-
环境雌激素(environmental estrogens,EEs)是广泛分布在环境中的一类具有雌激素活性的化学物质,根据来源可分为天然雌激素,如雌酮(E1)、17β-雌二醇(E2)和雌三醇(E3);与人工合成雌激素,如双酚S(BPS)、己烯雌酚(DES)和己烷雌酚(HS)等两大类[1]. 随着2013年欧盟将E2列入新型污染物名单(Directive 2013/39/EU),EEs对水生动物的毒性效应已经引起广泛关注. EEs可以通过人及动物排泄物以及工业废水进入水体环境中,具有毒性高,难降解的特点,并干扰生殖及代谢系统的正常功能. 但是EEs在水体环境中浓度极低,检测之前需对样品进行富集、浓缩与净化以降低基质影响,提高检测灵敏度与回收率[2].
目前报道的环境水体中EEs样品前处理方法有固相萃取(SPE)[3]、固相微萃取(SPME)[4]、分散液液微萃取(DLLME)、漂浮液滴固化分散液液微萃取技术(DLLME-SFO)[5]等. 固相萃取法(SPE)操作繁琐,且有机溶剂消耗量大;固相微萃取法(SPME)所需溶剂极少,但萃取时间较长,纤维耗材价格高、易碎、容易超载,成本较高;分散液液微萃取法(DLLME)是一种目前新型的微萃取技术,集萃取与浓缩于一体,被广泛应用于样品前处理中,但其萃取溶剂一般为毒性较大的含氯有机试剂. 漂浮液滴固化分散液液微萃取技术(DLLME-SFO)是对DLLME的改进,保留了DLLME简单、快速、成本低廉的优点,同时使用低毒的长链脂肪烃、脂肪醇等作为萃取剂,萃取水相中的目标化合物;利用萃取剂低温固化的特点进行回收,因此更加环境友好,常用于检测水体中的污染物[6].
本文利用脂肪酸可在亲水-疏水形态间转换的特点,拟建立一种新型泡腾辅助溶剂转换液相微萃取技术,对室温下为液态的5种中链脂肪酸进行筛选,发现辛酸除具有优秀的萃取回收率外,其低熔点、低密度可以作为萃取剂应用于漂浮液滴固化微萃取[7],结合HPLC测定湖水和河水中环境雌激素的含量.
基于泡腾辅助脂肪酸形态转化的悬浮固化-分散液液微萃取测定水样中环境雌激素
An optimized of effervescence-assisted switchable fatty acid-based microextraction with solidification of floating organic droplet for determination of environmental estrogens in environmental water samples
-
摘要: 本研究建立脂肪酸形态转化液液微萃取技术并结合高效液相色谱对湖水和河水中雌酮、己烯雌酚和己烷雌酚这3种环境雌激素(EEs)进行了测定. 利用脂肪酸可在亲水-疏水形态间转换的特点,对5种中链脂肪酸筛选得到辛酸作为萃取剂,同时根据其低温固化的特点,利用漂浮液滴固化微萃取技术进行测定. 通过实验设计优化最优萃取条件为:H2SO4 (98%)体积238 μL、Na2CO3 (2 mol·L−1)体积413 μL、脂肪酸体积144 μL和涡旋时间3.3 min. 最优萃取条件下检测, 定量限范围0.110—0.201 µg·L−1,回收率范围89.0%—101.5%. 本方法具有简便快捷,检测限低,回收率高,绿色环保等优点,适用于多种环境水体中EEs的快速定性及定量分析.Abstract: This study created a new method for easily and quickly determining environmental estrogens (estrone, diethylstilbestrol, and hexestrol) in samples of tap water, lake water, rainwater, and river water. This method uses a switchable fatty acid-based microextraction assisted by effervescence in conjunction with the solidification of a floating organic droplet. Five medium-chain fatty acids were tested as an extraction solvent given their ability to change between hydrophobic and hydrophilic forms by pH adjustment. Octanoic acid had the capacity to change from a liquid to a solidified floating state at low temperatures and had outstanding extraction recovery for three environmental estrogens, therefore four primary characteristics were assessed using central composite design as follows: 238 μL H2SO4 (98%), 413 μL Na2CO3 (2 mol·L−1), 144 μL fatty acid and 3.3 min vortex time. Under optimized conditions, limits of quantitation were 0.110—0.201 µg·L−1 and extraction recoveries were 89.0%—101.5% for three environmental estrogens in four kinds of environmental water samples. Overall, the new method is simple, quick, and environment-friendly with low detection limits and high recoveries.
