-
有机磷酸酯(organophosphate esters,OPEs)作为阻燃剂或增塑剂被广泛应用于各类工业和民用产品,如塑料、涂料、橡胶、泡沫、纺织、电子、家具、建筑材料等[1]. 多溴二苯醚(polybrominated diphenyl ethers,PBDEs)等溴代阻燃剂在环境中具有持久性、远距离迁移性、生物累积性和高毒性[2],已经被逐渐淘汰和禁用[3 − 4]. 作为其替代品,OPEs的产量和消费量逐年增加,全球OPEs消费量从1992年的10万吨增加到2015年的68万吨,2018年增加到105万吨[5 − 7]. 由于OPEs通常以物理添加而非化学键合的方式添加到各种材料中,因此很容易通过挥发、浸出、磨损等方式释放到不同环境介质中[8 − 10]. OPEs已在世界各地的空气[11 − 13]、灰尘[11, 14 − 15]、水[16 − 18]、沉积物[16, 19]和土壤[20 − 22]等环境介质中广泛检出. 毒理学研究表明,OPEs对动物具有许多潜在毒性,如生殖毒性[23 − 24]、发育毒性[25 − 26]、神经毒性[27]等,长期接触OPEs可能会导致严重的健康问题.
OPEs的广泛使用和环境存在会不可避免导致人体暴露,人体会通过呼吸[14, 28]、皮肤接触[29 − 31]、饮食[32 − 33]等多种途径摄入OPEs. 目前已在人体尿液、血液、母乳、头发、指甲等多种生物基质中检出OPEs及其代谢物[34 − 37]. 进入人体内的大部分OPEs易经肝脏等代谢器官转化成二酯代谢物(di-OPE)和羟基化代谢物(OH-OPE),并通过尿液等方式排泄或在体内累积[38]. 尿液以非侵入性方式收集,较血液等基质更容易获取,可提供人体暴露OPEs的综合信息,涵盖所有类型的来源和暴露途径,因此尿液是人体OPEs暴露评估的最常用基质,尿液中di-OPEs是现阶段识别和量化人体暴露于OPEs的首选生物标志物[39 − 40].
大多数OPEs能在人体内被快速代谢,但也有部分OPEs的转化效率较低. 例如,体外研究发现,2-乙基己基二苯基磷酸酯(EHDPP)可稳定存在于人肝细胞内,48 h代谢率仅为6.12%[41];银鸥肝微粒将磷酸三苯酯(TPHP)转化为DPHP的转化率仅为15%±3%[42]. He等[43]在澳大利亚儿童尿液中检出了磷酸三(2-氯乙基)酯(TCEP)、磷酸三(1-氯-2-丙基)酯(TDCIPP)、磷酸三(2-乙基己基)酯(TEHP)、TPHP、EHDPP等多种OPEs. 人肝微粒的体外实验表明,OH-OPEs是许多OPEs的主要转化产物而非di-OPEs[44],一些研究也对尿液中OH-OPEs进行了分析[45 − 48]. 但鲜有研究同时对OPEs、di-OPEs和OH-OPEs进行定量分析,且目前关注的目标化合物种类较少,或要分别进行前处理操作,过程复杂,试剂用量大[49].
本研究优化了萃取和净化等前处理参数,建立了一种同时测定尿液样品中14种OPEs、7种di-OPEs和3种OH-OPEs的HPLC-MS/MS分析方法,用以评估人体OPEs暴露水平及代谢特征.
