多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究

郭浩博, 李振驰, 朱晓辉, 常兆峰, 胡国成, 向明灯, 钟紫娟, 刘宇佩, 郑彤, 于云江. 多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究[J]. 生态毒理学报, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003
引用本文: 郭浩博, 李振驰, 朱晓辉, 常兆峰, 胡国成, 向明灯, 钟紫娟, 刘宇佩, 郑彤, 于云江. 多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究[J]. 生态毒理学报, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003
Guo Haobo, Li Zhenchi, Zhu Xiaohui, Chang Zhaofeng, Hu Guocheng, Xiang Mingdeng, Zhong Zijuan, Liu Yupei, Zheng Tong, Yu Yunjiang. Study on Effects of Polychlorinated Biphenyls and Heavy Metals on Soil Microbial Communities in E-waste Dismantling Areas[J]. Asian journal of ecotoxicology, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003
Citation: Guo Haobo, Li Zhenchi, Zhu Xiaohui, Chang Zhaofeng, Hu Guocheng, Xiang Mingdeng, Zhong Zijuan, Liu Yupei, Zheng Tong, Yu Yunjiang. Study on Effects of Polychlorinated Biphenyls and Heavy Metals on Soil Microbial Communities in E-waste Dismantling Areas[J]. Asian journal of ecotoxicology, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003

多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究

    作者简介: 郭浩博(1995-),男,硕士研究生,研究方向为生态毒理学,E-mail:guohaobo1995@163.com
    通讯作者: 常兆峰, E-mail: changzhaofeng@scies.org 于云江, E-mail: yuyunjiang@scies.org
  • 基金项目:

    国家自然科学基金资助项目(41931298);中国博士后科学基金资助项目(2020M682923);中央级公益性科研院所基本科研业务专项(PM-zx703-202104-053,PM-zx703-202104-056)

  • 中图分类号: X171.5

Study on Effects of Polychlorinated Biphenyls and Heavy Metals on Soil Microbial Communities in E-waste Dismantling Areas

    Corresponding authors: Chang Zhaofeng, changzhaofeng@scies.org ;  Yu Yunjiang, yuyunjiang@scies.org
  • Fund Project:
  • 摘要: 多氯联苯(polychlorinated biphenyls,PCBs)和重金属是电子垃圾拆解区中普遍存在的污染物,但目前关于PCBs和重金属对电子垃圾拆解区土壤微生物群落的影响尚不明确。本研究以华南地区电子垃圾拆解区的2个集中拆解区域(A和B)为研究对象,结合Illumina高通量测序技术和生物信息分析,探究PCBs和重金属对土壤微生物群落结构的影响。结果表明,变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)是研究区域重要的门,青枯菌属(Ralstonia)、鞘氨醇单胞菌属(Sphingomonas)为优势属,A地区微生物丰富度低于B地区。微生物共现性网络分析显示大多数微生物通过协同作用以应对PCBs和重金属造成的污染,较高浓度的PCBs导致A地区微生物共现性网络不稳定。冗余分析结果显示PCB 153、PCB 209、Mn、Zn、Cd和Pb是显著影响微生物群落组成的环境因子,共解释微生物群落变化的21.33%;低浓度的Zn和Cd与微生物丰富度显著正相关,栖热菌属(Thermus)可以作为潜在的PCBs污染指示微生物。这些结果揭示了PCBs和重金属是影响微生物群落的关键因素。
  • 加载中
  • Li J H, Yang J, Liu L L. Development potential of e-waste recycling industry in China[J]. Waste Management & Research:the Journal of the International Solid Wastes and Public Cleansing Association, 2015, 33(6):533-542
    Hopf N B, Ruder A M, Waters M A. Historical reconstruction of polychlorinated biphenyl (PCB) exposures for workers in a capacitor manufacturing plant[J]. Environmental Science and Pollution Research International, 2014, 21(10):6419-6433
    周钰涵, 王彭彭, 李佳琳, 等. 典型新型有机污染物对儿童肥胖和神经发育影响的研究进展[J]. 环境与职业医学, 2021, 38(9):1001-1009

    Zhou Y H, Wang P P, Li J L, et al. Effects of emerging organic contaminants on childhood obesity and neurodevelopment:A review[J]. Journal of Environmental and Occupational Medicine, 2021, 38(9):1001-1009(in Chinese)

