基于甲烷氧化菌的难降解有机物生物降解研究进展

李蕾, 李彦澄, 刘邓平, 李江, 吴攀. 基于甲烷氧化菌的难降解有机物生物降解研究进展[J]. 环境化学, 2020, (2): 467-474. doi: 10.7524/j.issn.0254-6108.2019081002
引用本文: 李蕾, 李彦澄, 刘邓平, 李江, 吴攀. 基于甲烷氧化菌的难降解有机物生物降解研究进展[J]. 环境化学, 2020, (2): 467-474. doi: 10.7524/j.issn.0254-6108.2019081002
LI Lei, LI Yancheng, LIU Dengping, LI Jiang, WU Pan. Advancement overviews on methanotrph-based biodegradation of refractory organics[J]. Environmental Chemistry, 2020, (2): 467-474. doi: 10.7524/j.issn.0254-6108.2019081002
Citation: LI Lei, LI Yancheng, LIU Dengping, LI Jiang, WU Pan. Advancement overviews on methanotrph-based biodegradation of refractory organics[J]. Environmental Chemistry, 2020, (2): 467-474. doi: 10.7524/j.issn.0254-6108.2019081002

基于甲烷氧化菌的难降解有机物生物降解研究进展

    通讯作者: 李彦澄, E-mail: 1013678502@qq.com
  • 基金项目:

    国家重点研发计划(2016YFC0400702-4),贵州省科技计划项目(黔科合重大专项字[2019]3009)和贵州省人才基地项目(RCJD2018-21)资助.

Advancement overviews on methanotrph-based biodegradation of refractory organics

    Corresponding author: LI Yancheng, 1013678502@qq.com
  • Fund Project: Supported by the National Key Research and Development Plan (2016YFC0400702-4),Science and Technology Planning Project of Guizhou Province([2019]3009) and the Talent Base Project of Guizhou Province (RCJD2018-21).
  • 摘要: 难降解有机物具有毒性大、成分复杂和长期残留性等特点,易在环境中大量积累,会对生物体产生三致作用,对环境造成严重破坏.研究表明甲烷氧化菌对多种难降解有机物具有良好的降解能力.甲烷氧化菌能以甲烷作为唯一的能源和碳源,在氧化甲烷的过程中会产生甲烷单加氧酶(monooxygenase,MMO),MMO是一种高度非特异性酶,能够促进多种有机物的转化,使甲烷氧化菌在环境污染控制中具有潜在应用价值.本文总结甲烷氧化菌对氯代烃、农药、聚乙烯、聚丙烯、聚苯乙烯和甲苯等污染物的降解情况,并提出甲烷氧化菌在环境污染控制方面的研究方向.
  • 加载中
  • [1] OLLER I, MALATO S, SANCHEZ-PEREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review[J]. Energy Environmental Protection, 2012, 409(20):4141-4166.
    [2] WANG W, HAN H, YUAN M, et al. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal[J]. Bioresource Technology, 2010, 102(9):5454-5460.
    [3] COLBY J, STIRLING D I, DALTON H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds.[J]. The Biochemical Journal, 1977, 165(2):395-402.
    [4] HANSON R S, HANSON T E. Methanotrophic bacteria.[J]. Microbiological Reviews, 1996, 60(2):439-471.
    [5] HAZEN T.Cometabolic bioremediation//Timmis, K(Ed.). Handbook of Hydrocarbon and Lipid Microbiology[M]. Springer Berlin Heidelberg, 2010,7:2505-2514.
    [6] SEMRAU J D. Bioremediation via methanotrophy:Overview of recent findings and suggestions for future research[J]. Frontiers in Microbiology, 2011, 2(209):1-7.
    [7] CARDY D L, LAIDLER V, SALMOND G P, et al. Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b[J]. Mol Microbiol, 1991, 5(2):335-342.
    [8] PANDEY V C, SINGH J S, SINGH D P, et al. Methanotrophs:promising bacteria for environmental remediation[J]. International Journal of Environmental Science and Technology, 2014, 11(1):241-250.
    [9] 江梅,辛嘉英,邓晓萍,等. 甲烷氧化菌生产高附加值产品的研究进展[J]. 石油化工, 2018, 47(4):395-400.

    JIANG M, XIN J Y, DENG X P, et al. Research progress on methane-oxidizing bacteria production of high value-added products[J]. Petrochemical Industry, 2018, 47(4):395-400(in Chinese).

