-
内分泌系统是环境污染物重要的靶系统之一[1]. 按组成功能的不同,内分泌系统可分为肾上腺激素系统,性激素系统,甲状腺激素系统,垂体激素系统,松果体激素系统和内分泌细胞激素系统等. 这些系统产生的激素对维持生物体体内稳态、调节生物体生长发育和新陈代谢等生物过程都具有重要作用[2 − 7].
内分泌干扰物是指能改变内分泌系统的功能从而对完整的生物体或其后代或(亚)种群产生不利的健康影响的外源性物质或混合物[8],可通过多种机制产生内分泌干扰作用,其中一种重要机制是激素的合成、运输与代谢. 农药会随各种途径进入水环境,对水生生物尤其是鱼类造成不利的内分泌影响[9]. 例如,联苯菊酯增大奇努克鲑幼鱼的睾酮(testosterone, T)含量[10];马拉硫磷和六氯环己烷显著降低雌性鲶鱼的血浆雌酮(estrone, E1)水平[11];此外,戊唑醇导致斑马鱼甲状腺功能紊乱并降低斑马鱼体内的甲状腺素(thyroxine, T4)和3,5,3'-三碘甲腺氨酸(3,5,3’-triiodothyronine, T3)水平[12]. 然而,现有研究关注的激素种类相对较少,通常只涉及少数几种激素. 如果想对农药的内分泌毒性进行全面了解,还需要在研究中尽可能多地覆盖更多的激素.
阿特拉津是一种被广泛使用的三嗪类农药,是美国使用量第二大的除草剂,也是我国主要使用的除草剂之一,主要用于玉米和高粱种植区的杂草去除[13]. 阿特拉津结构较稳定、在水中半衰期较长[14],实验室条件下,pH值为5—9时,阿特拉津在水中的浓度可稳定30 d,在中性状态下,阿特拉津的半衰期可达150—180 d[15]. 阿特拉津可通过降雨径流、大气沉降和地下水淋溶迁移到水生环境中[16],随着农药的生产和使用,阿特拉津在世界各国的地表水中都被广泛检出,含量在μg·L−1水平[17 − 18]. 在中国长江的泰州-南通段,阿特拉津的水体检出率达100%,含量为0.10—64.49 μg·L−1[19],在河南和张家口地区的地表水中,阿特拉津的平均含量分别为0.15 μg·L−1 [20]和6.7 μg·L−1 [21]. 阿特拉津也是一种内分泌干扰物[22],可通过增大垂体重量、降低类固醇代谢酶活性改变大鼠内分泌系统的功能进而对大鼠产生不利的健康影响[23]. 阿特拉津对鱼类的内分泌影响也已有报道,例如,阿特拉津会降低雄性大西洋鲑鱼对雌鱼激素的嗅觉反应[24],增高斑马鱼体内细胞色素P450的含量[25],诱导虹鳟鱼幼鱼体内的雄激素转化为雌激素,诱导氧化应激并改变鱼肝脏的代谢过程[26]. 然而,目前还没有阿特拉津对鱼类的内分泌效应的全面评估.
斑马鱼是一种小型热带淡水鱼,由于具有体积小(成年斑马鱼体长3—5 cm)、繁殖时间短(3—5个月)、对化学品敏感、内分泌系统的组成和功能与人体类似的优势[27],已成为研究激素和内分泌干扰物生物效应的重要模式生物[28]. 本研究选用斑马鱼幼鱼作为受试生物,探究环境浓度暴露下阿特拉津对斑马鱼不同内分泌激素系统中22种激素的影响,同时运用毒理学综合指数法(ToxPi)表征阿特拉津对鱼类的内分泌干扰效应,为评估阿特拉津的水生态风险提供依据.
