化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响
Effects of chemical oxidation remediation on concentration and composition of PAHs in agricultural soils and spinach
-
摘要: 采用盆栽实验,研究了过硫酸钠(Na2S2O8)和过氧化氢(H2O2)两种氧化剂分别与纳米Fe粉和硫酸亚铁(FeSO4)两种活化剂结合,以及加入腐殖酸(HA),对多环芳烃(PAHs)的去除,分析了对土壤和菠菜中溶剂可提取态PAHs以及土壤中不同结合态PAHs含量和组成的影响,并分析了波菜中PAHs的毒性当量浓度(BaPeq).结果表明,经过7周修复,对于土壤中溶剂可提取态PAHs,氧化剂剂量为0.2 g·kg-1时,H2O2的氧化效果优于Na2S2O8;活化剂剂量为0.448 g·kg-1时,纳米Fe粉的活化效果优于FeSO4;加入2 g·kg-1HA后PAHs含量有所降低,去除率升高.H2O2、纳米Fe粉和HA联合处理后土壤和菠菜中溶剂可提取态PAHs含量均最低,其在土壤中的去除率和菠菜中的减少率均最高,其中土壤中溶剂可提取态PAHs的去除率为36.8%,在菠菜地上部和地下部的减少率分别为45.3%、36.4%.土壤去除率和菠菜减少率中,2环和3环的PAHs高于4环、5环和6环.对于结合态PAHs,经过H2O2、纳米Fe粉和HA联合处理后土壤中不同结合态PAHs平均去除率最高,达44.5%.化学处理后,各处理对菠菜的生物量没有影响.H2O2、纳米Fe粉和HA联合处理后,菠菜地上部总BaPeq最低.Abstract: Two oxidants, sodium persulfate and hydrogen peroxide were used to remove polycyclic aromatic hydrocarbons (PAHs) in combination with two activators, ferrous sulfate and nanoparticles of zerovalent iron, in the agricultural soils and spinach with pot experiments. Humic acid (HA) was also added. PAHs bound to endogenetic soil humus in soils and the effects of chemical oxidation remediation on the concentration and composition of solvent extractable PAHs in soils and spinach were investigated. The toxic equivalent concentrations of benzo(a)pyrene (BaPeq) in spinach were analyzed. The results showed that, after 7 weeks, hydrogen peroxide was better than sodium persulfate to remove solvent extractable PAHs in soils when the oxidants in soils was 0.2 g·kg-1; and nanoparticles of zerovalent iron was better than ferrous sulfate when the activators in soils was 0.448 g·kg-1. PAH concentration decreased and removal percentage increased in the presence of 2 g·kg-1 HA. The combined treatment of hydrogen peroxide, nanoparticles of zerovalent iron and HA showed the lowest concentration of the solvent extractable PAHs both soils and spinach, and the highest PAHs removal percentage in soils and reduction percentage in spinach. The removal percentage of solvent extractable PAHs was 36.8% in soils, and the reduction percentage of spinach in shoots and roots reached up to 36.8%, 45.3% and 36.4%, respectively. The relative removal percentage of 2-ring, 3-ring PAHs in soils and the relative reduction percentage of 2-ring, 3-ring PAHs in spinach were higher than that in 4-ring, 5-ring, 6-ring PAHs. The combined treatment of hydrogen peroxide, nanoparticles of zerovalent iron and HA showed the highest average removal percentage (44.5%) of PAHs bound to endogenetic soil humus. Chemical oxidation remediation did not have effect on the spinach biomass. The combined treatment of hydrogen peroxide, nanoparticles of zerovalent iron and HA showed the lowest toxic equivalent concentrations of BaPeq in spinach.
-
Key words:
- PAHs /
- oxidant /
- activator /
- spinach /
- chemical oxidation remediation
-
[1] RIVAS F J. Polycyclic aromatic hydrocarbons sorbed on soils:A short review of chemical oxidation based treatments[J]. Journal of Hazardous Materials, 2006, 138(2):234-251. [2] 尹春芹, 蒋新, 杨兴伦, 等. 多环芳烃在土壤-蔬菜界面上的迁移与积累特征[J]. 环境科学, 2008, 29(11):3240-3245. YIN C Q, JIANG X, YANG X L, et al. Characters of soil-vegetable transfer and accumulation of polycyclic aromatic hydrocarbons[J]. Environmental Science, 2008, 29(11):3240-3245(in Chinese).
[3] 周际海, 黄荣霞, 樊后保, 等. 污染土壤修复技术研究进展[J]. 水土保持研究, 2016, 23(3):366-372. ZHOU J H, HUANG R H, FAN H B, et al. A review on the progresses of remediation technologies for contaminated soils[J]. Research of Soil & Water Conservation, 2016, 23(3):366-372(in Chinese).
[4] 赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3):849-856. ZHAO D, LIAO X Y, YAN X L, et al. Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site[J]. Environmental Science, 2011, 32(3):849-856(in Chinese).
[5] 王兵, 李娟, 莫正平, 等. 基于硫酸自由基的高级氧化技术研究及应用进展[J]. 环境工程, 2012, 30(4):53-57. WANG B, LI J, MO Z P, et al. Progress in advanced oxidation processes based on sulfate radical[J]. Environmental Engineering, 2012, 30(4):53-57(in Chinese).
