交流电场促进柳树修复镉污染土壤

倪幸, 李雅倩, 王胜男, 柳丹, 叶正钱. 交流电场促进柳树修复镉污染土壤[J]. 环境化学, 2019, (10): 2376-2385. doi: 10.7524/j.issn.0254-6108.2018112203
引用本文: 倪幸, 李雅倩, 王胜男, 柳丹, 叶正钱. 交流电场促进柳树修复镉污染土壤[J]. 环境化学, 2019, (10): 2376-2385. doi: 10.7524/j.issn.0254-6108.2018112203
NI Xing, LI Yaqian, WANG Shengnan, LIU Dan, YE Zhengqian. Alternating current electric field promotes willow plant to remediate cadmium contaminated soil[J]. Environmental Chemistry, 2019, (10): 2376-2385. doi: 10.7524/j.issn.0254-6108.2018112203
Citation: NI Xing, LI Yaqian, WANG Shengnan, LIU Dan, YE Zhengqian. Alternating current electric field promotes willow plant to remediate cadmium contaminated soil[J]. Environmental Chemistry, 2019, (10): 2376-2385. doi: 10.7524/j.issn.0254-6108.2018112203

交流电场促进柳树修复镉污染土壤

    通讯作者: 叶正钱, E-mail: yezhq@zafu.edu.cn
  • 基金项目:

    浙江省重点研发项目(2018C03028)和国家自然科学基金(41201323)资助.

Alternating current electric field promotes willow plant to remediate cadmium contaminated soil

    Corresponding author: YE Zhengqian, yezhq@zafu.edu.cn
  • Fund Project: Supported by Zhejiang Provincial Key Project for Research and Development (2018C03028) and National Natural Science Foundation of China (41201323).
  • 摘要: 通过土壤盆栽试验的方法,研究在镉污染土壤中施加交流电场(0、0.5、1 V·cm-1)对土壤镉活性、柳树苗期生理生化及Cd吸收与积累的影响.结果表明,施加电场会略微影响土壤的pH值,土壤有效态镉含量随着电场梯度的增加而显著增加,其中1 V·cm-1处理的土壤有效态镉含量较对照提高了29.11%(P<0.05).施加电场有利于柳树苗期的生长,柳树株高、叶面积、生物量随着电压梯度的增加而增加,其中1 V·cm-1处理的柳树株高、叶面积、叶片、枝条生物量分别较对照显著提高了35.49%、22.52%、36.84%、85.00%(P<0.05).施加电场可以有利于根系形态指标的增加,其中0.5 V·cm-1处理的根系长度、表面积、根尖数均达到最高,分别显著高于对照49.96%、76.69%、43.46%(P<0.05).施加电场可促进柳树苗期光合作用,影响叶绿素荧光参数,其中0.5 V·cm-1处理的叶片净光合速率、气孔导度、PSⅡ光合电子传递量子效Υ(Ⅱ)、光化学淬灭系数qP、光合电子传递速率ETR均达到最高,分别较对照显著增加了36.00%、60.00%、22.86%、24.07%、22.35%(P<0.05).施加电场促进了柳树苗期对土壤镉的净化,但不同电压梯度对柳树镉吸收积累的效果不同,0.5 V·cm-1处理可通过生物量的提高,增加柳树对镉的积累,而1 V·cm-1处理通过生物量及促进柳树对土壤镉的吸收,增加柳树对镉的积累.交流电场联合植物修复技术,有利于提高植物对土壤镉的吸收积累,具有良好的应用前景.
  • 加载中
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5):10-11.

    Ministry of environmental protection, ministry of land and resources. Survey bulletin on soil pollution in China[J]. China Environmental Protection Industry, 2014, 36(5):10-11(in Chinese).

    [2] 周明冬, 秦晓辉, 候洪, 等. 农田土壤重金属的危害及防控措施[J]. 环境与可持续发展, 2014, 39(2):57-58.

    ZHOU M D, QIN X H, HOU H, et al. Prevention and control measures and damage of heavy metals in farmland soil[J]. Environment and Sustainable Development, 2014, 39(2):57-58(in Chinese).

    [3] SARKAR A, RAVINDRAN G, KRISHNAMURTHY V. A brief review on the effect of cadmium toxicity:From cellular to organ level[J]. International Journal of Bio-Technology and Research, 2013, 3(1):17-36.
    [4] 赵玉林, 王晓, 武倩倩. 我国土壤重金属污染现状与治理方法[J]. 中国资源综合利用, 2014, 32(3):55-57.

    ZHAO Y L, WANG X, WU Q Q. Analysis of the status and the treatment methods of heavy metal contaminated soil in China[J]. China Resources Comprehensive Utilization, 2014, 32(3):55-57(in Chinese).

    [5] 赵鹏雷, 毕然. 土壤重金属污染的电动力学联合植物修复技术[J]. 科学技术创新, 2012, 19(10):43-44.