固相萃取-液相色谱-串联质谱测定人体尿液中有机磷酸酯及其二酯和羟基代谢物
Determination of organophosphate esters and their diester and hydroxylated metabolites in human urine by high performance liquid chromatography-tandem mass spectrometry combined with solid phase extraction
-
摘要: 尿液中的有机磷酸酯二酯代谢物(di-OPEs)是现阶段识别和量化人体暴露于有机磷酸酯(OPEs)的首选生物标志物. 目前鲜有研究同时对OPEs及其二酯代谢物、羟基代谢物(OH-OPEs)进行分析测定,且关注的目标化合物种类较少. 本研究对尿液前处理过程中常用的净化浓缩方法进行了优化,建立了人体尿液样品中14种OPEs、7种di-OPEs和3种OH-OPEs的高效液相色谱-串联质谱分析方法(HPLC-MS/MS). 取2 mL样品经β-葡萄糖醛酸酶/芳基硫酸酯酶酶解6 h后,加入2% 甲酸/水调节pH,然后用STRATA-X-AW固相萃取柱进行净化,收集固相萃取过程中的2% 甲酸/甲醇淋洗液和2% 氨水/甲醇洗脱液氮吹浓缩后分别进行OPEs、OH-OPEs和di-OPEs的HPLC-MS/MS测定,OPEs和OH-OPEs的质谱检测选用电喷雾正离子模式电离,di-OPEs选用负离子模式,在多重反应监测模式(MRM)下测定. 尽管尿液样品中多数目标物质在检测时存在基质效应(均值24%—159%),但通过合适的同位素内标进行校正,可以抵消部分基质影响. 在优化的条件下,24种目标物质在0.05—40 ng·mL−1范围内线性关系良好(r>0.99),方法检出限(MDL)
0.0008 —0.32 ng·mL−1,加标回收率60%—131%,RSD为4%—22%. 采用本方法对实际人体尿液样本进行分析,7种di-OPEs和3种OH-OPEs的总含量为0.07—7.04 ng·mL−1,中位含量为 0.54 ng·mL−1,14种OPEs的总含量为<MDL—0.68 ng·mL−1,中位含量为0.05 ng·mL−1. 两种具有直接工业生产应用的di-OPEs(磷酸二苯基酯DPHP和磷酸二丁酯DBP)检出率高于60%,其来源值得追溯. 一种新型有机磷酸酯阻燃剂3-异丙基苯基二苯基磷酸酯(3IPPDPP)的检出率为66.7%,应该引起关注.-
关键词:
- 有机磷酸酯 /
- 代谢物 /
- 固相萃取 /
- 高效液相色谱-串联质谱 /
- 人体尿液
Abstract: Organophosphate diester (di-OPE) metabolites in urine are commonly used as biomarkers to identify and quantify human exposure to organophosphate esters (OPEs). Few studies have determined OPEs and their diester and hydroxyl metabolites (OH-OPEs) at the same time, and there were fewer types of substances of concern. In this study, purification and concentration parameters in the pretreatment process were optimized, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established for the detection of 14 OPEs, 7 di-OPEs and 3 OH-OPEs in human urine samples. 2 mL of the sample was digested by β-glucuronidase/aryl sulfatase enzyme solution for 6 h. After adding 2% formic acid in water to adjust the pH value, the samples were cleaned up by a STRATA-X-AW solid phase extraction column, 2% formic acid/methanol rinse and 2% ammonia/methanol eluent were collected and concentrated for the detection of OPEs, OH-OPEs and di-OPEs by HPLC-MS/MS. OPEs and OH-OPEs were ionized in electrospray ionization positive mode, di-OPEs were ionized in electrospray ionization negative mode, then the analytes were detected in the multiple reaction monitoring (MRM) mode. Although most of the target analytes in urine samples have matrix effects (average in range of 24%—159%), the matrix effects can be partially cancelled out by choosing suitable isotopic internal standards for correction. Under the optimized condition, the linear relationships of all the analytes were good in the range of 0.05—40 ng·mL−1 (r>0.99). The method detection limits (MDL) ranged from0.0008 ng·mL−1 to 0.32 ng·mL−1. The average recoveries of 24 analytes in urine were in the range of 60%—131% and the RSDs were in the range of 4%—22%. The optimized method was applied to detect OPEs, di-OPEs and OH-OPEs in 15 human urine samples. The total concentrations of 7 di-OPEs and 3 OH-OPEs ranged from 0.07 ng·mL−1 to 7.04 ng·mL−1, with a median concentration of 0.54 ng·mL−1, and the total concentrations of 14 OPEs ranged from < MDL to 0.68 ng·mL−1, with a median concentration of 0.05 ng·mL−1. Diphenyl phosphate (DPHP) and dibutyl phosphate (DBP), which have direct industrial production and applications, were detected at a rate higher than 60%, so their sources need to be further studied. 3-isopropylphenyl diphenyl phosphate (3IPPDPP), a new organophosphate flame retardant, was detected at a rate of 66.7%, and it should be a cause for concern. -
