基于氨排放的畜禽养殖大气环境承载力估算
Estimation on Atmospheric Environmental Bearing Capacity of Livestock and Poultry Farming Based on Ammonia Emissions
-
摘要: 为解决大气氨污染防控与畜禽养殖业发展的矛盾,本研究以京津冀地区的种养生产系统为研究对象,构建畜禽养殖大气环境承载力的估算方法,核算了该地区种养业氨排放强度;在设定大气氨减排目标的基础上,运用情景分析法评估了该地区畜禽养殖增量。结果表明:(1)2011—2020年期间,京津冀地区种养业氨排放强度呈现“增长—下降—增长”趋势,2021年达到了33.8 kg·hm-2,其中粪便管理和粪肥施用的氨排放分别占总排放的50.4%和42.9%。(2)在“技术换取养殖量”情景中,通过使用低蛋白饲料配方等技术降低粪肥氮质量分数,京津冀地区的畜禽养殖增量达到1 726.9~6 907.5万头猪当量;通过应用肥水注射等技术降低粪肥排放系数,畜禽养殖增量为793.6~3 174.4万头猪当量。在综合运用6类技术以实现氨减排达标的情景中,当氨减排达5.0%时,该地区畜禽养殖增量高达3 141.5万头猪当量。研究表明,随着种养业氨减排技术的推广实施,京津冀地区的畜禽养殖业将展现出良好的发展潜力。本研究可为区域种养结合与大气氨污染防治提供参考。Abstract: This research addresses the conflict between controlling atmospheric ammonia pollution and developing the livestock and poultry farming industry. Using the planting and breeding production system of Beijing-Tianjin-Hebei Region as the research focus, it constructed a method to estimate the atmospheric bearing capacity of livestock and poultry farming and calculated ammonia emission intensity for the region’s planting and breeding husbandry. With set targets for atmospheric ammonia reduction, scenario analysis was employed to assess the increment for regional livestock and poultry farming. Key findings included: (1) From 2011 to 2020, ammonia emission intensity in the planting and breeding husbandry of the Beijing-Tianjin-Hebei Region followed an “increase-decline-increase” trend, reaching 33.8 kg·hm-2 in 2021, with manure management and application accounting for 50.4% and 42.9% of total emissions, respectively. (2) In the “Technology for Breeding Capacity” scenario, increment in livestock and poultry farming capacity enabled by using low-protein feed formulations to reduce manure nitrogen mass fraction ranged from 17.269 to 69.075 million pig equivalents. In scenarios applying fertilizer injection technology to reduce manure emissions, the increment ranged from 7.936 to 31.744 million pig equivalents. When combining six types of technologies to achieve targeted ammonia emission reductions, the region’s increment in livestock and poultry farming reached 31.415 million pig equivalents with a 5.0% reduction in ammonia emissions. These findings highlighted that the Beijing-Tianjin-Hebei Region held significant future potential for livestock and poultry farming with the implementation of ammonia reduction technologies. This research provided valuable reference material for integrating regional planting and breeding systems and advancing atmospheric environmental protection.
-
-
薛文博,许艳玲,唐晓龙,等.中国氨排放对PM2.5污染的影响[J].中国环境科学, 2016, 36(12):3531-3539. XUE W B, XU Y L, TANG X L, et al. Impacts of ammonia emission on PM2.5 pollution in China[J]. China environmental science, 2016, 36(12):3531-3539.
CHENG L, YE Z L, CHENG S Y, et al. Agricultural ammonia emissions and its impact on PM2.5 concentrations in the Beijing-Tianjin-Hebei region from 2000 to 2018[J]. Environmental pollution, 2021, 291:118162. 刘学军,沙志鹏,宋宇,等.我国大气氨的排放特征、减排技术与政策建议[J].环境科学研究, 2021, 34(1):149-157. LIU X J, SHA Z P, SONG Y, et al. China's atmospheric ammonia emission characteristics, mitigation options and policy recommendations[J]. Research of environmental sciences, 2021, 34(1):149-157.
XU P, LI G, ZHENG Y, et al. Fertilizer management for global ammonia emission reduction[J]. Nature, 2024, 626(8000):792-798. 王琛,张秀明,段佳堃,等.中国农畜牧业高分辨率氨排放清单[J].中国生态农业学报(中英文), 2021, 29(12):1973-1980. WANG C, ZHANG X M, DUAN J K, et al. A high-resolution ammonia emission inventory for cropland and livestock production in China[J]. Chinese journal of eco-agriculture, 2021, 29(12):1973-1980. 吾拉哈提·阿达力别克,展晓莹,周丰,等.京津冀地区农业源氨排放的时空格局与减排潜力[J].农业环境科学学报, 2021, 40(10):2236-2245. ADALIBIEKE W, ZHAN X Y, ZHOU F, et al. Spatiotemporal pattern and potential to mitigate ammonia emissions from agriculture in Beijing-Tianjin-Hebei region, China[J]. Journal of agro-environment science, 2021, 40(10):2236-2245.
