpol.2018.02.016 [29] 邹亚丹, 徐擎擎, 张哿, 等. 6种消解方法对荧光测定生物体内聚苯乙烯微塑料的影响[J]. 环境科学, 2019, 40(1): 496-503. doi: 10.13227/j.hjkx.201804072 ZOU Y D, XU Q Q, ZHANG G, et al. Influence of six digestion methods on the determination of polystyrene microplastics in organisms using the fluorescence intensity[J]. Environmental Science, 2019, 40(1): 496-503 (in Chinese). doi: 10.13227/j.hjkx.201804072
[30] GOHLA J, BRAČUN S, GRETSCHEL G, et al. Potassium carbonate (K2CO3) - A cheap, non-toxic and high-density floating solution for microplastic isolation from beach sediments[J]. Marine Pollution Bulletin, 2021, 170: 112618. doi: 10.1016/j.marpolbul.2021.112618 [31] KEDZIERSKI M, Le TILLY V, CÉSAR G, et al. Efficient microplastics extraction from sand. A cost effective methodology based on sodium iodide recycling[J]. Marine Pollution Bulletin, 2017, 115(1/2): 120-129. [32] 宋小卫, 吴晓凤, 宋小平, 等. 微塑料的提取分离方法研究进展[J]. 环境化学, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401 SONG X W, WU X F, SONG X P, et al. Research progress on the extraction and separation methods of microplastics[J]. Environmental Chemistry, 2022, 41(3): 793-800 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020112401
[33] PRATA J C, SILVA A L P, Da COSTA J P, et al. Microplastics in internal tissues of companion animals from urban environments[J]. Animals, 2022, 12(15): 1979. doi: 10.3390/ani12151979 [34] KERSHAW P J, TURRA A, GALGANI F, et al. Guidelines for the Monitoring and assessment of plastic litter and microplastics in the ocean[R]. London, UK: GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2019. [35] PRATA J C, REIS V, PAÇO A, et al. Effects of spatial and seasonal factors on the characteristics and carbonyl index of (micro)plastics in a sandy beach in Aveiro, Portugal[J]. Science of the Total Environment, 2020, 709: 135892. doi: 10.1016/j.scitotenv.2019.135892 [36] RODRIGUES M O, ABRANTES N, GONÇALVES F J M, et al. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal)[J]. Science of the Total Environment, 2018, 633: 1549-1559. doi: 10.1016/j.scitotenv.2018.03.233 [37] KAPUKOTUWA R W M G K, JAYASENA N, WEERAKOON K C, et al. High levels of microplastics in commercial salt and industrial salterns in Sri Lanka[J]. Marine Pollution Bulletin, 2022, 174: 113239. doi: 10.1016/j.marpolbul.2021.113239 [38] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展[J]. 环境化学, 2017, 36(1): 27-36. doi: 10.7524/j.issn.0254-6108.2017.01.2016051704 WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment[J]. Environmental Chemistry, 2017, 36(1): 27-36 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051704
[39] LÖDER M G J, IMHOF H K, LADEHOFF M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14283-14292.