表 1 7种di-OPEs的质谱参数
Table 1. MS parameters for 7 di-OPEs
化合物
Compounds缩写
Abbreviation母离子
Precursor ion(m/z)子离子
Product ion
(m/z)解簇电压/ V
DP入口电压/ V
EP碰撞出口
电压/ V
CXPDibutyl phosphate
(磷酸二丁酯)DBP 209 78.9*, 152.9 −70, −70 −10 −7, −8 Diphenyl phosphate
(磷酸二苯基酯)DPHP 248.9 92.9*, 155 −80, −80 −10 −6, −10 Bis(2-chloroethyl) phosphate
(磷酸二(2-氯乙基)酯)BCEP 221 35.1*, 36.9 −15, −15 −10 −10, −10 Bis(2-butoxyethy) phosphate
(磷酸二丁氧酯)BBOEP 297 78.8*, 197.0 −100, −100 −10 −6, −10 Di-o-tolyl-phosphate
(磷酸二甲苯酯)BMPP 277 107*, 169.0 −95, −95 −10 −8, −6 Bis(1-chloro-2-propyl) phosphate
(磷酸二(1-氯-2-丙基酯))BCIPP 248.8 34.9*, 37.0 −30, −30 −10 −9, −10 Bis(1,3-dichlo-ro-2-propyl) phosphate
(磷酸二(1,3-二氯-2-丙基)酯)BDCPP 316.9 35.0*, 37.0 −35, −35 −10 −5, −9 内标
ISDnBP-D18 227.1 78.9*, 163 −70, −20 −10 −7, −8 DPHP-D10 258.9 98.0*, 158.9 −90, −90 −10 −8, −8 BCEP-D8 229.0 35.0 −22 −10 −9 BCIPP-D12 260.6 35.0*, 37.0 −20, −20 −10 −9, −10 BBOEP-D8 305.0 78.9 −52 −10 −7 BMPP-D14 291 114.0*, 174.9 −100, −100 −10 −9, −12 BDCPP-D10 326.8 35 −40 −10 −9 注:*定量离子Quantitative ion;DBP包括DnBP (Di-n-butyl phosphate)和DiBP (Di-iso-butyl phosphate),BMPP包括DoCP (Di-o-tolyl-phosphate)和DpCP (Di-p-tolyl-phosphate). 表 2 14种OPEs和3种OH-OPEs的质谱参数
Table 2. MS parameters for 14 OPEs and 3 OH-OPEs
化合物
Compound缩写
Abbreviation母离子
Precursor
ion(m/z)子离子
Product ion
(m/z)解簇
电压/V
DP入口
电压/V
EP碰撞出口
电压/V
CXPTriethyl phosphate
(磷酸三乙酯)TEP 183.0 99.0*, 81.0 54, 60 10 7, 8 Trimethyl phosphate
(磷酸三甲酯)TMP 141.1 109.1*, 79.0 60, 60 10 10, 6 Tri(2-chloroethyl) phosphate
(磷酸三(2-氯乙基)酯)TCEP 285.0 63.0*, 99.2 80, 75 10 10, 10 Tri-phenyl phosphate
(磷酸三苯酯)TPHP 327.1 152.0*, 77.1 130, 130 10 11, 7 Trimethylphenyl phosphate
(磷酸三甲苯酯)TMPP 369.2 166.1*, 90.9 147, 147 10 11, 8 Tri(2-butoxyethyl) phosphate
(磷酸三丁氧酯)TBOEP 399.3 299.3*, 199.0 95, 95 10 10, 10 2-Ethylhexyl di-phenyl phosphate
2-乙基己基二苯基磷酸酯EHDPP 363.2 251.0*, 76.9 72,70 10 9,7 Tri(1,3-dichloro-2-propyl) phosphate
(磷酸三(1,3-二氯-2-丙基)酯)TDCPP 431.1 98.9*, 208.9 85, 84 10 9, 8 Cresyl diphenyl phosphate
(磷酸甲苯二苯酯)CDPP 341.1 152.1*, 165.1 135, 135 10 10, 10 2,2-bis(Chloromethyl) trimethylene
bis(bis(2-chloroethyl)phosphate)
2,2-双(氯甲基)三亚甲基双(双(2-氯乙基)磷酸酯)V6 582.9 361.1*, 234.7 111.6, 111.6 10 11, 16 3-isopropylphenyl diphenyl phosphate
3-异丙基苯基二苯基磷酸酯3IPPDPP 368.9 327.0*, 152.1 130, 130 10 11, 10 Bis(3-isopropylphenyl) phenyl phosphate
磷酸双(3-异丙基苯基)苯酯B3IPPPP 411.0 327.0*, 369.1 149, 149 10 12.5, 11 3-tert-Butylphenyl diphenyl phosphate
3-叔丁基苯基二苯基磷酸酯3tBPDPP 383.0 327.0*, 215.0 132, 132 10 12.5, 13 Bis(3-tert-butylphenyl) phenyl phosphate
磷酸双(3-叔丁基苯基)苯酯B3tBPPP 439.1 327.0*, 383.0 167, 167 10 16, 14 Bis(2-butoxyethyl) hydroxyethyl phosphate
双(2-丁氧基乙基)羟乙基磷酸酯BBOEHEP 343.2 243.1*, 101.1 72, 70 10 16, 10 4-hydroxyl triphenyl phosphate
4-羟基苯基二苯基磷酸酯4-OH-TPHP 343.1 141.1*, 215.1 119, 130 10 5, 8 2-ethyl-5-hydroxyhexyl diphenyl phosphate
2-乙基-5-羟基己基二苯基磷酸酯5-OH-EHDPP 379.1 251.0*, 153.1 70, 130 10 12, 7 内标