康嘉慧,孟凡磊,刘学军,等.华北平原曲周县人为源氨排放清单及分布特征[J].环境科学, 2023, 44(1):94-103. KANG J H, MENG F L, LIU X J, et al. Emission inventory and distribution characteristics of anthropogenic ammonia in Quzhou County, North China Plain[J]. Environmental science, 2023, 44(1):94-103.
WANG C, DUAN J K, REN C C, et al. Ammonia emissions from croplands decrease with farm size in China[J]. Environmental science&technology, 2022, 56(14):9915-9923. XU P, LI G, HOULTON B Z, et al. Role of organic and conservation agriculture in ammonia emissions and crop productivity in China[J]. Environmental science&technology, 2022, 56(5):2977-2989. 刘红南,印遇龙.以种养结合模式推进养殖氨减排的治理[J].中国科学院院刊, 2021, 36(1):93-96. LIU H N, YIN Y L. Establish integrated crop-livestock production to promote ammonia reduction in livestock industry[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(1):93-96.
中华人民共和国国务院.国务院关于印发《空气质量持续改善行动计划》的通知[EB/OL].(2023-12-07)[2024-07-13] . https://www.gov.cn/zhengce/content/202312/content_6919000.htm. 国家统计局.中国统计年鉴2011(总第30期)[M].北京:中国统计出版社, 2011:378-397. 生态环境部.大气氨源排放清单编制技术指南[EB/OL].(2014-08-20)[2024-07-15] . https://www.mee.gov.cn/gkml/hbb/bgg/201408/W020140828351293771578.pdf. 国家统计局农村社会经济调查司.中国农村统计年鉴-2010[M].北京:中国统计出版社, 2010:105-119. 农业农村部畜牧兽医局,全国畜牧总站.中国畜牧兽医统计2010-2021[M].北京:中国农业出版社, 2023:36. 杨叶华,张松,王帅,等.中国不同区域常见绿肥产量和养分含量特征及替代氮肥潜力评估[J].草业学报, 2020, 29(6):39-55. YANG Y H, ZHANG S, WANG S, et al. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China[J]. Acta prataculturae sinica, 2020, 29(6):39-55.
农业农村部.畜禽粪便土地承载力测算方法:NY/T 3877-2021[S].北京:全国畜牧业标准化技术委员会, 2021:5. 周元清,聂善明,张利宇,等.欧盟畜牧业氨减排路径研究[J].世界农业, 2024(2):48-58. ZHOU Y Q, NIE S M, ZHANG L Y, et al. Research on ammonia emission reduction path in EU livestock industry[J]. World agriculture, 2024 (2):48-58.
姚春生,任婕,张震,等.微喷水肥一体化氮肥管理对冬小麦产量、品质、氮素积累和利用的影响[J].中国农业大学学报, 2023, 28(3):25-37. YAO C S, REN J, ZHANG Z, et al. Effects of micro-sprinkler irrigation integration and nitrogen fertilizer management on yield, quality and nitrogen accumulation and utilization of winter wheat[J]. Journal of China agricultural university, 2023, 28(3):25-37.
张万钦,李南西,周元清.京津冀畜牧业氨减排现状及建议[J].中国畜牧业, 2024(1):45-47. ZHANG W Q, LI N X, ZHOU Y Q. Current situation and suggestions for ammonia emission reduction in animal husbandry in Beijing, Tianjin and Hebei[J]. China animal industry, 2024 (1):45-47.
张思轩.不同蛋白源低蛋白日粮对蛋鸡生产性能、含氮化合物排放的影响[D].保定:河北农业大学, 2022:21. ZHANG S X. Effects of low-protein diets with different protein sources on performance and nitrogen compounds emission of laying hens[D]. Baoding:Hebei Agricultural University, 2022:21. 张辉耀,张秋良,颜国华,等.豆粕减量替代研究进展[J].河北农业, 2024(1):87-88. ZHANG H Y, ZHANG Q L, YAN G H, et al. Research progress of soybean meal reduction substitution[J]. Hebei agriculture, 2024 (1):87-88.
曹立群,喻其林,肖维伟,等.鸡粪好氧发酵高效同程硝化-反硝化菌筛选及其生物学特性研究[J].中国农业大学学报, 2008, 13(5):63-69. CAO L Q, YU Q L, XIAO W W, et al. High-effective simultaneous nitrifying-denitrifying bacteria screening in composting of chicken manure and their characteristics[J]. Journal of China agricultural university, 2008, 13(5):63-69.
张国言,董元杰,孙桂阳,等.复合菌剂对兔粪堆肥碳氮转化与损失的影响[J].中国农业大学学报, 2022, 27(11):153-165. ZHANG G Y, DONG Y J, SUN G Y, et al. Effects of compound bacterial inoculant on the conversion and loss of carbon and nitrogen during rabbit manure composting[J]. Journal of China Agricultural University, 2022, 27(11):153-165.
-

计量
- 文章访问数: 208
- HTML全文浏览数: 208
- PDF下载数: 61
- 施引文献: 0