住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径

乔雅绮, 黄立辉. 住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径[J]. 环境化学, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601
引用本文: 乔雅绮, 黄立辉. 住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径[J]. 环境化学, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601
QIAO Yaqi, HUANG Lihui. Characterization of phthalates in residential house dust and their transfer routes[J]. Environmental Chemistry, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601
Citation: QIAO Yaqi, HUANG Lihui. Characterization of phthalates in residential house dust and their transfer routes[J]. Environmental Chemistry, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601

住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径

    通讯作者: 黄立辉, E-mail: huanglh@chd.edu.cn
  • 基金项目:

    国家自然科学基金(21607015),陕西省自然科学基金(2016JQ2008)和中央高校基础科研经费(300102299101)资助.

Characterization of phthalates in residential house dust and their transfer routes

    Corresponding author: HUANG Lihui, huanglh@chd.edu.cn
  • Fund Project: Supported by the Natural Science Foundation of China (21607015), the Science & Technology Support Foundation of Shaanxi Province (2016JQ2008) and the Fundamental Research Funds for the Central Universities (300102299101).
  • 摘要: 本文分别于夏季和冬季在北京市40户家庭的客厅和卧室采集降尘样品,研究降尘中邻苯二甲酸酯(PAEs)的污染特征.结果表明,室内降尘中主要的PAEs(及其浓度)为DIBP(39.6 ng·mg-1,几何平均浓度,下同)、DBP(38.7 ng·mg-1)和DEHP(418.5 ng·mg-1).降尘中PAEs的浓度与温度、相对湿度和换气次数均呈显著正相关(P<0.005).这是由于室温升高和换气次数增高加快PAEs的源排放速率,促进室内空气中PAEs积累并通过气相媒介传输使得降尘PAEs浓度增高;湿度升高促进空气中PAEs向降尘的传质,增大降尘中PAEs浓度.3种因素共同影响使得夏季降尘中3种PAEs的浓度均显著高于冬季(P<0.0001).研究还发现,源材料中PAEs至降尘的传输途径包括以气相为媒介的间接传输和源至降尘的直接转移,因此降尘PAEs浓度与采集平面材料相关;降尘PAEs浓度还受降尘在室内的停留时间影响.因此,相关研究需指明降尘的类型、采集位置和平面材料,便于利用测量数据进行准确的暴露评估.
  • 加载中
  • [1] ABB M, HEINRICH T, SORKAU E, et al. Phthalates in house dust[J]. Environment International, 2009, 35(6):965-970.
    [2] HEUDORF U, MERSCH-SUNDERMANN V, ANGERER J. Phthalates:Toxicology and exposure[J]. International Journal of Hygiene and Environmental Health, 2007, 210(5):623-634.
    [3] GUO Y, WU Q. Phthalate metabolites in urine China, and implications for human exposures[J]. Environment International, 2011, 37(5):893-898.
    [4] GUO Y, KANNAN K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States[J]. Environmental Science and Technology, 2011, 45(8):3788-3794.
    [5] 王夫美,陈丽,焦姣,等. 住宅室内降尘中邻苯二甲酸酯污染特征及暴露评价[J]. 中国环境科学,2012,32(5):780-786.

    WANG F M, CHEN L, JIAO J, et al. Pollution characteristics of phthalate esters derived from household dust and exposure assessment[J]. China Environmental Science, 2012, 32(5):780-786(in Chinese).

    [6] PEI X Q, GUO M, MO F F, et al. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments[J]. Atmospheric Environment, 2013, 68:17-23.
    [7] LI H L, SONG W W, ZHANG Z F, et al. Phthalates in dormitory and dust of northern Chinese cities:Occurrence, human exposure, and risk assessment[J]. Science of the Total Environment, 2016, 565:496-502.
    [8] 吕怡兵,付强,陈瑛. 环境中邻苯二甲酸酯类物质的污染现状与监测方法[J].中国环境监测,2007,23(5):66-70.

    LV Y B, FU Q, CHEN Y. Environmental pollution status of phthalates and monitoring methods[J]. Environmental Monitoring in China, 2007, 23(5):66-70(in Chinese).

    [9] 张文娟,王利军,王丽,等. 西安城区地表灰尘中邻苯二甲酸酯分布、来源及人群暴露[J]. 环境科学,2016,37(10):3758-3765.

    ZHANG W J, WANG L J, WANG L, et al. Distribution, source and exposure of phthalates in surface dust in Xi'an City[J]. Environmental Science, 2016, 37(10):3758-3765(in Chinese).