    Yu Y J, Lin B G, Qiao J, et al. Levels and congener profiles of halogenated persistent organic pollutants in human serum and semen at an e-waste area in South China[J]. Environment International, 2020, 138:105666
    Yu Y J, Liu L T, Chen X C, et al. Brominated flame retardants and heavy metals in common aquatic products from the Pearl River Delta, South China:Bioaccessibility assessment and human health implications[J]. Journal of Hazardous Materials, 2021, 403:124036
    宋力, 黄民生. 底泥中持久性有毒物质研究现状与展望[J]. 华东师范大学学报(自然科学版), 2011(1):73-86 Song L, Huang M S. Development and prospect for the study of persistent toxic substances of sediment[J]. Journal of East China Normal University (Natural Science), 2011(1):73-86(in Chinese)
    Cantarel A A M, Bloor J M G, Pommier T, et al. Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem[J]. Global Change Biology, 2012, 18(8):2520-2531
    Jiang L F, Cheng Z N, Zhang D Y, et al. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China[J]. Environmental Pollution, 2017, 231(Pt 1):173-181
    El-Alam I, Verdin A, Fontaine J, et al. Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil[J]. Environmental Monitoring and Assessment, 2018, 190(12):738
    Wu Z N, Gao G H, Wang Y Y. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 180:705-714
    Girardot F, Allégra S, Pfendler S, et al. Bacterial diversity on an abandoned, industrial wasteland contaminated by polychlorinated biphenyls, dioxins, furans and trace metals[J]. The Science of the Total Environment, 2020, 748:141242
    Gran-Scheuch A, Ramos-Zuñiga J, Fuentes E, et al. Effect of co-contamination by PAHs and heavy metals on bacterial communities of diesel contaminated soils of south Shetland Islands, Antarctica[J]. Microorganisms, 2020, 8(11):E1749
    Barra Caracciolo A, Grenni P, Garbini G L, et al. Characterization of the belowground microbial community in a poplar-phytoremediation strategy of a multi-contaminated soil[J]. Frontiers in Microbiology, 2020, 11:2073
    Wu W C, Dong C X, Wu J H, et al. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region[J]. The Science of the Total Environment, 2017, 601-602:57-65
    Lin S Y, Man Y B, Chow K L, et al. Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(2):105-134
    中国政府网. 废弃电器电子产品回收处理管理条例[EB/OL]. (2011-01-01)[2022-02-17]. http://www.gov.cn/flfg/2009-03/04/content_1250844.htm
    中华人民共和国环境保护部. 废弃电器电子产品处理污染控制技术规范:HJ 527-2010[S]. 北京:中国环境科学出版社, 2010
    李昇昇, 李敏, 朱晓辉, 等. 大亚湾海产中重金属的健康风险与海产消费建议[J]. 环境化学, 2020, 39(2):352-361

    Li S S, Li M, Zhu X H, et al. Heavy metals in selected marine organisms from Daya Bay:Human health risk assessment and advice for seafood consumption[J]. Environmental Chemistry, 2020, 39(2):352-361(in Chinese)

    Barberán A, Bates S T, Casamayor E O, et al. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2):343-351
    Stamou G P, Monokrousos N, Gwynn-Jones D, et al. A polyphasic approach for assessing eco-system connectivity demonstrates that perturbation remodels network architecture in soil microcosms[J]. Microbial Ecology, 2019, 78(4):949-960
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks[J]. Frontiers in Microbiology, 2014, 5:219
    Ren N Q, Que M X, Li Y F, et al. Polychlorinated biphenyls in Chinese surface soils[J]. Environmental Science & Technology, 2007, 41(11):3871-3876
    Jiang L F, Luo C L, Zhang D Y, et al. Biphenyl-metabolizing microbial community and a functional operon revealed in e-waste-contaminated soil[J]. Environmental Science & Technology, 2018, 52(15):8558-8567
    Colores G M, Radehaus P M, Schmidt S K. Use of a pentachlorophenol degrading bacterium to bioremediate highly contaminated soil[J]. Applied Biochemistry and Biotechnology, 1995, 54(1-3):271-275
    Zhang W, Wang H, Zhang R, et al. Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China[J]. Ecotoxicology, 2010, 19(1):96-104
    Trubitsyn I V, Andreevskikh Z G, Yurevich L I, et al. Capacity for nitrate respiration as a new aspect of metabolism of the filamentous sulfur bacteria of the genus Thiothrix[J]. Microbiology, 2013, 82(1):15-21
    Wen B, Liu J H, Zhang Y, et al. Community structure and functional diversity of the plastisphere in aquaculture waters:Does plastic color matter?[J]. The Science of the Total Environment, 2020, 740:140082
    Kuvichkina T N, Kaparullina E N, Doronina N V, et al. Degradation of the EDTA and EDTA complexes with metals by immobilized cells of Chelativorans oligotrophicus LPM-4 bacteria[J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2012, 48(6):626-630
    Xing P C, Liu D, Yu W G, et al. Molecular characterization of an endo-type chitosanase from the fish pathogen Renibacterium sp. QD1[J]. Journal of the Marine Biological Association of the United Kingdom, 2014, 94(4):681-686
    Pei Y X, Yu Z S, Ji J, et al. Microbial community structure and function indicate the severity of chromium contamination of the Yellow River[J]. Frontiers in Microbiology, 2018, 9:38
    Xu J B, Zhang J W, Zhu C W, et al. Influence of rice cultivars on soil bacterial microbiome under elevated carbon dioxide[J]. Journal of Soils and Sediments, 2019, 19(5):2485-2495
    Deng Y, Zhang P, Qin Y J, et al. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation[J]. Environmental Microbiology, 2016, 18(1):205-218
    曹静, 程晓钰, 曾智霖, 等. 广西桂林新村屯洞穴细菌群落的生境特异性及网络分析[J]. 科学通报, 2021, 66(31):4003-4016

