化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响

贾存珍, 柳修楚, 柴超, 王继芳, 葛蔚. 化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响[J]. 环境化学, 2019, (7): 1518-1527. doi: 10.7524/j.issn.0254-6108.2018092803
引用本文: 贾存珍, 柳修楚, 柴超, 王继芳, 葛蔚. 化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响[J]. 环境化学, 2019, (7): 1518-1527. doi: 10.7524/j.issn.0254-6108.2018092803
JIA Cunzhen, LIU Xiuchu, CHAI Chao, WANG Jifang, GE Wei. Effects of chemical oxidation remediation on concentration and composition of PAHs in agricultural soils and spinach[J]. Environmental Chemistry, 2019, (7): 1518-1527. doi: 10.7524/j.issn.0254-6108.2018092803
Citation: JIA Cunzhen, LIU Xiuchu, CHAI Chao, WANG Jifang, GE Wei. Effects of chemical oxidation remediation on concentration and composition of PAHs in agricultural soils and spinach[J]. Environmental Chemistry, 2019, (7): 1518-1527. doi: 10.7524/j.issn.0254-6108.2018092803

化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响

    通讯作者: 葛蔚, E-mail: gewei@qau.edu.cn
  • 基金项目:

    山东省自然科学基金(ZR2017MC068)和公益性行业(农业)科研专项经费项目(201503107)资助.

Effects of chemical oxidation remediation on concentration and composition of PAHs in agricultural soils and spinach

    Corresponding author: GE Wei, gewei@qau.edu.cn
  • Fund Project: Supported by the Shandong Provincial Natural Science Foundation (ZR2017MC068) and Special Fund for Agroscientific Research in the Public Interest (201503107).
  • 摘要: 采用盆栽实验,研究了过硫酸钠(Na2S2O8)和过氧化氢(H2O2)两种氧化剂分别与纳米Fe粉和硫酸亚铁(FeSO4)两种活化剂结合,以及加入腐殖酸(HA),对多环芳烃(PAHs)的去除,分析了对土壤和菠菜中溶剂可提取态PAHs以及土壤中不同结合态PAHs含量和组成的影响,并分析了波菜中PAHs的毒性当量浓度(BaPeq).结果表明,经过7周修复,对于土壤中溶剂可提取态PAHs,氧化剂剂量为0.2 g·kg-1时,H2O2的氧化效果优于Na2S2O8;活化剂剂量为0.448 g·kg-1时,纳米Fe粉的活化效果优于FeSO4;加入2 g·kg-1HA后PAHs含量有所降低,去除率升高.H2O2、纳米Fe粉和HA联合处理后土壤和菠菜中溶剂可提取态PAHs含量均最低,其在土壤中的去除率和菠菜中的减少率均最高,其中土壤中溶剂可提取态PAHs的去除率为36.8%,在菠菜地上部和地下部的减少率分别为45.3%、36.4%.土壤去除率和菠菜减少率中,2环和3环的PAHs高于4环、5环和6环.对于结合态PAHs,经过H2O2、纳米Fe粉和HA联合处理后土壤中不同结合态PAHs平均去除率最高,达44.5%.化学处理后,各处理对菠菜的生物量没有影响.H2O2、纳米Fe粉和HA联合处理后,菠菜地上部总BaPeq最低.
  • 加载中
  • [1] RIVAS F J. Polycyclic aromatic hydrocarbons sorbed on soils:A short review of chemical oxidation based treatments[J]. Journal of Hazardous Materials, 2006, 138(2):234-251.
    [2] 尹春芹, 蒋新, 杨兴伦, 等. 多环芳烃在土壤-蔬菜界面上的迁移与积累特征[J]. 环境科学, 2008, 29(11):3240-3245.

    YIN C Q, JIANG X, YANG X L, et al. Characters of soil-vegetable transfer and accumulation of polycyclic aromatic hydrocarbons[J]. Environmental Science, 2008, 29(11):3240-3245(in Chinese).

    [3] 周际海, 黄荣霞, 樊后保, 等. 污染土壤修复技术研究进展[J]. 水土保持研究, 2016, 23(3):366-372.

    ZHOU J H, HUANG R H, FAN H B, et al. A review on the progresses of remediation technologies for contaminated soils[J]. Research of Soil & Water Conservation, 2016, 23(3):366-372(in Chinese).

    [4] 赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3):849-856.

    ZHAO D, LIAO X Y, YAN X L, et al. Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site[J]. Environmental Science, 2011, 32(3):849-856(in Chinese).

    [5] 王兵, 李娟, 莫正平, 等. 基于硫酸自由基的高级氧化技术研究及应用进展[J]. 环境工程, 2012, 30(4):53-57.

    WANG B, LI J, MO Z P, et al. Progress in advanced oxidation processes based on sulfate radical[J]. Environmental Engineering, 2012, 30(4):53-57(in Chinese).