    [10] WORMUTH M, SCHERINGER M, VOLLENWEIDER M, et al. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans[J]. Risk Analysis, 2006, 26(3):803-824.
    [11] BU Z M, ZHANG Y P, et al. Indoor phthalate concentration in residential apartments in Chongqing, China:Implications for preschool children's exposure and risk assessment[J]. Atmospheric Environment, 2016, 127:34-45.
    [12] LANGER S, WESCHLER C J, FISCHER A, et al. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers[J]. Atmospheric Environment, 2010, 44(19):2294-2301.
    [13] FROMME H, LAHRZ T, PILOTY M, et al. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany)[J]. Indoor Air, 2004, 14(3):188-195.
    [14] BOMEHAG C G, LUNDGREN B, WESCHLER C J, et al. Phthalates in indoor dust and their association with building characteristics[J]. Environmental Health Perspectives, 2005, 113(10):1399-1404.
    [15] KOLARIK B, BORNEHAG C G, NAYDENOV K. The concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family[J]. Atmospheric Environment, 2008, 42(37):8553-8559.
    [16] KOCH H M, ROSSBACH B, DREXLER H, et al. Internal exposure of the general population to DEHP and other phthalates-determination of secondary and primary phthalate monoester metabolites in urine[J]. Environmental Research, 2003, 93(2):177-185.
    [17] MERCIER F, GLORENNEC P, THOMAS O, et al. Organic contamination of settled house dust, a review for exposure assessment purposes[J]. Environmental Science and Technology, 2011, 45(16):6716-6727.
    [18] WESCHLER C J, SALTHAMMER T, FROMME H. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments[J]. Atmospheric Environment, 2008, 42(7):1449-1460.
    [19] SUKIENE V, VON G N, GERECKE A C, et al. Direct and air-mediated transfer of labeled SVOCs from indoor sources to dust[J]. Environmental Science and Technology, 2017, 51(6):3269-3277.
    [20] HUANG L H, ZHAO W P, LI M. Determinants on ambient PM2.5 infiltration in non-heating season for urban residences in Beijing:Building characteristics, interior surface coverings and human behavior[J]. Atmospheric Pollution Research, 2015, 6(6):1046-1054.
    [21] KASHYAP D, AGARWAL T. Concentration and factors affecting the distribution of phthalates in the air and dust:A global scenario[J]. Science of the Total Environment, 2018, 635:817-827.
    [22] WU W, ZHOU F, WANG Y, et al. Phthalate levels and related factors in children aged 6-12 years[J]. Environmental Pollution, 2017, 220(B):990-996.
    [23] WANG X, TAO W, XU Y, et al. Indoor phthalate concentration and exposure in residential and office buildings in Xi'an, China[J]. Atmospheric Environment, 2014, 87:146-152.
    [24] GASPAR F W, CASTORINA R, MADDALENA R L, et al. Phthalate exposure and risk assessment in California child care facilities[J]. Environmental Science and Technology, 2014, 48(13):7593-7601.
    [25] KIM H H, YANG J Y, KIM S D, et al. Health risks assessment in children for phthalate exposure associated with childcare facilities and indoor playgrounds[J]. Environmental Health and Toxicology, 2011, 26:1-9.
    [26] BLANCHARD O, GLORENNEC P, MERCIER F, et al. Semi volatile organic compounds in indoor air and settled dust in 30 French dwellings[J]. Environmental Science and Technology, 2014, 48(7):3959-3969.
    [27] 董夫银,闫杰. 欧盟及美国禁用邻苯二甲酸酯的法规及其出台始末[J].检验检疫科学,2006,15(3):78-80.

    DONG F Y, YAN J. The European Union and the United States to ban phthalates and its legislation[J]. Inspection and Quarantine Science, 2006, 15(3):78-80(in Chinese).

    [28] 李亚华,鲁建江,尹晓文,等. 石河子市采暖季和非采暖季住宅中邻苯二甲酸酯的污染特征及婴幼儿健康风险评估[J]. 环境科学学报,2019,39(9):3154-3162.

    LI Y H, LU J J, YIN X W, et al. Pollution characteristics of phthalates in residences during heating and non-heating seasons and health risk assessment to infants and children in Shihezi[J]. Acta Scientiae Circumstantiae, 2019, 39(9):3154-3162(in Chinese).