    [10] LU X, GU W, ZHAO L, et al. Methylmercury uptake and degradation by methanotrophs[J]. Science Advances, 2017, 3(5):e1700041.
    [11] SÖHNGEN N L. Vber bakterien welche methan kohlenstoffnahrung energiequelle gebrauchen[J]. Zentrabl Bakteriol Parasitenkd Infectionskr, 1906, 15:513-517.
    [12] WHITTENBURY R, PHILLIPS K C, WILHINSON J F. Enrichment, isolation and some properties of methane-utilizing bacteria[J]. Journal of General Microbiology, 1970, 61(2):205-218.
    [13] RAGHOEBARSING A A, ARJAN P, PAS-SCHOONEN K T V D, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086):918.
    [14]
    [15] 邓永翠,车荣晓,吴伊波,等. 好氧甲烷氧化菌生理生态特征及其在自然湿地中的群落多样性研究进展[J]. 生态学报, 2015, 35(14):4579-4591.

    DENG Y C, CHE R X, WU Y B, et al. Physiological and ecological characteristics of aerobic methane oxidants and their community diversity in natural wetlands[J]. Acta Ecologica Sinica, 2015, 35(14):4579-4591(in Chinese).

    [16] LVKE C, KRAUSE S, CAVIGIOLO S, et al. Biogeography of wetland rice methanotrophs[J]. Environmental Microbiology, 2010, 12(4):862-872.
    [17] REIM A, LVKE C, KRAUSE S, et al. One millimetre makes the difference:High-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil[J]. ISME Journal, 2012, 6(11):2128-2139.
    [18] HIRAYAMA H, FUSE H, ABE M, et al. Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(3):1073-1082.
    [19] PANDIT P S, HOPPERT M, RAHALKAR M C. Description of ‘Candidatus Methylocucumis oryzae’, a novel Type I methanotroph with large cells and pale pink colour, isolated from an Indian rice field[J]. Antonie Van Leeuwenhoek, 2018, 111(12):2473-2484.
    [20] STOECKER K, BENDINGER B, SCH NING B R, et al. Cohn"s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase[J]. Proceedings of the National Academy of Sciences, 2006,103(7):2363-2367.
    [21] TEESELING M C F, POL A, HARHANGI H R, et al. Expanding the verrucomicrobial methanotrophic world:Description of three novel species of Methylacidimicrobium gen. nov.[J]. Applied and Environmental Microbiology, 2014, 80(21):6782-6791.
    [22] VIGLIOTTA G, NUTRICATI E, CARATA E, et al. Clonothrix fusca roze 1896, a filamentous, sheathed, methanotrophic-proteobacterium[J]. Applied and Environmental Microbiology, 2007, 73(11):3556-3565.
    [23] DEDYSH S N, DUNFIELD P F. Facultative and obligate methanotrophs how to identify and differentiate them[J]. Methods Enzymol, 2011, 495:31-44.
    [24] CHENG Y S, HALSEY J L, FODE K A, et al. Detection of methanotrophs in groundwater by PCR[J]. Applied and Environmental Microbiology, 1999, 65(2):648-651.
    [25] 王晓琳,曹爱新,周传斌,等. 垃圾填埋场甲烷氧化菌及甲烷减排的研究进展[J]. 生物技术通报, 2016, 32(5):16-25.

    WANG X L, CHAO A X, ZHOU C B, et al. Research progress on methane oxidizing bacteria and methane emission reduction in landfill[J]. Journal of Biotechnology, 2016, 32(5):16-25(in Chinese).