    ZHANG P L, BI R. Electrokinetic combined phytoremediation technology for soil heavy metal pollution[J]. Science and Technology Innovation, 2012, 19(10):43-44(in Chinese).

    [6] ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.[J]. Environmental Letters, 2008, 43(8):926-933.
    [7] 肖文丹, 叶雪珠, 徐海舟,等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4):927-937.

    XIAO W D, YE X Z, XU H Z, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum Alfredii[J]. Acta Pedologica Sinica, 2017, 54(4):927-937(in Chinese).

    [8] LU P, FENG Q, MENG Q, et al. Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site[J]. Separation & Purification Technology, 2012, 98(4):216-220.
    [9] PAZOS M, SANROMÁN M A, CAMESELLE C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique[J]. Chemosphere, 2006, 6(5):817-822.
    [10] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4):729-735.

    CHANG L, ZHOU D M, WU D Y. Effects of horizontal exchange electric field and EDDS application on ryegrass uptake of copper/zine and soil characteristics[J]. Acta Pedologica Sinica, 2009, 46(4):729-735(in Chinese).

    [11] IWATA S, OKUMURA T, MURAMOTO Y, et al. Influence of A.C. electric field on plant growth[J]. IEEE, 2011, 179-182.
    [12] COSTANZO E. The influence of an electric field on the growth of soy seedlings[J]. Journal of electrostatics, 2008, 66(7):417-420.
    [13] BI R, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination[J]. Journal of Applied Electrochemistry, 2010, 40(6):1217-1223.
    [14] 赵凤亮, 杨卫东. 柳树(Salix spp.)在污染环境修复中的应用[J]. 浙江农业学报, 2017, 29(2):300-306.

    ZHAO F L, YANG W D. Review on application of willows (Salix spp.) in remediation of contaminated environment[J]. Acta Agriculturae Zhejiangensis, 2017, 29(2):300-306(in Chinese).

    [15] TOZSÉR DÁVID, MAGURA T, SIMON E. Heavy metal uptake by plant parts of willow species:A meta-analysis[J]. Journal of Hazardous Materials, 2017, 336:101-109.
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. LU R K. Analytical methods of soil and agricultural chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000(in Chinese).
    [17] WEI S H, ZHOU Q X, KOVL P V. Flowering stage characteristics of cadmium hyperaccumulator solanum nigrum L. and their significance to phytoremediation[J]. Sci.Tot. Environ., 2006, 369:441-446.
    [18] 马建伟, 王慧, 李瑞瑞. 电动力学-竹炭吸附联合修复工艺对高岭土中镉的去除[J]. 环境化学, 2015, 26(5):75-78.

    MA J W, WANG H, LI R R. Removal of cadmium in kaolin by electrokinetics-bamboo charcoal adsorption[J]. Environmental Chemistry, 2015, 26(5):75-78(in Chinese).

    [19] 罗启仕, 张锡辉, 王慧, 等. 非均匀电动力学修复技术对土壤性质的影响[J]. 环境工程学报, 2004, 5(4):40-45.

    LUO Q S,ZHANG X H,WANG H, et al. Influence of non-uniform electrokinetic remediation technology on soil properties[J]. Techniques and Equipment for Environmental Pollution Control, 2004, 5(4):40-45(in Chinese).

    [20] 温尚斌, 马福荣, 许守民, 等. 高压静电场促进植物吸收离子机理的初步探讨[J]. 生物化学与生物物理进展, 1995, 22(4):377-379.

    WENG S B, MA F R, XU S M, et al. The meehanism of ion absorption stimulated by the high voltage eleetrostatie field[J]. Prog. Biochem. Biophys., 1995, 22(4):377-379(in Chinese).

    [21] 聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆:重庆大学, 2015. NIE B. The study of influence of direct current electrical fields on phytoremediation of Cd[D]. Chongqing:Chongqing University, 2015(in Chinese).
    [22] CHO M R, THATTE H S, SILVIA M T, et al. Transmembrane calcium influx induced by ac electric fields[J]. Faseb Journal, 1999, 13(6):83-677.
    [23] BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3):318-326.
    [24] 李兴财. 风沙静电场对植物茎秆液流传输过程影响的理论分析[J]. 中国沙漠, 2013, 33(6):1731-1734.

    LI X C. A theoretical analysis of the effect of wind-blown sand electrostatic field on vegetation physiological processes[J]. Journal of Desert Research, 2013, 33(6):1731-1734(in Chinese).

    [25] 那日, 冯璐. 我国静电生物学效应机理研究新进展[J]. 物理, 2003, 32(2):87-93.

    NA R, FENG L. Mechanism of the biological effects of electrostatics[J]. Physics, 2003, 32(2):87-93(in Chinese).

    [26] 钱永强, 周晓星, 韩蕾, 等. 3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J]. 北京林业大学学报, 2011, 33(6):8-14.