-
表 1 CCD设计的因素和水平
Table 1. Factors, symbols and levels for the CCD
因子 符号 −α(低) −1 0 1 +α(高) H2SO4体积/μL A 100 160 250 340 400 Na2CO3体积/μL B 100 220 400 580 700 脂肪酸体积/μL C 50 90 150 210 250 涡旋时间/min D 0 1.2 3.0 4.8 6.0 表 2 前处理方法的分析性能
Table 2. The analytical performance of pre-treatment method
污染物 线性方程 决定系数 (R2) 线性范围/(µg·L−1) 检出限/(µg·L−1) 定量限/(µg·L−1) E1 y=0.0479x−7.09 0.993 0.201—1000 0.060 0.201 DES y=0.0530x−5.17 0.992 0.186—1000 0.056 0.186 HS y=0.0392x+1.58 0.998 0.110—1000 0.033 0.110 表 3 微萃取前处理技术的性能分析(n = 6)
Table 3. Analytical performance for the proposed microextraction method (mean ± SD, n = 6)
污染物 湖水 河水 空白/(µg·L−1) 检出/(µg·L−1) 回收率/% 空白/(µg·L−1) 检出/(µg·L−1) 回收率/% E1 10 0.5±0.2 9.1±0.9 91.0 1.2±0.3 9.2±0.8 92.0 50 0.5±0.2 47.6±1.5 95.2 1.2±0.3 47.9±1.8 95.8 100 0.5±0.2 96.1±1.5 96.1 1.2±0.3 96.4±2.1 96.4 DES 10 未检出 9.2±1.2 92.0 未检出 9.3±1.4 93.0 50 未检出 48.5±1.5 97.0 未检出 50.5±2.2 101.0 100 未检出 101.5±2.2 101.5 未检出 98.7±1.9 98.7 10 未检出 9.5±1.1 95.0 未检出 8.9±1.1 89.0 HS 50 未检出 48.7±1.4 97.4 未检出 49.5±1.7 99.0 100 未检出 97.9±2.3 97.9 未检出 100.7±2.1 100.7 -
[1] CHEN B B, HUANG Y L, HE M, et al. Simultaneous determination of five major bioactive components in traditional Chinese medicine formula Shugan Jianpi Recipe by high-performance liquid chromatography with diode array detector[J]. Chromatogr A, 2013, 1305: 17-26. doi: 10.1016/j.chroma.2013.06.029 [2] ZHANG G, YANG Y S, LU Y, et al. Effect of heavy metal ions on steroid estrogen removal and transport in SAT using DLLME as a detection method of steroid estrogen[J]. Water, 2020, 12(2): 589. [3] SIMON E, SCHIFFERLI A, BUCHER T B, et al. Characterization of the binding properties of the antibody-drug conjugate tositumomab-doxorubicin-nanocrystal by integrated biomolecular and biophysical tools[J]. Anal Bioanal Chem, 2019, 411(10): 2057-2069. doi: 10.1007/s00216-019-01628-1 [4] JI X P, SUN M, LI C Y, et al. Synthesis of highly ordered nanostructured carbon-based materials using a simple and low-cost method[J]. Journal of Separation Science, 2019, 42(14): 2398-2406. doi: 10.1002/jssc.201900010 [5] LEONG M I, HUANG S D. A simple method for the determination of trace levels of copper in water samples using a flow-injection on-line preconcentration system coupled with flame atomic absorption spectrometry[J]. Chromatogr A, 2008, 1211(1-2): 8-12. doi: 10.1016/j.chroma.2008.09.111 [6] 袁继委, 王金成, 徐威力, 等. 凝固漂浮有机液滴-分散液液微萃取结合高效液相色谱法同时测定地表水中多环芳烃和酞酸酯[J]. 色谱, 2020, 38(11): 1308-1315. [7] SERESHTI H, HERAVI Y E, SAMADI S. Synthesis, characterization and catalytic activity of unsupported and Pt-loaded SnO2 catalysts prepared by sol-gel method[J]. Talanta, 2012, 97(16): 235-241.