    [26] CHEN Y, LUO W, YANG C, et al. Controlled oxidation of aliphatic CH bonds in metallo-monooxygenases:mechanistic insights derived from studies on deuterated and fluorinated hydrocarbons[J]. Journal of Inorganic Biochemistry, 2014, 134:118-133.
    [27] TROTSENKO Y A, MURRELL J C. Metabolic aspects of aerobic obligate methanotrophy.[J]. Advances in Applied Microbiology, 2008, 63:183-229.
    [28] CORNISH A, MACDONALD J, BURROWS K J, et al. Succinate as anin vitro electron donor for the particulate methane mono-oxygenase of Methylosinus trichosporium OB3b[J]. Biotechnology Letters, 1985, 7(5):319-324.
    [29] SEMRAU J D, DISPIRITO A A, YOON S. Methanotrophs and copper[J]. FEMS Microbiology Reviews, 2010, 34(4):496-531.
    [30] HUANG T J, JULURI B K. Biological and biomimetic molecular machines[J]. Nanomedicine, 2008, 3(1):107-124.
    [31] PANT P, PANT S. A review:Advances in microbial remediation of trichloroethylene (TCE)[J]. Journal of Environmental Sciences, 2010, 22(1):116-126.
    [32] ALVARE C L, SPEITEL G E. Kinetics of aerobic cometabolism of chlorinated solvents[J]. Biodegradation, 2001, 12(2):105-126.
    [33] WILSON J T, WILSON B H. Biotransformation of trichloroethylene in soil[J]. Appl Environ Microbiol, 1985, 49(1):242-243.
    [34] LITTLE C D, PALUMBO A V, HERBES S E, et al. Trichloroethylene biodegradation by a methane-oxidizing bacterium[J]. Applied and Environmental Microbiology, 1988, 54(4):951-956.
    [35] FOX B G, BORNEMAN J G, WACKETT L P, et al. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b:Mechanistic and environmental implications[J]. Biochemistry, 1990, 29(27):6419-6427.
    [36] FOGEL M M, TADDEO A R, FOGEL S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture[J]. Applied and Environmental Microbiology, 1986, 51(4):720-724.
    [37] BOUWER E J, MCCARTY P L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions[J]. Applied and Environmental Microbiology, 1983, 45(4):1286-1294.
    [38] LONTOH S, SEMRAU J D. Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase[J]. Applied and Environmental Microbiology, 1998, 64(3):1106-1114.
    [39] ALBANNA M, WARITH M, FERNANDES L. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers[J]. Waste Management, 2010, 30(2):219-227.
    [40] OLDENHUIS R, OEDZES J Y, VANDERWAARDE J J, et al. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene[J]. Applied and Environmental Microbiology, 1991, 57(1):7-14.
    [41] POWELL C L, GOLTZ M N, AGRAWAL A. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots[J]. Journal of Contaminant Hydrology, 2014, 170:68-75.
    [42] 王灿灿,陈旭,冯剑丰,等. 有机氯农药在东方白鹳组织里的浓度[J]. 中国环境科学, 2016, 36(9):2807-2814.

    WANG C C, CHEN X, FENG J F, et al. Concentration of organochlorine pesticides in tissues of oriental white stork[J]. China Environmental Science, 2016, 36(9):2807-2814(in Chinese).

    [43] LI Y, NIU J, SHEN Z, et al. Spatial and seasonal distribution of organochlorine pesticides in the sediments of the Yangtze Estuary[J]. Chemosphere, 2014, 114(22):233-240.
    [44] RISSATO S R, GALHIANE M S, XIMENES V F, et al. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the Northeastern part of São Paulo State, Brazil[J]. Chemosphere, 2006, 65(11):1949-1958.
    [45] LIU J, QI S, YAO J, et al. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China[J]. Chemosphere, 2016, 163:35-43.
    [46] 王未,黄从建,张满成,等. 我国区域性水体农药污染现状研究分析[J]. 环境保护科学, 2013, 36(5):9-13.

    WANG W, HUANG C J, ZHANG M C, et al. Research and analysis of pesticide pollution in regional water bodies in China[J]. Science of Environmental Protection, 2013, 36(5):9-13(in Chinese).

    [47] 王建伟,张彩香,潘真真,等. 江汉平原地下水中有机磷农药的分布特征及影响因素[J]. 中国环境科学, 2016, 36(10):3089-3098.

    WANG J W, ZHANG C X, PAN Z Z, et al. Distribution characteristics and influencing factors of organophosphorus pesticides in groundwater in jianghan plain[J]. China Environmental Science, 2016, 36(10):3089-3098(in Chinese).

    [48] WILDE T D, SPANOGHE P, MERTENS J, et al. Characterizing pesticide sorption and degradation in macro scale biopurification systems using column displacement experiments[J]. Environmental Pollution, 2009, 157(4):1373-1381.
    [49] HEDEGAARD M J, DELINIERE H, PRASSE C, et al. Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter[J]. Water Research, 2018, 129:105-114.
    [50] HUBER R, OTTO S. Environmental behavior of bentazon herbicide[J]. Reviews of Environmental Contamination and Toxicology, 1994, 137:111.
    [51] KNAUBER W, KROTZKY A J, SCHINK B. Microbial metabolism and further fate of bentazon in soil[J]. Environmental Science & Technology, 2000, 34(4):598-603.
    [52] 徐东峰,赵岩,李文川,等. 检测苯氧羧酸类除草剂的样品前处理方法研究进展[J]. 化学分析计量, 2018, 27(6):121-124.

    XU D F, ZHAO Y, LI W C, et al. Research progress of sample pretreatment methods for determination of phenoxycarboxylic acid herbicides[J]. Chemical Analysis and Measurement, 2018, 27(6):121-124(in Chinese).

    [53] 许仁杰,蔡春平,丁立平,等. 水中苯氧羧酸类除草剂残留检测的研究进展[J]. 食品工业, 2017, 38(1):258-262.

