生态沟渠净化稻田排水动力学分析和生物相特征

许明宸, 王逸超, 张文艺, 毛林强, 侯君霞. 生态沟渠净化稻田排水动力学分析和生物相特征[J]. 环境化学, 2021, (2): 592-602. doi: 10.7524/j.issn.0254-6108.2019092701
引用本文: 许明宸, 王逸超, 张文艺, 毛林强, 侯君霞. 生态沟渠净化稻田排水动力学分析和生物相特征[J]. 环境化学, 2021, (2): 592-602. doi: 10.7524/j.issn.0254-6108.2019092701
XU Mingchen, WANG Yichao, ZHANG Wenyi, MAO Linqiang, HOU Junxia. Dynamics analysis and biofacies characteristics of drainage from paddy fields purified by ecological ditches[J]. Environmental Chemistry, 2021, (2): 592-602. doi: 10.7524/j.issn.0254-6108.2019092701
Citation: XU Mingchen, WANG Yichao, ZHANG Wenyi, MAO Linqiang, HOU Junxia. Dynamics analysis and biofacies characteristics of drainage from paddy fields purified by ecological ditches[J]. Environmental Chemistry, 2021, (2): 592-602. doi: 10.7524/j.issn.0254-6108.2019092701

生态沟渠净化稻田排水动力学分析和生物相特征

    通讯作者: 张文艺, E-mail: zhangwenyi888@sina.com
  • 基金项目:

    水体污染控制与治理科技重大专项(2017ZX07202-004)资助.

Dynamics analysis and biofacies characteristics of drainage from paddy fields purified by ecological ditches

    Corresponding author: ZHANG Wenyi, zhangwenyi888@sina.com
  • Fund Project: Supported by Major Science and Technology Projects for Water Pollution Control and Treatment (2017ZX07202-004).
  • 摘要: 本研究以太湖流域常见的菱角、水葫芦、梭鱼草、圆币草等水生植物和人工水草、塑料立体弹性填料为生态强化载体,构建"水生植物-载体生物膜-菌藻"复合型生态系统,研究了稻田排水中的氮、磷等营养元素的去除特性,构建氮、磷污染物的降解动力学模型,并调查了沟渠内"微生物-藻类"生物相特征.结果表明,生态沟渠运行期间,随着水稻进入不同的生长阶段,系统内氮、磷等营养元素的去除率都呈普遍下降趋势,总磷、氨氮、总氮、硝态氮平均去除率分别达到87.1%、92.3%、77.5%、88.6%,其中氨氮的去除率最高,化学需氧量(CODMn)的去除效果并不显著,各实验周期的污染物降解趋势均符合一级动力学降解模型.经生物相分析揭示:随着复合生态系统运行延续,系统内微生物、藻类的种类及Shannon-Weiner index等多样性指数呈不断增长趋势,表明复合生态系统水质改善后更适于多种类细菌与藻类生存与繁殖;复合生态系统中的菌、藻、水生植物及其表面附着的生物膜对污染物的去除具有协同作用,强化了生态沟渠的自净能力.
  • 加载中
  • [1] NATUHARA,YOSIHIRO. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan[J]. Ecological Engineering,2013,56(Sp. Iss. SI):97-106.
    [2] TOSHISUKE M,IWAO H,KAZUO M, et al.Evaluation of N and P mass balance in paddy rice culture along Kahokugata Lake, Japan, to assess potential lake pollution[J]. Paddy and Water Environment,2008,6(4):355-362.
    [3] THAI K P,KATSUNORI Y,KAZUAKI H, et al.Pesticide discharge and water management in a paddy catchment in Japan[J].Paddy and Water Environment,2003,8(4):361-369.
    [4] 陈海生,王光华,宋仿根,等.生态沟渠对农业面源污染物的截留效应研究[J].江西农业学报,2010,22(7):121-124.

    CHEN H S,WANG G H,SONG F G,et al.,Study on the interception effect of ecological ditch on agricultural non-point source pollutants[J].Journal of Jiangxi Agriculture,2010,22(7):121-124(in Chinese).

    [5] XIONG Y,PENG S,LUO Y, et al.A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency[S].Environmental Science and Pollution Research,2015,22(6):4406-4417.
    [6] 张春旸,李松敏,牛文亮,等.生态沟渠对农田氮磷拦截效果的实验研究[J].天津农学院学报,2017,24(2):72-76.