ISTEP-D15 198.0 101.9 65 10 8 TMP-D9 150.1 83.1 90 10 7 TCEP-D12 299.1 102.0 75 10 6 TBOEP-D18 426.2 208.2 85 10 15 TCIPP-D18 345.1 101.9 75 10 8 TDCPP-D15 445.8 101.9 85 10 8 TPHP-D15 342.3 160.0 135 10 10 BBOEHEP-D4 347.3 100.8 140 10 9 注:*定量离子Quantitative ion. 表 3 7种di-OPEs、3种OH-OPEs及14种OPEs在人体尿液中2 ng·mL−1 水平下的基质效应(n=4)
Table 3. Matrix effect of the 7 di-OPEs, 3 OH-OPEs and 14 OPEs in human urine at level of 2 ng·mL−1 (n=4)
化合物
Compound基质效应/%
ME精密度/%
RSD内标
Internal standard基质效应/%
ME精密度/%
RSDDBP 65 6 DnBP-D18 58 5 DPHP 59 8 DPHP-D10 59 0 BCEP 59 8 BCEP-D8 96 6 BBOEP 35 10 BBOEP-D8 35 5 BMPP 53 9 BMPP-D14 49 1 BCIPP 103 9 BCIPP-D12 88 3 BDCPP 52 8 BDCPP-D10 45 10 BBOEHEP 52 8 BBOEHEP-D4 29 6 4-OH-TPHP 34 13 TPHP-D15 22 7 5-OH-EHDPP 78 11 TBOEP-D6 141 4 TEP 84 2 TEP-D15 74 3 TMP 140 8 TMP-D9 136 6 TCEP 24 6 TCEP-D12 23 7 TPHP 86 9 TPHP-D15 89 3 TMPP 144 8 TPHP-D15 89 3 TBOEP 156 5 TBOEP-D6 151 4 EHDPP 139 20 TPHP-D15 89 3 TDCPP 73 10 TDCPP-D15 67 6 CDPP 112 5 TPHP-D15 89 3 V6 58 6 TCIPP-D18 68 4 3IPPDPP 147 6 TPHP-D15 89 3 B3IPPPP 155 6 TPHP-D15 89 3 3tBPDPP 147 5 TPHP-D15 89 3 B3tBPPP 159 6 TPHP-D15 89 3 表 4 7种di-OPEs、14种OPEs及3种OH-OPEs的线性范围、线性方程、相关系数和方法检出限
Table 4. Linear ranges, linear equations, correlation coefficients, detection limits and quantitation limits of 7 di-OPEs, 3 OH-OPEs and 14 OPEs
化合物Compound 内标
Internal Standard线性范围/(ng·mL−1)
Linear range线性方程
Linear equation相关系数
Correlation coefficient (r)方法检出限/(ng·mL−1)
MDLDBP DnBP-D18 0.1—40 y=0.156x+ 0.00739 0.9977 0.0076 DPHP DPHP-D10 0.05—20 y= 0.0397 x+0.00325 0.9979 0.015 BCEP BCEP-D8 0.5—20 y=0.144x+ 0.0057 0.9962 0.23 BBOEP BBOEP-D8 0.05—20 y= 0.0827 x-0.00404 0.9938 0.018 BMPP BMPP-D14 0.1—40 y=0.265x+ 0.00289 0.9969 0.0072 BCIPP BCIPP-D12 0.05—20 y=0.028x+ 0.00059 0.9983 0.020 BDCPP BDCPP-D10 0.05—20 y=0.146x+1.44×10-6 0.9992 0.028 BBOEHEP BBOEHEP-D4 0.05—20 y=1.55x+ 0.00241 0.9921 0.0056 4-OH-TPHP TPHP-D15 0.05—20 y=0.157x+ 0.00405 0.9974 0.0083 5-OH-EHDPP TBOEP-D6 0.05—20 y=0.113x+ 0.00154 0.9967 0.0040 TEP TEP-D15 0.05—20 y=0.122x+ 0.00335 0.9992 0.0081 TMP TMP-D9 0.5—20 y=0.147x- 0.00803 0.9986 0.32 TCEP TCEP-D12 0.05—20 y=0.155x+9.44×10-5 0.9996 0.014 TPHP TPHP-D15 0.05—20 y=0.161x+ 0.00159 0.9997 0.010 TMPP TPHP-D15 0.05—20 y=0.161x+ 0.00159 0.9997 0.0018 TBOEP TBOEP-D6 0.05—20 y= 0.0823 x+0.0118 0.9998 0.013 EHDPP TPHP-D15 0.05—20 y= 0.0782 x+0.00242 0.9992 0.011 TDCPP TDCPP-D15 0.05—20 y= 0.0342 x+0.00384 0.9987 0.0061 CDPP TPHP-D15 0.05—20 y=0.033x+ 0.000638 0.9990 0.036 V6 TCIPP-D18 0.05—20 y=0.22x+ 0.00543 0.9991 0.0036 3IPPDPP TPHP-D15 0.05—20 y=0.471x+ 0.0111 0.9982 0.0013 B3IPPPP TPHP-D15 0.05—20 y=0.506x+ 0.0125 0.9977 0.0008 3tBPDPP TPHP-D15 0.05—20 y=0.476x+ 0.00998 0.9983 0.0009 B3tBPPP TPHP-D15 0.05—20 y=0.36x+ 0.00378 0.9993 0.0008 表 5 7种di-OPEs、3种OH-OPEs及14种OPEs在人体尿液中低浓度水平下的加标回收率(n=4)
Table 5. Spiked recoveries and relative standard deviations of the 7 di-OPEs, 3 OH-OPEs and 14 OPEs in human urine at low concentration levels (n=4)
化合物
Compound加标浓度水平
Spiked concentration0.5 ng·mL−1 1 ng·mL−1 回收率/%
Recovery精密度/%
RSD回收率/%
Recovery精密度/%
RSDDBP 89 12 108 7 DPHP 90 9 92 5 BCEP 78 5 69 17 BBOEP 121 7 106 14 BMPP 114 19 93 5 BCIPP 108 5 101 6 BDCPP 87 6 99 6 BBOEHEP 125 16 131 20 4-OH-TPHP 95 15 119 12 5-OH-EHDPP 74 8 60 7 TEP 112 5 110 5 TMP 85 12 87 10 TCEP 90 11 107 10 TPHP 94 5 105 5 TMPP 90 13 88 21 TBOEP 111 8 118 6 EHDPP 80 18 78 17 TDCPP 106 5 117 4 CDPP 100 4 97 7 V6 67 4 87 4 3IPPDPP 84 9 77 7 B3IPPPP 62 18 72 15 3tBPDPP 73 15 78 6 B3tBPPP 64 17 77 22 表 6 15个人体尿样中m-OPEs和OPEs的浓度值(ng·mL−1)