    XU R J, CAI C P, DING L P, et al. Research progress on residue detection of phenoxy carboxylic acid herbicides in water[J]. Food Industry, 2017, 38(1):258-262(in Chinese).

    [54] HEDEGAARD M J, ARVIN E, CORFITZEN C B, et al. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks[J]. Science of the Total Environment, 2014, 499:257-264.
    [55] PAPADOPOULOU A, HEDEGAARD M J, DECHESNE A, et al. Methanotrophic contribution to biodegradation of phenoxy acids in cultures enriched from a groundwater-fed rapid sand filter[J]. Applied Microbiology and Biotechnology, 2019, 103(2):1007-1019.
    [56] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
    [57] MUENMEE S, CHIEMCHAISRI W, CHIEMCHAISRI C. Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill[J]. International Biodeterioration & Biodegradation, 2016, 113:244-255.
    [58] KYAW B M, CHAMPAKALAKSHMI R, SAKHARKAR M K, et al. Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species[J]. Indian Journal of Microbiology, 2012, 52(3):411-419.
    [59] SCHEUTZ C, KJELDSEN P. Biodegradation of Trace Gases in Simulated Landfill Soil[J]. Journal of the Air & Waste Management Association (1995), 2005, 55(7):878-885.
    [60] WALLINGTON T J, SCHNEIDER W F, WORSNOP D R, et al. The environmental impact of CFC replacements HFCs and HCFCs[J]. Environmental Science & Technology, 1994, 28(7):320A-326A.
    [61] HESSELSOE M, BOYSEN S, IVERSEN N, et al. Degradation of organic pollutants by methane grown microbial consortia[J]. Biodegradation, 2005, 16(5):435-448.
    [62] GROS M, RODRÍGUEZ M S, BARCELÓ D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1248:104-121.
    [63] LIU Y, YING G, SHAREEF A, et al. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions[J]. Water Research, 2011, 45(16):5005-5014.
    [64] ANNA B B, STOLTE S, JVRGEN A, et al. Ecotoxicity evaluation of selected sulfonamides[J]. Chemosphere, 2011, 85(6):928-933.
    [65]
    [66] 杨宁伟,毕二平. 源自腐殖土的溶解性有机质组分对棕壤和黑土吸附苯并三唑的影响[J]. 环境科学, 2017, 38(6):2568-2576.

    YANG N W, BI E P. Effects of dissolved organic matter components from humus on benzotriazole adsorption in brown and black soils[J]. Environmental Science, 2017, 38(6):2568-2576(in Chinese).

    [67] MULLER A, WEISS S C, BEISSWENGER J, et al. Identification of ozonation by-products of 4- and 5-methyl-1H-benzotriazole during the treatment of surface water to drinking water[J]. Water Research, 2012, 46(3):679-690.
    [68] REEMTSMA T, MIEHE U, DUENNBIER U, et al. Polar pollutants in municipal wastewater and the water cycle:Occurrence and removal of benzotriazoles[J]. Water Research, 2010, 44(2):596-604.
    [69] BENNER J, DE S D, HO A, et al. Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants[J]. Applied Microbiology and Biotechnology, 2015, 99(8):3609-3618.
  • 加载中
计量
  • 文章访问数:  1589
  • HTML全文浏览数:  1589
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-10

基于甲烷氧化菌的难降解有机物生物降解研究进展

    通讯作者: 李彦澄, E-mail: 1013678502@qq.com
  • 1. 贵州大学资源与环境工程学院, 贵阳, 550025;
  • 2. 贵州喀斯特环境生态系统教育部野外科学观测研究站, 贵阳, 550025
基金项目:

国家重点研发计划(2016YFC0400702-4),贵州省科技计划项目(黔科合重大专项字[2019]3009)和贵州省人才基地项目(RCJD2018-21)资助.

摘要: 难降解有机物具有毒性大、成分复杂和长期残留性等特点,易在环境中大量积累,会对生物体产生三致作用,对环境造成严重破坏.研究表明甲烷氧化菌对多种难降解有机物具有良好的降解能力.甲烷氧化菌能以甲烷作为唯一的能源和碳源,在氧化甲烷的过程中会产生甲烷单加氧酶(monooxygenase,MMO),MMO是一种高度非特异性酶,能够促进多种有机物的转化,使甲烷氧化菌在环境污染控制中具有潜在应用价值.本文总结甲烷氧化菌对氯代烃、农药、聚乙烯、聚丙烯、聚苯乙烯和甲苯等污染物的降解情况,并提出甲烷氧化菌在环境污染控制方面的研究方向.

English Abstract

参考文献 (69)

目录

/

返回文章
返回