    ZHANG C Y,LI S M,NIU W L, et al.Experimental study on intercepting effect of ecological ditch on nitrogen and phosphorus in farmland[J].Journal of Tianjin Agricultural College,2017,24(2):72-76(in Chinese).

    [7] 国家环境保护总局.水和废水检测分析方法(第4版)[M].北京:中国环境科学出版社,2002. State Environmental Protection Administration.Water and waste water detection and analysis method (4th Edition)[M].Beijing:China Environmental Science Press,2002(in Chinese).
    [8] 周凤霞,陈剑虹.淡水微型生物图谱[M].北京:化学工业出版社环境科学与工程出版中心,2005:137-361. ZHOU F X,CHEN J H. Microflora of freshwater[M].Beijing:Environmental Science and Engineering Publishing Center of Chemical Industry Press,2005:137

    -361(in Chinese).

    [9] 李杨克,郑夕春,费一鸣,等.滨河城市广场表面流人工湿地的水质净化效能[J].中国给水排水,2017,33(5):55-60.

    LI Y K,ZHEN X C,FEI Y M, et al.Purification efficiency of surface flow constructed wetland in Riverside City Square[J].Water supply and drainage in China,2017,33(5):55-60(in Chinese).

    [10] 余瑞彰,张慧,蒋俊,等.微生物在生物栅植物根系和填料生物膜上的数量分布差异[J].华东师范大学学报(自然科学版),2010(4):58-66. YU R Z,ZHANG H,JIANG J, et al.The difference of the quantity distribution of microorganism in the root system and the biofilm of the bio grid plant[J].Journal of East China Normal University (NATURAL SCIENCE EDITION),2010(4):58-66(in Chinese).
    [11] BOON P I,SORRELL B K. Biogeochemistry of billabong sediments.I.The effect of macrophytes[J]. Freshwater Biology,1991, 26(2):209-226.
    [12] HERNAN R,HADAD M A,MAINE M A.Phosphorous amount in floating and rooted maMnophytes growing in wetlands from the Middle Parana River floodplain (Argentina)[J]. Ecological Engineering,2007,31(4):251-258.
    [13] 李红芳,刘锋,肖润林,等.水生植物对生态沟渠底泥磷吸附特性的影响[J].农业环境科学学报,2016,35(1):157-163.

    LI H F,LIU F,XIAO R L,et al.Effect of hydrophytes on phosphorus adsorption characteristics of ecological Ditch Sediment[J].Journal of Agricultural Environmental Science,2016,35(1):157-163(in Chinese).

    [14] 和玉璞,彭世彰,徐俊增,等.生态沟-湿地系统对稻田排水中氮素的去除效果[J].排灌机械工程学报,2012,30(5):609-613.

    HE Y P,PENG S Z,XU J Z,et al.Effect of ecological ditch wetland system on nitrogen removal from paddy drainage[J].Journal of drainage and irrigation machinery engineering,2012,30(5):609-613(in Chinese).

    [15] 张文艺,冯国勇,张采芹,等.水生植物-菌藻-生物膜复合生态系统污染物去除特性[J].环境化学,2013,32(11):2193-2201.

    ZHANG W Y,FENG G Y,ZHANG C Q,et al.Removal characteristics of pollutants in aquatic plant, algae and biofilm composite ecosystem[J].Environmental Chemistry,2013,32(11):2193-2201(in Chinese).

    [16] 刘海琴,邱园园,闻学政,等.4种水生植物深度净化村镇生活污水厂尾水效果研究[J].中国生态农业学报,2018,26(4):616-626.

    LIU H Q,QIU Y Y,WEN X Z,et al.Study on the effect of four kinds of aquatic plants on the deep purification of the tailwater of the village sewage plant[J].Ecological agriculture in China,2018,26(4):616-626(in Chinese).

    [17] 胡绵好.不同基因型水生植物对铵态氮和硝态氮吸收动力学特性研究[J].生物学杂志,2011,28(6):10-13.

    HU M H.Study on the absorption kinetics of ammonium nitrogen and nitrate nitrogen by different genotypes of aquatic plants[J].Journal of Biology,2011,28(6):10-13(in Chinese).

    [18] 郭建,栗志芬,朱琼璐,等.生态沟渠-人工湿地-生态沟渠复合系统对城市河水中氮的去除效果[J].农业工程学报,2011,27(S2):191-195.