    [29] FUJII M, SHINOHARA A, LI M, et al. A study on emission of phthalate esters from plastic materials using a passive flux sampler[J]. Atmospheric Environment, 2003, 37(39-40):5495-5504.
    [30] CLAUSEN P A, LIU Z, SORENSEN V K, et al. Influence of temperature on the emission of Di-(2-ethylhexyl) phthalate (DEHP) from PVC flooring in the emission cell FLEC[J]. Environmental Science and Technology, 2012, 46(2):909-915.
    [31] CLAUSEN P A, XU Y, SORENSEN V K, et al. The influence of humidity on the emission of DEHP from vinyl flooring in the emission cell "FLEC"[J]. Atmospheric Environment, 2007, 41(15):3217-3224.
    [32] ODUM J R, YU J, KAMENS R M. Modeling the mass transfer of semi volatile organics in combustion aerosols[J]. Environmental Science and Technology, 1994, 28(13):2278-2285.
    [33] JANG M, KAMENS R M. A thermodynamic approach for modeling partitioning of semi-volatile organic compounds on atmospheric particulate matter:Humidity effects[J]. Environmental Science and Technology, 1998, 32(9):1237-1243.
    [34] XU Y, CONHEN HUBAL E, CLAUSEN P, et al. Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring:A mechanistic analysis[J]. Environmental Science and Technology, 2009, 43(7):2374-2380.
    [35] LIU C, ZHANG Y, BENNING J L, et al. The effect of ventilation on indoor exposure to semivolatile organic compounds[J]. Indoor Air, 2015, 25(3):285-296.
    [36] CLAUSEN P A, LIU Z, XU Y, et al. Influence of air flow rate on emission of DEHP from vinyl flooring in the emission cell FLEC:Measurements and CFD simulation[J]. Atmospheric Environment, 2010, 44(13):2760-2766.
    [37] DODSON R E, CAMANN D E, MORELLO-FROSCH R, et al. Semi-volatile organic compounds in homes:Strategies for efficient and systematic exposure measurement based on empirical and theoretical factors[J]. Environmental Science and Technology, 2015, 49(1):113-122.
  • 加载中
计量
  • 文章访问数:  2406
  • HTML全文浏览数:  2406
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-06
乔雅绮, 黄立辉. 住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径[J]. 环境化学, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601
引用本文: 乔雅绮, 黄立辉. 住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径[J]. 环境化学, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601
QIAO Yaqi, HUANG Lihui. Characterization of phthalates in residential house dust and their transfer routes[J]. Environmental Chemistry, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601
Citation: QIAO Yaqi, HUANG Lihui. Characterization of phthalates in residential house dust and their transfer routes[J]. Environmental Chemistry, 2020, (6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601

住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径

    通讯作者: 黄立辉, E-mail: huanglh@chd.edu.cn
  • 1. 长安大学水利与环境学院环境工程系, 西安, 710054;
  • 2. 长安大学水利与环境学院旱区地下水与生态效应教育部重点实验室, 西安, 710054;
  • 3. 清华大学建筑技术科学系, 北京, 100084
基金项目:

国家自然科学基金(21607015),陕西省自然科学基金(2016JQ2008)和中央高校基础科研经费(300102299101)资助.

摘要: 本文分别于夏季和冬季在北京市40户家庭的客厅和卧室采集降尘样品,研究降尘中邻苯二甲酸酯(PAEs)的污染特征.结果表明,室内降尘中主要的PAEs(及其浓度)为DIBP(39.6 ng·mg-1,几何平均浓度,下同)、DBP(38.7 ng·mg-1)和DEHP(418.5 ng·mg-1).降尘中PAEs的浓度与温度、相对湿度和换气次数均呈显著正相关(P<0.005).这是由于室温升高和换气次数增高加快PAEs的源排放速率,促进室内空气中PAEs积累并通过气相媒介传输使得降尘PAEs浓度增高;湿度升高促进空气中PAEs向降尘的传质,增大降尘中PAEs浓度.3种因素共同影响使得夏季降尘中3种PAEs的浓度均显著高于冬季(P<0.0001).研究还发现,源材料中PAEs至降尘的传输途径包括以气相为媒介的间接传输和源至降尘的直接转移,因此降尘PAEs浓度与采集平面材料相关;降尘PAEs浓度还受降尘在室内的停留时间影响.因此,相关研究需指明降尘的类型、采集位置和平面材料,便于利用测量数据进行准确的暴露评估.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回