    QIAN Y Q, ZHOU X X, HAN L, et al. Rapid light-response curves of PSⅡ chlorophyll fluorescence parameters in the leaves of Salix babylonica, Salix ‘J172’ and Salix leucopithecia to Cd2+stress[J]. Journal of Beijing Forestry University, 2011, 33(6):8-14(in Chinese).

    [27] OLLE BJÖRKMAN, DEMMIG B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta, 1987, 170(4):489-504.
    [28] 朱世秋, 张琳雪, 陈周, 等. 高压电场对植物电特性的影响及促进光合作用的室内试验[J]. 农业工程学报, 2016, 32(17):168-173.

    ZHU S Q, ZHANG L X, CHEN Z, et al. Laboratory test on effects of high voltage electricity on electrostatic properties and promoting photosynthesis of plants[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17):168-173(in Chinese).

    [29] 张守仁.叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4):444-448.

    ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4):444-448(in Chinese).

    [30] 万雪琴, 张帆, 夏新莉, 等. 镉处理对杨树光合作用及叶绿素荧光参数的影响[J]. 林业科学, 2008, 44(6):73-78.

    WAN X Q, ZHANG F Xia X L, et al. Effects of cadmium on photosynthesis and chlorophyll fluorescence parameters of solution-cultured poplar plants[J]. Scientia Silvae Sinicae, 2008, 44(6):73-78(in Chinese).

    [31] 朱剑昀, 吴沿友, 李美清. 高压静电场对黄瓜幼苗叶绿素荧光的影响[J]. 农机化研究, 2015, 36(3):195-198.

    ZHU J Y, WU Y Y, Li M Q. Effects of applied HVEF on chlorophyll fluorescence parameters of cucumber seedlings[J]. Journal of App Mechanization Research, 2015, 36(3):195-198(in Chinese).

    [32] 何俊瑜, 王阳阳, 任艳芳, 等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5):1863-1868.

    HE J Y, WANG Y Y, REN Y F, et al. Effect of cadmium on root morphology and physiological characteristics of rice seedlings[J]. Ecology and Environmental Sciences, 2009, 18(5):1863-1868(in Chinese).

    [33] 李亚林, 刘蕾, 段万超, 等. 电动修复技术对土壤中镉迁移的影响[J]. 环境工程学报, 2016, 10(10):6021-6027.

    LI Y L, LIU L, DUAN W C, et al. Effect of cadmium migration in contaminated soil by electrokinetics remediation[J]. Chinese Journal of Environmental Engineering, 2016, 10(10):6021-6027(in Chinese).

    [34] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22):4323-4341.

    WANG X H, DAI L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots[J]. Scientia Agricultura Sinica, 2016, 49(22):4323-4341(in Chinese).

  • 加载中
计量
  • 文章访问数:  1060
  • HTML全文浏览数:  1060
  • PDF下载数:  37
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-22

交流电场促进柳树修复镉污染土壤

    通讯作者: 叶正钱, E-mail: yezhq@zafu.edu.cn
  • 1. 浙江农林大学环境与资源学院, 临安, 311300;
  • 2. 浙江农林大学省部共建亚热带森林培育国家重点实验室, 临安, 311300
基金项目:

浙江省重点研发项目(2018C03028)和国家自然科学基金(41201323)资助.

摘要: 通过土壤盆栽试验的方法,研究在镉污染土壤中施加交流电场(0、0.5、1 V·cm-1)对土壤镉活性、柳树苗期生理生化及Cd吸收与积累的影响.结果表明,施加电场会略微影响土壤的pH值,土壤有效态镉含量随着电场梯度的增加而显著增加,其中1 V·cm-1处理的土壤有效态镉含量较对照提高了29.11%(P<0.05).施加电场有利于柳树苗期的生长,柳树株高、叶面积、生物量随着电压梯度的增加而增加,其中1 V·cm-1处理的柳树株高、叶面积、叶片、枝条生物量分别较对照显著提高了35.49%、22.52%、36.84%、85.00%(P<0.05).施加电场可以有利于根系形态指标的增加,其中0.5 V·cm-1处理的根系长度、表面积、根尖数均达到最高,分别显著高于对照49.96%、76.69%、43.46%(P<0.05).施加电场可促进柳树苗期光合作用,影响叶绿素荧光参数,其中0.5 V·cm-1处理的叶片净光合速率、气孔导度、PSⅡ光合电子传递量子效Υ(Ⅱ)、光化学淬灭系数qP、光合电子传递速率ETR均达到最高,分别较对照显著增加了36.00%、60.00%、22.86%、24.07%、22.35%(P<0.05).施加电场促进了柳树苗期对土壤镉的净化,但不同电压梯度对柳树镉吸收积累的效果不同,0.5 V·cm-1处理可通过生物量的提高,增加柳树对镉的积累,而1 V·cm-1处理通过生物量及促进柳树对土壤镉的吸收,增加柳树对镉的积累.交流电场联合植物修复技术,有利于提高植物对土壤镉的吸收积累,具有良好的应用前景.

English Abstract

参考文献 (34)

目录

/

返回文章
返回