阿特拉津对斑马鱼的综合内分泌干扰效应
Comprehensive endocrine disruptive effects of atrazine on zebrafish
-
摘要: 阿特拉津是一种广泛使用的除草剂,同时也是一种内分泌干扰物,在环境水体中被频繁检出,然而目前还缺乏有关阿特拉津对鱼类内分泌干扰效应的全面了解. 本文研究了环境相关浓度暴露下阿特拉津对斑马鱼幼鱼不同内分泌激素系统中22种激素的影响,并在激素水平、内分泌激素系统水平、综合内分泌干扰指数水平进行了分析. 结果表明,阿特拉津暴露能够引起斑马鱼体内11-脱氧皮质醇(11DF)、皮质酮(COR)、醛固酮(ALDO)、雌酮(E1)、雌二醇(E2)、雄烯二酮(AD)、睾酮(T)、雄酮(ADT)、褪黑素(MT)、甲状腺素(T4)、前列腺素D2(PGD2)、前列腺素E2(PGE2)、前列腺素F1α(PGF1α)、血栓素B2(TXB2)的含量升高,和导致孕酮(P)、孕烯醇酮(PREG)、17α羟基孕酮(OHP)的含量降低. 在3个暴露浓度(1、10、100 μg·L−1)中,低浓度的阿特拉津对斑马鱼性激素系统、甲状腺激素系统、松果体激素系统和内分泌细胞激素系统的干扰作用更加明显,同时也具有更强的综合内分泌干扰效应.Abstract: Atrazine is a widely used herbicide and also an endocrine disruptor that is frequently detected in aquatic environment. However, the comprehensive profile of endocrine disruption of atrazine has been not revealed in fish up to date. The effects of atrazine on 22 hormones of various endocrine hormone systems were investigated in larval zebrafish at environmentally relevant concentrations, and assessed at the levels of hormone, endocrine hormone system and comprehensive index in the study. The results indicated that exposure to atrazine increased the levels of 11-deoxycortisol (11DF), corticosterone (COR), aldosterone (ALDO), estrone (E1), estradiol (E2), androstenedione (AD), testosterone (T), androstenedione (ADT), melatonin (MT), thyroxine (T4), prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), prostaglandin F1α (PGF1α) and thromboxane B2 (TXB2), and decreased the levels of progesterone (P), pregnenolone (PREG), and 17α-hydroxyprogesterone (OHP). Among the three exposure concentrations (1, 10 and 100 μg·L−1), the low concentration of atrazine induced stronger effects on the sex hormone system, thyroid hormone system, pineal hormone system and endocrine cell hormone system, and meanwhile posed a greatest comprehensive endocrine disruption in zebrafish.
-
表 1 各种激素及同位素内标详细信息
Table 1. The detailed information of hormones and isotope internal standards
分类
Category化合物
Compound英文全称
English name简称
Abbreviation纯度/%
Purity肾上腺激素系统 去甲肾上腺素 norepinephrine NE 98 肾上腺素 epinephrine E 100 11-脱氧皮质醇 11-deoxycortisol 11DF 99.3 皮质酮 corticosterone COR 99.1 醛固酮 aldosterone ALDO 97.0 皮质醇 cortisol F 98.0 性激素系统 雌酮 estrone E1 99.6 雌二醇 estradiol E2 95.4 雄烯二酮 androstenedione AD 99.3 睾酮 testosterone T 98.0 雄酮 androsterone ADT 98.4 孕酮 progesterone P 99.5 17α-羟基孕酮 17α-hydroxyprogesterone OHP 99.0 孕烯醇酮 pregnenolone PREG 100.0 甲状腺激素系统 3,3,5-三碘甲状腺原氨酸 3,3,5-triiodo-L-thyronine T3 100.0 甲状腺素 thyroxine T4 92.0 垂体激素系统 后叶加压素 vasopressin VP 98.0 松果体激素系统 褪黑素 melatonin MT 99.5 内分泌细胞激素系统 前列腺素 D2 prostaglandin D2 PGD2 100.0 前列腺素 E2 prostaglandin E2 PGE2 98.0 前列腺素 F1α prostaglandin F1α PGF1α 100.0 血栓素 B2 thromboxane B2 TXB2 100.0 同位素内标 褪黑素-d4 melatonin-d4 MT-d4 100.0 甲状腺素-c6 thyroxine-c6 T4-c6 99.3 睾酮-c3 testosterone-c3 T-c3 99.3 孕酮-d9 progesterone-d9 P-d9 100.0 皮质醇-d4 cortisol-d4 F-d4 99.1 前列腺素 E2-d4 prostaglandin E2-d4 PGE2-d4 100.0 -