    GUO J,SU Z F,ZHU Q L,et al.Removal effect of nitrogen in urban river water by ecological ditch constructed wetland ecological ditch composite system[J].Journal of Agricultural Engineering,2011,27(S2):191-195(in Chinese).

    [19] 曹开银,丁海涛,邓超,等.湿地水生植物对富营养化水体的净化效果研究[J].生物学杂志, 2019,36(1):43-46.

    CAO K Y,DING H T,DENG C,et al.Purification effect of wetland aquatic plants on eutrophic water[J].Journal of Biology, 2019,36(1):43-46(in Chinese).

    [20] 刘永梅,刘永定,李敦海,等.氮磷对水华束丝藻生长及生理特性的影响[J]. 水生生物学报,2007(6):774-779. LIU Y M,LIU Y D,LI D H,et al.Effects of nitrogen and phosphorus on the growth and physiological characteristics of Aphanizomenon[J].Acta Hydrobiologica Sinica,2007

    (6):774-779(in Chinese).

    [21] 任启飞,晏妮,房小晶,等.贵州云台山喀斯特水体浮游藻类调查及水质评价[J].湖北农业科学,2015,54(13):3123-3127.

    REN Q F,YAN N,FANG X J,et al.Phytoplankton investigation and water quality evaluation of karst water in Yuntai Mountain, Guizhou Province[J].Hubei Agricultural Sciences,2015,54(13):3123-3127(in Chinese).

    [22] 廖祖荷,周振明,康彩艳,等.应用浮游藻类评价桂湖水质的研究[J].湖南师范大学:自然科学学报,2005,28(4):70274. LIAO Z H,ZHOU Z M,KANG C Y,et al.Application of phytoplankton to the evaluation of water quality in Guihu Lake[J].Hunan Normal University:Journal of Natural Science,2005

    ,28(4):70274(in Chinese).

    [23] 马放,杨基先,魏利,等.环境微生物图谱[M].北京:中国环境科学出版社,2010. MA F,YANG J X,WEI L,et al.Environmental microbial map[M].Beijing:China Environmental Science Press,2010(in Chinese).
    [24] 梅慧. 四种典型水生高等植物复合抗藻效应研究[D].安徽师范大学,2013. MEI H.Study on the compound anti algae effect of four typical aquatic higher plants[D].Anhui Normal University,2013(in Chinese).
    [25] 孙文浩,俞子文,余叔文.水葫芦对藻类的克制效应[J].植物生理学报,1988(3):294-300. SUN W H,YU Z W,YU S W.Restraining effect of water hyacinth on algae[J].Journal of Plant Physiology,1988

    (3):294-300(in Chinese).

  • 加载中
计量
  • 文章访问数:  1605
  • HTML全文浏览数:  1605
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-27

生态沟渠净化稻田排水动力学分析和生物相特征

    通讯作者: 张文艺, E-mail: zhangwenyi888@sina.com
  • 1. 常州大学, 环境与安全工程学院, 常州, 213164;
  • 2. 常州市市政工程设计研究院有限公司, 常州, 213003
基金项目:

水体污染控制与治理科技重大专项(2017ZX07202-004)资助.

摘要: 本研究以太湖流域常见的菱角、水葫芦、梭鱼草、圆币草等水生植物和人工水草、塑料立体弹性填料为生态强化载体,构建"水生植物-载体生物膜-菌藻"复合型生态系统,研究了稻田排水中的氮、磷等营养元素的去除特性,构建氮、磷污染物的降解动力学模型,并调查了沟渠内"微生物-藻类"生物相特征.结果表明,生态沟渠运行期间,随着水稻进入不同的生长阶段,系统内氮、磷等营养元素的去除率都呈普遍下降趋势,总磷、氨氮、总氮、硝态氮平均去除率分别达到87.1%、92.3%、77.5%、88.6%,其中氨氮的去除率最高,化学需氧量(CODMn)的去除效果并不显著,各实验周期的污染物降解趋势均符合一级动力学降解模型.经生物相分析揭示:随着复合生态系统运行延续,系统内微生物、藻类的种类及Shannon-Weiner index等多样性指数呈不断增长趋势,表明复合生态系统水质改善后更适于多种类细菌与藻类生存与繁殖;复合生态系统中的菌、藻、水生植物及其表面附着的生物膜对污染物的去除具有协同作用,强化了生态沟渠的自净能力.

English Abstract

参考文献 (25)

目录

/

返回文章
返回