[6] CONTE P, AGRETTO A, SPACCINI R, et al. Soil remediation:humic acids as natural surfactants in the washings of highly contaminated soils[J]. Environmental Pollution, 2008, 135(3):515-522. [7] MESBAIAH F Z, MANSOUR F, EDDOUAOUDA K, et al. Surfactant effects on biodegradation of polycyclic aromatic hydrocarbons[J]. Desalination & Water Treatment, 2016, 57(13):5995-6000. [8] WANG W H, HOAG G E, COLLINS J B, et al. Evaluation of surfactant-enhanced in Situ chemical oxidation (S-ISCO) in contaminated soil[J]. Water Air & Soil Pollution, 2013, 224(12):1-9. [9] TEJEDA-AGREDANO M C, MAYER P, ORTEGA-CALVO J J. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime[J]. Environmental Pollution, 2014, 184(104):435-442. [10] CHENG K Y, WONG J W. Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems[J]. Environmental Technology Letters, 2006, 27(8):835-844. [11] PENG S, WU W, CHEN J. Removal of PAHs with surfactant-enhanced soil washing:influencing factors and removal effectiveness[J]. Chemosphere, 2011, 82(8):1173-1177. [12] 吴应琴, 陈慧, 王永莉, 等. 腐殖酸对蒽的增溶作用及其影响因素[J]. 环境化学, 2009, 28(4):515-518. WU Y Q, CHEN H, WANG Y L, et al. Water solubility enhancement of anthracene by using humic acid[J]. Environmental Chemistry, 2009, 28(4):515-518(in Chinese).
[13] ZHOU W, ZHU L. Solubilization of polycyclic aromatic hydrocarbons by anionic-nonionic mixed surfactant[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 255(1):145-152. [14] HE L, SONG J, PENG P. Characterization of extractable and non-extractable polycyclic aromatic hydrocarbons in soils and sediments from the Pearl River Delta, China[J]. Environmental Pollution, 2008, 156(3):769-774. [15] MALISZEWSKA-KORDYBACH B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(1-2):121-127. [16] PELUFFO M, PARDO F, SANTOS A, et al. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil[J]. Science of the Total Environment, 2016, 563-564:649-656. [17] 高彦征, 朱利中, 凌婉婷, 等. 土壤和植物样品的多环芳烃分析方法研究[J]. 农业环境科学学报, 2005, 24(5):1003-1006. GAO Y Z, ZHU L Z, LING W T, et al. Analysis method for Polycyclic aromatic hydrocarbons (PAHs) in plant and soil samples[J]. Journal of Agro-Environmental Science, 2005, 24(5):1003-1006(in Chinese).
[18] DOICK K J, BURAUEL P, JONES K C, et al. Distribution of aged 14C-PCB and 14C-PAH residues in particle-size and humic fractions of an agricultural soil[J]. Environmental Science & Technology, 2005, 39(17):65-75. [19] [20] SUMAN S, SINHA A, TARAFDAR A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J]. Science of the Total Environment, 2016, 545-546(68):353-360. [21] ZHANG J, FAN S K. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction[J]. Journal of Hazardous Materials, 2016, 320:114-122. [22] 邸莎, 张超艳, 颜增光, 等. 过硫酸钠对我国典型土壤中多环芳烃氧化降解效果的影响[J]. 环境科学研究, 2018, 31(1):95-101. DI S, ZHANG C Y, YAN Z G, et al. Oxidative degradation effect of sodium persulfate on polycyclic aromatic hydrocarbons in typical Chinese soils[J]. Research of Environmental Sciences, 2018, 31(1):95-101(in Chinese).
[23] 邢维芹, 骆永明, 李立平. 影响土壤中PAHs降解的环境因素及促进降解的措施[J]. 土壤通报, 2007, 38(1):173-178. XING W Q, LUO Y M, LI L P. Aromatic hydrocarbons in soil and measures for faster degradation:A review[J]. Chinese Journal of Soil Science, 2007, 38(1):173-178(in Chinese).
[24] CHEN W, WANG H, GAO Q, et al. Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention[J]. Environmental Pollution, 2017, 230:882-890. [25] 王晨. 典型土壤中多环芳烃的赋存形态及影响因素初探[D]. 杭州:浙江大学, 2015. WANG C. The speciation of polycyclic aromatic hydrocarbons in typical soil and its influencial factors[D]. Hangzhou:Zhejiang University, 2015(in Chinese). [26] 王意泽, 高彦征. 根际土壤中PAHs结合态残留的时空分布[C]. 全国农业环境科学学术研讨会, 2013. WANG Y Z, GAO Y Z. Temporal and spatial distribution of PAHs bound residues in rhizosphere soil[C]. National Symposium on Agricultural Environmental Science, 2013(in Chinese). [27] 李红兵. 化学氧化结合黑麦草修复芘污染土壤实验研究[D]. 上海:上海大学, 2015. LI H B. Chemical oxidation coupled with ryegrass on the remediation of pyrene polluted soil[D]. Shanghai:Shanghai University, 2015(in Chinese). [28] KHAN S, AIJUN L, ZHANG S, et al. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation[J]. Journal of Hazardous Materials, 2008, 152(2):506-515. [29] KIPOPOULOU A M, MANOLI E, SAMARA C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J]. Environmental Pollution, 1999, 106(3):369-380. [30]
计量
- 文章访问数: 1255
- HTML全文浏览数: 1255
- PDF下载数: 34
- 施引文献: 0