[1] DIAMANTI-KANDARAKIS E, BOURGUIGNON J P, GIUDICE L C, et al. Endocrine-disrupting chemicals: An endocrine society scientific statement[J]. Endocrine Reviews, 2009, 30(4): 293-342. doi: 10.1210/er.2009-0002 [2] DI LORENZO M, BARRA T, ROSATI L, et al. Adrenal gland response to endocrine disrupting chemicals in fishes, amphibians and reptiles: A comparative overview[J]. General and Comparative Endocrinology, 2020, 297: 113550. doi: 10.1016/j.ygcen.2020.113550 [3] LINDEROTH M, LEDESMA M, ZEBÜHR Y, et al. Sex steroids in the female zebrafish (Danio rerio). Effects of cyproterone acetate and leachate-contaminated sediment extract[J]. Aquatic Toxicology (Amsterdam, Netherlands), 2006, 79(2): 192-200. doi: 10.1016/j.aquatox.2006.06.011 [4] MULLUR R, LIU Y Y, BRENT G A. Thyroid hormone regulation of metabolism[J]. Physiological Reviews, 2014, 94(2): 355-382. doi: 10.1152/physrev.00030.2013 [5] MATSUMOTO R, TAKAHASHI Y. Human pituitary development and application of iPSCs for pituitary disease[J]. Cellular and Molecular Life Sciences, 2021, 78(5): 2069-2079. doi: 10.1007/s00018-020-03692-8 [6] KIM H J, KIM H J, BAE M K, et al. Suppression of osteoclastogenesis by melatonin: A melatonin receptor-independent action[J]. International Journal of Molecular Sciences, 2017, 18(6): 1142. doi: 10.3390/ijms18061142 [7] ENGSTRÖM L, RUUD J, ESKILSSON A, et al. Lipopolysaccharide-induced fever depends on prostaglandin E2 production specifically in brain endothelial cells[J]. Endocrinology, 2012, 153(10): 4849-4861. doi: 10.1210/en.2012-1375 [8] IPCS (2002). Global assessment of the state-of-the-science of endocrine disruptors[R]. Geneva, Switzerland: World Health Organization, International Programme on Chemical Safety. [9] AMENYOGBE E, HUANG J S, CHEN G, et al. An overview of the pesticides’ impacts on fishes and humans[J]. International Journal of Aquatic Biology, 2021, 9(1): 55-65. [10] GIROUX M, GAN J, SCHLENK D. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon[J]. Environmental Toxicology and Chemistry, 2019, 38(4): 852-861. doi: 10.1002/etc.4372 [11] SINGH S, SINGH T P. Impact of malathion and hexachlorocyclohexane on plasma profiles of three sex hormones during different phases of the reproductive cycle in Clarias batrachus[J]. Pesticide Biochemistry and Physiology, 1987, 27(3): 301-308. doi: 10.1016/0048-3575(87)90059-9 [12] LI S Y, WU Q, SUN Q Q, et al. Parental exposure to tebuconazole causes thyroid endocrine disruption in zebrafish and developmental toxicity in offspring[J]. Aquatic Toxicology, 2019, 211: 116-123. doi: 10.1016/j.aquatox.2019.04.002 [13] United States Environmental Protection Agency (USEPA). Atrazine Chemical Summary. [R/OL].[2023-02-17]. [14] WU S H, LI H R, LI X, et al. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants[J]. Chemical Engineering Journal, 2018, 353: 533-541. doi: 10.1016/j.cej.2018.06.133 [15] 严登华, 何岩, 王浩. 东辽河流域地表水体中Atrazine的环境特征[J]. 环境科学, 2005, 26(3): 203-308. doi: 10.3321/j.issn:0250-3301.2005.03.041 YAN D H, HE Y, WANG H. Environmental characteristics of the atrazine in the waters in east Liaohe River Basin[J]. Environmental Science, 2005, 26(3): 203-308(in Chinese) doi: 10.3321/j.issn:0250-3301.2005.03.041