    Cao J, Cheng X Y, Zeng Z L, et al. Habitat specificity and co-occurrence network of bacterial communities in the Xincuntun Cave, Guilin, Guangxi[J]. Chinese Science Bulletin, 2021, 66(31):4003-4016(in Chinese)

    Wang G, Wang L, Ma F. Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium[J]. Chemosphere, 2022, 286:131567
    徐佳慧, 王萌, 张润, 等. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5):82-91

    Xu J H, Wang M, Zhang R, et al. Toxicity of cadmium pollution in soil to organisms:A review[J]. Asian Journal of Ecotoxicology, 2020, 15(5):82-91(in Chinese)

    Shentu J L, He Z L, Yang X E, et al. Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time[J]. Journal of Zhejiang University Science B, 2008, 9(3):250-260
    Lv Z, Li X G, Wang Y J, et al. Responses of soil microbial community to combination pollution of galaxolide and cadmium[J]. Environmental Science and Pollution Research International, 2021, 28(40):56247-56256
    Zhou Y, Yao J, Choi M M, et al. A combination method to study microbial communities and activities in zinc contaminated soil[J]. Journal of Hazardous Materials, 2009, 169(1-3):875-881
  • 加载中
计量
  • 文章访问数:  1877
  • HTML全文浏览数:  1877
  • PDF下载数:  71
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-07
郭浩博, 李振驰, 朱晓辉, 常兆峰, 胡国成, 向明灯, 钟紫娟, 刘宇佩, 郑彤, 于云江. 多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究[J]. 生态毒理学报, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003
引用本文: 郭浩博, 李振驰, 朱晓辉, 常兆峰, 胡国成, 向明灯, 钟紫娟, 刘宇佩, 郑彤, 于云江. 多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究[J]. 生态毒理学报, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003
Guo Haobo, Li Zhenchi, Zhu Xiaohui, Chang Zhaofeng, Hu Guocheng, Xiang Mingdeng, Zhong Zijuan, Liu Yupei, Zheng Tong, Yu Yunjiang. Study on Effects of Polychlorinated Biphenyls and Heavy Metals on Soil Microbial Communities in E-waste Dismantling Areas[J]. Asian journal of ecotoxicology, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003
Citation: Guo Haobo, Li Zhenchi, Zhu Xiaohui, Chang Zhaofeng, Hu Guocheng, Xiang Mingdeng, Zhong Zijuan, Liu Yupei, Zheng Tong, Yu Yunjiang. Study on Effects of Polychlorinated Biphenyls and Heavy Metals on Soil Microbial Communities in E-waste Dismantling Areas[J]. Asian journal of ecotoxicology, 2022, 17(5): 455-464. doi: 10.7524/AJE.1673-5897.20220107003

多氯联苯和重金属对电子垃圾拆解区土壤微生物群落的影响研究

    通讯作者: 常兆峰, E-mail: changzhaofeng@scies.org ;  于云江, E-mail: yuyunjiang@scies.org
    作者简介: 郭浩博(1995-),男,硕士研究生,研究方向为生态毒理学,E-mail:guohaobo1995@163.com
  • 1. 重庆三峡学院 三峡库区水环境演变与污染防治重庆市重点实验室, 重庆 404000;
  • 2. 生态环境部华南环境科学研究所 国家环境保护环境污染健康风险评价重点实验室, 广州 510655
基金项目:

国家自然科学基金资助项目(41931298);中国博士后科学基金资助项目(2020M682923);中央级公益性科研院所基本科研业务专项(PM-zx703-202104-053,PM-zx703-202104-056)

摘要: 多氯联苯(polychlorinated biphenyls,PCBs)和重金属是电子垃圾拆解区中普遍存在的污染物,但目前关于PCBs和重金属对电子垃圾拆解区土壤微生物群落的影响尚不明确。本研究以华南地区电子垃圾拆解区的2个集中拆解区域(A和B)为研究对象,结合Illumina高通量测序技术和生物信息分析,探究PCBs和重金属对土壤微生物群落结构的影响。结果表明,变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)是研究区域重要的门,青枯菌属(Ralstonia)、鞘氨醇单胞菌属(Sphingomonas)为优势属,A地区微生物丰富度低于B地区。微生物共现性网络分析显示大多数微生物通过协同作用以应对PCBs和重金属造成的污染,较高浓度的PCBs导致A地区微生物共现性网络不稳定。冗余分析结果显示PCB 153、PCB 209、Mn、Zn、Cd和Pb是显著影响微生物群落组成的环境因子,共解释微生物群落变化的21.33%;低浓度的Zn和Cd与微生物丰富度显著正相关,栖热菌属(Thermus)可以作为潜在的PCBs污染指示微生物。这些结果揭示了PCBs和重金属是影响微生物群落的关键因素。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回