七株硫酸盐还原菌汞甲基化能力的比较

职亭亭, 吴浩贤, 郭瑛瑛, 毛宇翔, 何滨, 阴永光, 史建波, 胡立刚, 江桂斌. 七株硫酸盐还原菌汞甲基化能力的比较[J]. 环境化学, 2019, (12): 2657-2664. doi: 10.7524/j.issn.0254-6108.2019010408
引用本文: 职亭亭, 吴浩贤, 郭瑛瑛, 毛宇翔, 何滨, 阴永光, 史建波, 胡立刚, 江桂斌.

七株硫酸盐还原菌汞甲基化能力的比较

[J]. 环境化学, 2019, (12): 2657-2664. doi: 10.7524/j.issn.0254-6108.2019010408
ZHI Tingting, WU Haoxian, GUO Yingying, MAO Yuxiang, HE Bin, YIN Yongguang, SHI Jianbo, HU Ligang, JIANG Guibin. Methylation of mercury in seven sulfate-reducing bacteria[J]. Environmental Chemistry, 2019, (12): 2657-2664. doi: 10.7524/j.issn.0254-6108.2019010408
Citation: ZHI Tingting, WU Haoxian, GUO Yingying, MAO Yuxiang, HE Bin, YIN Yongguang, SHI Jianbo, HU Ligang, JIANG Guibin.

Methylation of mercury in seven sulfate-reducing bacteria

[J]. Environmental Chemistry, 2019, (12): 2657-2664. doi: 10.7524/j.issn.0254-6108.2019010408

七株硫酸盐还原菌汞甲基化能力的比较

    通讯作者: 胡立刚, E-mail: lghu@rcees.ac.cn
  • 基金项目:

    国家自然科学基金(21777179)资助.

Methylation of mercury in seven sulfate-reducing bacteria

    Corresponding author: HU Ligang, lghu@rcees.ac.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(21777179).
  • 摘要:

    目前硫酸盐还原菌汞甲基化的研究集中在Desulfovibrio desulfuricans ND132菌株上,由于D.desulfuricans ND132并非商业化提供的菌株,使得国内很多实验室难以获得该菌株开展微生物汞甲基化的相关研究.本文收集了7株商业化的硫酸盐还原菌,通过系统研究探寻其中可用作替代的汞甲基化模式菌株.在实验室培养条件下,通过对甲基化关键基因(hgcAhgcB)、生长特性、汞的耐受性以及汞甲基化能力的测试,结果发现,Desulfomicrobium escambiense(CGMCC 1.3481)生长较快、具有较好的汞甲基化率(7.5%±0.7%),具备作为汞甲基化模式菌株的潜力.

  • 加载中
  • [1] LINDQVIST O, JOHANSSON K, BRINGMARK L, et al. Mercury in the Swedish environment-recent research on causes, consequences and corrective methods[J]. Water, Air, and Soil Pollution, 1991, 55(1/2):1-261.
    [2] FITZGERALD W F, LAMBORG C H, HAMMERSCHMIDT C R, et al. Marine biogeochemical cycling of mercury[J]. Chemical Reviews, 2007, 107(2):641-662.
    [3] FITZGERALD W F, CLARKSON T W. Mercury and monomethylmercury:Present and future concerns[J]. Environmental Health Perspectives, 1991, 96:159-166.
    [4] SUN R G, WANG D Y, MAO W, et al. Photodegradation of methylmercury in Jialing River of Chongqing, China[J]. Journal of Environmental Sciences, 2015,27(6):8-14.
    [5] MERGLER D, ANDERSON H A, CHAN L H M, et al. Methylmercury exposure and health effects in humans:A worldwide concern[J]. Ambio, 2007, 36(1):3-11.
    [6] 毕丽, 贺纪正, 张丽梅, 等. 环境中汞微生物转化研究进展[J]. 环境化学, 2018, 37(11):2359-2367.

    BI L, HE J Z, ZHANG L M, et al. Microbial transformations of mercury in the environment[J]. Environmental Chemistry, 2018, 37(11):2359-2367(in Chinese).