Table 6. Concentrations of m-OPEs and OPEs in 15 samples (ng·mL−1)
化合物
Compound1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DBP 0.38 — — — — 0.05 0.09 0.03 — 0.04 0.10 0.19 — 0.28 0.04 DPHP 0.56 0.41 0.62 0.07 0.13 0.10 0.08 0.08 0.20 0.10 0.36 1.82 4.4 0.49 0.08 BCEP — — — — 0.34 — — — 0.38 0.62 — — 0.66 — — BBOEP — — — — — — 0.07 0.05 — — — — — 0.22 — BMPP — — — — — — — — — — — — — — — BCIPP 0.15 — 0.76 — 0.07 — — — — — — — — — — BDCPP 0.18 0.06 5.65 — — — — — — — — — — — — BBOEHEP — — — — — — — — — — — — — — — 4-OH-TPHP — — — — — — — — — — — — — — — 5-OH-EHDPP — — — — — — — — — — — — — — — ∑m-OPEs 1.27 0.47 7.04 0.07 0.54 0.15 0.25 0.16 0.58 0.77 0.45 2.02 5.06 0.99 0.12 TEP — — 0.31 0.02 — 0.48 — 0.01 0.05 0.09 0.04 0.01 — 0.01 0.02 TMP — — — — — — — — — — — — — — — TCEP — — — — — — — — — — — — — — — TPHP — — — — — — — — — — — — — — — TMPP — — — — — — — — — — — — — — — TBOEP — — 0.02 — — — 0.03 — — — 0.04 — — 0.07 — EHDPP — — — — — — — — — — — — — — TDCPP — — 0.18 — — — — — — — — — — — — CDPP — — — — — — — — — — — — — — V6 — — — — — — — — — — — — — — 3IPPDPP 0.03 0.01 0.01 — 0.02 — 0.01 — — 0.08 0.02 0.05 — 0.08 0.05 B3IPPPP — — — — — — — — — — — — — — — 3tBPDPP — 0.00 0.16 — 0.03 — — — — 0.01 — 0.03 — 0.03 0.03 B3tBPPP — — — — — — — — — — — — — — — ∑OPEs 0.03 0.01 0.68 0.02 0.05 0.48 0.04 0.01 0.05 0.17 0.10 0.09 0 0.19 0.10 —:未检出. -
[1] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196: 29-46. doi: 10.1016/j.envpol.2014.09.012 [2] de WIT C A, HERZKE D, VORKAMP K. Brominated flame retardants in the Arctic environment: Trends and new candidates[J]. The Science of the Total Environment, 2010, 408(15): 2885-2918. doi: 10.1016/j.scitotenv.2009.08.037 [3] ABBASI G, LI L, BREIVIK K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11): 6330-6340. [4] BETTS K. Does a key PBDE break down in the environment?[J]. Environmental Science & Technology, 2008, 42(18): 6780. [5] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [6] WANG Y, SUN H W, ZHU H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China[J]. The Science of the Total Environment, 2018, 625: 1056-1064. doi: 10.1016/j.scitotenv.2018.01.013 [7] LIN J N, ZHANG L T, GUO C S, et al. Inter-annual variation and comprehensive evaluation of organophosphate esters (OPEs) in the Yellow Sea, China[J]. Marine Pollution Bulletin, 2022, 176: 113440. doi: 10.1016/j.marpolbul.2022.113440 [8] CARLSSON H, NILSSON U, ÖSTMAN C. Video display units: an emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment[J]. Environmental Science & Technology, 2000, 34(18): 3885-3889. [9] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk[J]. Journal of Environmental Monitoring:JEM, 2010, 12(4): 943-951. doi: 10.1039/b921910b [10] SALTHAMMER T, FUHRMANN F, UHDE E. Flame retardants in the indoor environment: Part II: Release of VOCs (triethylphosphate and halogenated degradation products) from polyurethane[J]. Indoor Air, 2003, 13(1): 49-52. doi: 10.1034/j.1600-0668.2003.01150.x [11] HOU M M, SHI Y L, NA G S, et al. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure[J]. Environment International, 2021, 146: 106261. doi: 10.1016/j.envint.2020.106261 [12] CHEN S C, TAO F, LIU W B, et al. Emerging and traditional organophosphate esters in office air from Hangzhou, East China: Seasonal variations, influencing factors and human exposure assessment[J]. Environment International, 2023, 182: 108313. doi: 10.1016/j.envint.2023.108313 [13] LI R J, GAO H, HOU C, et al. Occurrence, source, and transfer fluxes of organophosphate esters in the South Pacific and Fildes Peninsula, Antarctic[J]. The Science of the Total Environment, 2023, 894: 164263. doi: 10.1016/j.scitotenv.2023.164263 [14] LIU B L, DING L J, LV L Y, et al. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure[J]. Chemosphere, 2023, 345: 140560. doi: 10.1016/j.chemosphere.2023.140560 [15] SHI Y M, ZHAO L C, ZHU H K, et al. Co-occurrence of phthalate and non-phthalate plasticizers in dust and hand wipes: A comparison of levels across various sources[J]. Journal of Hazardous Materials, 2023, 459: 132271. doi: 10.1016/j.jhazmat.2023.132271 [16] XIE C M, QIU N, XIE J L, et al. Organophosphate esters in seawater and sediments from the low-latitude tropical sea[J]. The Science of the Total Environment, 2024, 907: 167930. doi: 10.1016/j.scitotenv.2023.167930 [17] YANG Y, MENG Y, LIU S, et al. Insights into organophosphate esters (OPEs) in aquatic ecosystems: Occurrence, environmental behavior, and ecological risk[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(8): 641-675. doi: 10.1080/10643389.2023.2266311 [18] LI X X, YAO Y M, ZHAO M S, et al. Nontarget identification of novel organophosphorus flame retardants and plasticizers in rainfall runoffs and agricultural soils around a plastic recycling industrial park[J]. Environmental Science & Technology, 2023, 57(34): 12794-12805. [19] FU J, FU K H, HU B Y, et al. Source identification of organophosphate esters through the profiles in proglacial and ocean sediments from ny-ålesund, the Arctic[J]. Environmental Science & Technology, 2023, 57(5): 1919-1929. [20] CHEN Y, XIAN H, ZHU C C, et al. The transport and distribution of novel brominated flame retardants (NBFRs) and organophosphate esters (OPEs) in soils and moss along mountain valleys in the Himalayas[J]. Journal of Hazardous Materials, 2024, 465: 133044. doi: 10.1016/j.jhazmat.2023.133044 [21] HAN B J, CHEN L Y, LI Y J, et al. Spatial distribution and risk assessment of 11 organophosphate flame retardants in soils from different regions of agricultural farmlands in mainland China[J]. The Science of the Total Environment, 2022, 842: 156806. doi: 10.1016/j.scitotenv.2022.156806 [22] TIAN Y X, WANG Y, CHEN H Y, et al. Organophosphate esters in soils of Beijing urban parks: Occurrence, potential sources, and probabilistic health risks[J]. The Science of the Total Environment, 2023, 879: 162855. doi: 10.1016/j.scitotenv.2023.162855 [23] LIU X S, JI K, JO A, et al. Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2013, 134/135: 104-111. doi: 10.1016/j.aquatox.2013.03.013 [24] ZHU Y, ZHANG J Y, LIU Y X, et al. Environmentally relevant concentrations of the flame retardant tris(1, 3-dichloro-2-propyl) phosphate inhibit the growth and reproduction of earthworms in soil[J]. Environmental Science & Technology Letters, 2019, 6(5): 277-282. [25] DASGUPTA S, CHENG V, VLIET S M F, et al. Tris(1, 3-dichloro-2-propyl) phosphate exposure d ring the early-blastula stage alters the normal trajectory of zebrafish embryogenesis[J]. Environmental Science & Technology, 2018, 52(18): 10820-10828. [26] ZHANG Y K, YI X E, HUANG K, et al. Tris(1, 3-dichloro-2-propyl)phosphate Reduces Growth Hormone Expression via Binding to Growth Hormone Releasing Hormone Receptors and Inhibits the Growth of Crucian Carp[J]. Environmental Science & Technology, 2021, 55(12): 8108-8118. [27] HONG X S, CHEN R, HOU R, et al. Triphenyl phosphate (TPHP)-induced neurotoxicity in adult male Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Science & Technology, 2018, 52(20): 11895-11903. [28] HOU M M, FANG J L, SHI Y L, et al. Exposure to organophosphate esters in elderly people: Relationships of OPE body burdens with indoor air and dust concentrations and food consumption[J]. Environment International, 2021, 157: 106803. doi: 10.1016/j.envint.2021.106803 [29] LIU X T, YU G, CAO Z G, et al. Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption[J]. Environment International, 2017, 98: 113-119. doi: 10.1016/j.envint.2016.10.021 [30] BELLO A, CARIGNAN C C, XUE Y L, et al. Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure[J]. Environment International, 2018, 113: 55-65. doi: 10.1016/j.envint.2018.01.020 [31] MENDELSOHN E, HAGOPIAN A, HOFFMAN K, et al. Nail Polish as a source of exposure to triphenyl phosphate[J]. Environment International, 2016, 86: 45-51. doi: 10.1016/j.envint.2015.10.005 [32] HOU M M, SHI Y L, NA G S, et al. Increased human exposure to organophosphate esters via ingestion of drinking water from water dispensers: Sources, influencing factors, and exposure assessment[J]. Environmental Science & Technology Letters, 2021, 8(10): 884-889. [33] GBADAMOSI M R, ABDALLAH M A E, HARRAD S. A critical review of human exposure to organophosphate esters with a focus on dietary intake[J]. The Science of the Total Environment, 2021, 771: 144752. doi: 10.1016/j.scitotenv.2020.144752 [34] ALVES A, COVACI A, VOORSPOELS S. Method development for assessing the human exposure to organophosphate flame retardants in hair and nails[J]. Chemosphere, 2017, 168: 692-698. doi: 10.1016/j.chemosphere.2016.11.006 [35] ZHENG G M, SCHREDER E, DEMPSEY J C, et al. Organophosphate esters and their metabolites in breast milk from the United States: Breastfeeding is an important exposure pathway for infants[J]. Environmental Science & Technology Letters, 2021, 8(3): 224-230. [36] ZHAO F R, WAN Y, ZHAO H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis[J]. Environmental Science & Technology, 2016, 50(16): 8896-8903. [37] SAILLENFAIT A M, NDAW S, ROBERT A, et al. Recent biomonitoring reports on phosphate ester flame retardants: A short review[J]. Archives of Toxicology, 2018, 92(9): 2749-2778. doi: 10.1007/s00204-018-2275-z [38] YANG Y, CHEN P, MA S T, et al. A critical review of human internal exposure and the health risks of organophosphate ester flame retardants and their metabolites[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1528-1560. doi: 10.1080/10643389.2020.1859307 [39] CHEN Z F, TANG Y T, LIAO X L, et al. A QuEChERS-based UPLC-MS/MS method for rapid determination of organophosphate flame retardants and their metabolites in human urine[J]. Science of the Total Environment, 2022, 826: 153989. doi: 10.1016/j.scitotenv.2022.153989 [40] LU Q, LIN N, CHENG X M, et al. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry[J]. Chemosphere, 2022, 300: 134585. doi: 10.1016/j.chemosphere.2022.134585 [41] ZHU L F, HUANG X H, LI Z H, et al. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes[J]. Journal of Hazardous Materials, 2021, 413: 125281. doi: 10.1016/j.jhazmat.2021.125281 [42] GREAVES A K, SU G Y, LETCHER R J. Environmentally relevant organophosphate triesters in herring gulls: in vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay[J]. Toxicology and Applied Pharmacology, 2016, 308: 59-65. doi: 10.1016/j.taap.2016.08.007 [43] HE C, TOMS L M L, THAI P, et al. Urinary metabolites of organophosphate esters: Concentrations and age trends in Australian children[J]. Environment International, 2018, 111: 124-130. doi: 10.1016/j.envint.2017.11.019 [44] PHILLIPS A L, HERKERT N J, ULRICH J C, et al. In vitro metabolism of isopropylated and tert-butylated triarylphosphate esters using human liver subcellular fractions[J]. Chemical Research in Toxicology, 2020, 33(6): 1428-1441. doi: 10.1021/acs.chemrestox.0c00002 [45] BASTIAENSEN M, MALARVANNAN G, BEEN F, et al. Metabolites of phosphate flame retardants and alternative plasticizers in urine from intensive care patients[J]. Chemosphere, 2019, 233: 590-596. doi: 10.1016/j.chemosphere.2019.05.280 [46] LI M Q, YAO Y M, WANG Y, et al. Organophosphate ester flame retardants and plasticizers in a Chinese population: Significance of hydroxylated metabolites and implication for human exposure[J]. Environmental Pollution, 2020, 257: 113633. doi: 10.1016/j.envpol.2019.113633 [47] ZHAO F R, KANG Q Y, ZHANG X H, et al. Urinary biomarkers for assessment of human exposure to monomeric aryl phosphate flame retardants[J]. Environment International, 2019, 124: 259-264. doi: 10.1016/j.envint.2019.01.022 [48] PHILLIPS A L, HAMMEL S C, HOFFMAN K, et al. Children’s residential exposure to organophosphate ester flame retardants and plasticizers: Investigating exposure pathways in the TESIE study[J]. Environment International, 2018, 116: 176-185. doi: 10.1016/j.envint.2018.04.013 [49] 张洛红, 秦瑞欣, 严骁, 等. 液液提取-固相萃取-LC-MS/MS测定人体尿液中有机磷系阻燃剂及其二酯类代谢物[J]. 环境化学, 2020, 39(1): 197-206. doi: 10.7524/j.issn.0254-6108.2019090201 ZHANG L H, QIN R X, YAN X, et al. Determination of organophosphate flame retardants and their diesters in urine by liquid-liquid extraction and solid-phase extraction coupled with LC-MS/MS[J]. Environmental Chemistry, 2020, 39(1): 197-206(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090201
[50] 侯敏敏, 史亚利, 蔡亚岐. 液液提取-固相萃取-高效液相色谱-串联质谱测定人体血液中16种有机磷酸酯[J]. 色谱, 2021, 39(1): 69-76. doi: 10.3724/SP.J.1123.2020.07033 HOU M M, SHI Y L, CAI Y Q. Determination of 16 organophosphate esters in human blood by high performance liquid chromatography-tandem mass spectrometry combined with liquid-liquid extraction and solid phase extraction[J]. Chinese Journal of Chromatography, 2021, 39(1): 69-76(in Chinese). doi: 10.3724/SP.J.1123.2020.07033