[16] OUYANG W, ZHANG Y, LIN C Y, et al. Metabolic process and spatial partition dynamics of Atrazine in an estuary-to-bay system, Jiaozhou bay[J]. Journal of Hazardous Materials, 2021, 414: 125530. doi: 10.1016/j.jhazmat.2021.125530 [17] GILLIOM R J, BARBASH J E, CRAWFORD C G, et al. Pesticides in the Nation's Streams and Ground Water, 1992–2001[R]. U. S. Geological Survey, Reston, Virginia, 2006. [18] BACHETTI R A, URSELER N, MORGANTE V, et al. Monitoring of atrazine pollution and its spatial-seasonal variation on surface water sources of an agricultural river basin[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(6): 929-935. doi: 10.1007/s00128-021-03264-x [19] 杨敏娜, 周芳, 孙成, 等. 长江江苏段有毒有机污染物的残留特征及来源分析[J]. 环境化学, 2006, 25(3): 375-376 YANG M N, ZHOU F, SUN C, et al. Residual characteristics and source analysis of toxic organic pollutants in Jiangsu section of the Yangtze River[J]. Environmental Chemistry, 2006, 25(3): 375-376(in Chinese)
[20] YU J, BIAN Z Q, TIAN X H, et al. Atrazine and its metabolites in surface and well waters in rural area and its human and ecotoxicological risk assessment of Henan Province, China[J]. Human and Ecological Risk Assessment:an International Journal, 2018, 24(1): 1-13. doi: 10.1080/10807039.2017.1311768 [21] REN J, JIANG K. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China[J]. Chinese Science Bulletin, 2002, 47(19): 1612-1616. doi: 10.1007/BF03184108 [22] GROSHART C, OKKERMAN P C. Towards the establishment of a priority list of substances for further evaluation of their role in endocrine disruption - preparation of a candidate list of substances as a basis for priority setting[R]. European Commission: DG Environment, The Netherlands, 2000. [23] VAINIO H, HESELTINE E, SHUKER L, et al. Meeting report: Occupational exposures in insecticide application and some pesticides[J]. European Journal of Cancer and Clinical Oncology, 1991, 27(3): 284-289. doi: 10.1016/0277-5379(91)90517-H [24] MOORE A, LOWER N. The impact of two pesticides on olfactory-mediated endocrine function in mature male Atlantic salmon (Salmo salar L. ) parr[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2001, 129(2/3): 269-276. [25] DONG X L, ZHU L S, WANG J H, et al. Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio)[J]. Chemosphere, 2009, 77(3): 404-412. doi: 10.1016/j.chemosphere.2009.06.052 [26] SALABERRIA I, HANSEN B H, ASENSIO V, et al. Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss)[J]. Toxicology and Applied Pharmacology, 2009, 234(1): 98-106. doi: 10.1016/j.taap.2008.09.023 [27] SPRAGUE J, CLEMENTS D, CONLIN T, et al. The Zebrafish Information Network (ZFIN): The zebrafish model organism database[J]. Nucleic Acids Research, 2003, 31(1): 241-243. doi: 10.1093/nar/gkg027 [28] CABALLERO-GALLARDO K, OLIVERO-VERBEL J, FREEMAN J L. Toxicogenomics to evaluate endocrine disrupting effects of environmental chemicals using the zebrafish model[J]. Current Genomics, 2016, 17(6): 515-527. doi: 10.2174/1389202917666160513105959 [29] SAGLIO P, TRIJASSE S. Behavioral responses to atrazine and diuron in goldfish[J]. Archives of Environmental Contamination and Toxicology, 1998, 35(3): 484-491. doi: 10.1007/s002449900406 [30] GAO S Y, YANG F X. Behavioral changes and neurochemical responses in Chinese rare minnow exposed to four psychoactive substances[J]. Science of the Total Environment, 2022, 808: 152100. doi: 10.1016/j.scitotenv.2021.152100 [31] 张莹, 沈佳莹, 杨方星. QuEChERS-超高效液相色谱-串联质谱法同时测定斑马鱼中多种激素生物标志物[J]. 