    [7] WOOD J M, KENNEDY F S, ROSEN C G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220:173-174.
    [8] GILMOUR C C, TUTTLE J H, MEANS J C. Marine and estuarine geochemistry[M]. Chelsea, Lewis Publishers, 1985:239-258.
    [9] PAK K, BARTHA R. Products of mercury demethylation by sulfidogens and methanogens[J]. Bulletin of Environmental Contamination and Toxicology, 1998, 61:690-694.
    [10] PAK K R, BARTHA R. Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria[J]. Applied and Environmental Microbiology, 1998, 64(3):1013-1017.
    [11] PAK K R, BARTHA R. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens[J]. Applied and Environmental Microbiology, 1998, 64(6):1987-1990.
    [12] SCHAEFER J K, ROCKS S S, ZHENG W, et al. Active transport, substrate specificity, and methylation of Hg(Ⅱ) in anaerobic bacteria[J]. Proceedings of the National Academy of Sciences, 2011, 108(21):8714-8719.
    [13] FLEMIING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources:molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1):457-464.
    [14] PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6125):1332-1335.
    [15] COMPEAU G C, BARTHA R. Sulfate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2):498-502.
    [16] KING J K, KOSTKA J E, FRISCHER M E, et al. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments[J]. Applied and Environmental Microbiology, 2000, 66(6):2430-2437.
    [17] KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.
    [18] HAMELIN S P, AMYOT M, BARKAY T, et al. Methanogens:Principal methylators of mercury in Lake Periphyton[J]. Environmental Science & Technology, 2011, 45(18):7693-7700.
    [19] SCHAEFER J K, KRONBERG R M, MOREL F M M, et al. Detection of a key Hg methylation gene, hgcA, in wetland soils[J]. Environmental Microbiology Reports, 2014, 6(5), 441-447.
    [20] EKSTROM E B, MOREL F M M, BENOIT J M. Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2003, 69(9):5414-5422.
    [21] 蓝世明. Fe(II)对硫酸盐还原菌处理锑污染的影响[D]. 湖南:湖南大学, 2018. LAN S M. Bio-precipitation of antimony from wastewater by sulfate-reducing bacteria:effect of coexisting ferrous ion[D]. Hunan:Hunan University, 2018:31(in Chinese).
    [22] HAN S, OBRAZTSOVA A, PRETTO P, et al. Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries[J]. Marine Chemistry, 2008, 111(3-4):214-220.
    [23] MEHROTRA A S, SEDLAK D L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries[J]. Environmental Science & Technology, 2005, 39(8):2564-2570.
    [24] LIN H, MORRELL-FALVEY J L, RAO B, et al. Coupled mercury-cell sorption, reduction, and oxidation affecting methylmercury production by Geobacter sulfurreducens PCA[J]. Environmental Science & Technology, 2014, 48, 11969-11976.
    [25] RAMAMOORTHY S, CHENG T C, KUSHNER D J. Effect of microbial life stages on the fate of methylmercury in natural waters[J]. Bulletin of Environmental Contamination and Toxicology, 1982, 29(2):167-173.
    [26] BISWAS A, BROOKS S C, MILLER C L, et al. Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132[J]. Science of the Total Environment, 2011, 409(19):3943-3948.
    [27] HU H Y, LIN H, ZHENG W, et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria[J]. Nature Geoscience, 2013, 6(9):751-754.
  • 加载中
计量
  • 文章访问数:  2001
  • HTML全文浏览数:  2001
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-04
  • 刊出日期:  2019-12-10

七株硫酸盐还原菌汞甲基化能力的比较

    通讯作者: 胡立刚, E-mail: lghu@rcees.ac.cn
  • 1. 河南理工大学资源环境学院, 焦作, 454003;
  • 2. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

国家自然科学基金(21777179)资助.

摘要: 

目前硫酸盐还原菌汞甲基化的研究集中在Desulfovibrio desulfuricans ND132菌株上,由于D.desulfuricans ND132并非商业化提供的菌株,使得国内很多实验室难以获得该菌株开展微生物汞甲基化的相关研究.本文收集了7株商业化的硫酸盐还原菌,通过系统研究探寻其中可用作替代的汞甲基化模式菌株.在实验室培养条件下,通过对甲基化关键基因(hgcAhgcB)、生长特性、汞的耐受性以及汞甲基化能力的测试,结果发现,Desulfomicrobium escambiense(CGMCC 1.3481)生长较快、具有较好的汞甲基化率(7.5%±0.7%),具备作为汞甲基化模式菌株的潜力.

English Abstract

参考文献 (27)

目录

/

返回文章
返回