环境化学, 2021, 40(4): 964-973. doi: 10.7524/j.issn.0254-6108.2019113002 ZHANG Y, SHEN J Y, YANG F X. Simultaneous determination of multiple hormone biomarkers in zebrafish by QuEChERS and ultra-high performance liquid chromatography coupled with tandem mass spectrometry[J]. Environmental Chemistry, 2021, 40(4): 964-973 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019113002
[32] REIF D M, MARTIN M T, TAN S W, et al. Endocrine profiling and prioritization of environmental chemicals using ToxCast data[J]. Environmental Health Perspectives, 2010, 118(12): 1714-1720. doi: 10.1289/ehp.1002180 [33] MARVEL S W, TO K, GRIMM F A, et al. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models[J]. BMC Bioinformatics, 2018, 19(1): 80. doi: 10.1186/s12859-018-2089-2 [34] FRAITES M J P, COOPER R L, BUCKALEW A, et al. Characterization of the hypothalamic-pituitary-adrenal axis response to atrazine and metabolites in the female rat[J]. Toxicological Sciences, 2009, 112(1): 88-99. doi: 10.1093/toxsci/kfp194 [35] LAWS S C, HOTCHKISS M, FERRELL J, et al. Chlorotriazine herbicides and metabolites activate an ACTH-dependent release of corticosterone in male wistar rats[J]. Toxicological Sciences, 2009, 112(1): 78-87. doi: 10.1093/toxsci/kfp190 [36] PRUETT S B, FAN R P, ZHENG Q, et al. Modeling and predicting immunological effects of chemical stressors: Characterization of a quantitative biomarker for immunological changes caused by atrazine and ethanol[J]. Toxicological Sciences, 2003, 75(2): 343-354. doi: 10.1093/toxsci/kfg200 [37] COOPER R L, LAWS S C, DAS P C, et al. Atrazine and reproductive function: Mode and mechanism of action studies[J]. Birth Defects Research Part B:Developmental and Reproductive Toxicology, 2007, 80(2): 98-112. doi: 10.1002/bdrb.20110 [38] KAMEL F, KUBAJAK C L. Modulation of gonadotropin secretion by corticosterone: Interaction with gonadal steroids and mechanism of action[J]. Endocrinology, 1987, 121(2): 561-568. doi: 10.1210/endo-121-2-561 [39] WROBEL M H, MLYNARCZUK J. The inhibition of myometrial contractions by chlorinated herbicides (atrazine and linuron), and their disruptive effect on the secretory functions of uterine and ovarian cells in cow, in vitro[J]. Pesticide Biochemistry and Physiology, 2017, 142: 44-52. doi: 10.1016/j.pestbp.2017.01.002 [40] TAN D X, MANCHESTER L C, REITER R J, et al. Significance of melatonin in antioxidative defense system: Reactions and products[J]. Biological Signals and Receptors, 2000, 9(3/4): 137-159. [41] BHATTI J S, SIDHU I P S, BHATTI G K. Ameliorative action of melatonin on oxidative damage induced by atrazine toxicity in rat erythrocytes[J]. Molecular and Cellular Biochemistry, 2011, 353(1): 139-149. [42] WANG S C, ZHANG Q J, ZHENG S F, et al. Atrazine exposure triggers common carp neutrophil apoptosis via the CYP450s/ROS pathway[J]. Fish & Shellfish Immunology, 2019, 84: 551-557. [43] KELLY G S. Peripheral metabolism of thyroid hormones: A review[J]. Alternative Medicine Review, 2000, 5(4): 306-333.