    [6] CONTE P, AGRETTO A, SPACCINI R, et al. Soil remediation:humic acids as natural surfactants in the washings of highly contaminated soils[J]. Environmental Pollution, 2008, 135(3):515-522.
    [7] MESBAIAH F Z, MANSOUR F, EDDOUAOUDA K, et al. Surfactant effects on biodegradation of polycyclic aromatic hydrocarbons[J]. Desalination & Water Treatment, 2016, 57(13):5995-6000.
    [8] WANG W H, HOAG G E, COLLINS J B, et al. Evaluation of surfactant-enhanced in Situ chemical oxidation (S-ISCO) in contaminated soil[J]. Water Air & Soil Pollution, 2013, 224(12):1-9.
    [9] TEJEDA-AGREDANO M C, MAYER P, ORTEGA-CALVO J J. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime[J]. Environmental Pollution, 2014, 184(104):435-442.
    [10] CHENG K Y, WONG J W. Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems[J]. Environmental Technology Letters, 2006, 27(8):835-844.
    [11] PENG S, WU W, CHEN J. Removal of PAHs with surfactant-enhanced soil washing:influencing factors and removal effectiveness[J]. Chemosphere, 2011, 82(8):1173-1177.
    [12] 吴应琴, 陈慧, 王永莉, 等. 腐殖酸对蒽的增溶作用及其影响因素[J]. 环境化学, 2009, 28(4):515-518.

    WU Y Q, CHEN H, WANG Y L, et al. Water solubility enhancement of anthracene by using humic acid[J]. Environmental Chemistry, 2009, 28(4):515-518(in Chinese).

    [13] ZHOU W, ZHU L. Solubilization of polycyclic aromatic hydrocarbons by anionic-nonionic mixed surfactant[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 255(1):145-152.
    [14] HE L, SONG J, PENG P. Characterization of extractable and non-extractable polycyclic aromatic hydrocarbons in soils and sediments from the Pearl River Delta, China[J]. Environmental Pollution, 2008, 156(3):769-774.
    [15] MALISZEWSKA-KORDYBACH B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(1-2):121-127.
    [16] PELUFFO M, PARDO F, SANTOS A, et al. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil[J]. Science of the Total Environment, 2016, 563-564:649-656.
    [17] 高彦征, 朱利中, 凌婉婷, 等. 土壤和植物样品的多环芳烃分析方法研究[J]. 农业环境科学学报, 2005, 24(5):1003-1006.

    GAO Y Z, ZHU L Z, LING W T, et al. Analysis method for Polycyclic aromatic hydrocarbons (PAHs) in plant and soil samples[J]. Journal of Agro-Environmental Science, 2005, 24(5):1003-1006(in Chinese).

    [18] DOICK K J, BURAUEL P, JONES K C, et al. Distribution of aged 14C-PCB and 14C-PAH residues in particle-size and humic fractions of an agricultural soil[J]. Environmental Science & Technology, 2005, 39(17):65-75.
    [19]
    [20] SUMAN S, SINHA A, TARAFDAR A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J]. Science of the Total Environment, 2016, 545-546(68):353-360.
    [21] ZHANG J, FAN S K. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction[J]. Journal of Hazardous Materials, 2016, 320:114-122.
    [22] 邸莎, 张超艳, 颜增光, 等. 过硫酸钠对我国典型土壤中多环芳烃氧化降解效果的影响[J]. 环境科学研究, 2018, 31(1):95-101.

    DI S, ZHANG C Y, YAN Z G, et al. Oxidative degradation effect of sodium persulfate on polycyclic aromatic hydrocarbons in typical Chinese soils[J]. Research of Environmental Sciences, 2018, 31(1):95-101(in Chinese).

    [23] 邢维芹, 骆永明, 李立平. 影响土壤中PAHs降解的环境因素及促进降解的措施[J]. 土壤通报, 2007, 38(1):173-178.

    XING W Q, LUO Y M, LI L P. Aromatic hydrocarbons in soil and measures for faster degradation:A review[J]. Chinese Journal of Soil Science, 2007, 38(1):173-178(in Chinese).

    [24] CHEN W, WANG H, GAO Q, et al. Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention[J]. Environmental Pollution, 2017, 230:882-890.
    [25] 王晨. 典型土壤中多环芳烃的赋存形态及影响因素初探[D]. 杭州:浙江大学, 2015. WANG C. The speciation of polycyclic aromatic hydrocarbons in typical soil and its influencial factors[D]. Hangzhou:Zhejiang University, 2015(in Chinese).
    [26] 王意泽, 高彦征. 根际土壤中PAHs结合态残留的时空分布[C]. 全国农业环境科学学术研讨会, 2013. WANG Y Z, GAO Y Z. Temporal and spatial distribution of PAHs bound residues in rhizosphere soil[C]. National Symposium on Agricultural Environmental Science, 2013(in Chinese).
    [27] 李红兵. 化学氧化结合黑麦草修复芘污染土壤实验研究[D]. 上海:上海大学, 2015. LI H B. Chemical oxidation coupled with ryegrass on the remediation of pyrene polluted soil[D]. Shanghai:Shanghai University, 2015(in Chinese).
    [28] KHAN S, AIJUN L, ZHANG S, et al. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation[J]. Journal of Hazardous Materials, 2008, 152(2):506-515.
    [29] KIPOPOULOU A M, MANOLI E, SAMARA C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J]. Environmental Pollution, 1999, 106(3):369-380.
    [30]
  • 加载中
计量
  • 文章访问数:  1255
  • HTML全文浏览数:  1255
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-28

化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响

    通讯作者: 葛蔚, E-mail: gewei@qau.edu.cn
  • 1. 青岛农业大学资源与环境学院, 青岛, 266109;
  • 2. 青岛农业大学生命科学学院, 青岛, 266109
基金项目:

山东省自然科学基金(ZR2017MC068)和公益性行业(农业)科研专项经费项目(201503107)资助.

摘要: 采用盆栽实验,研究了过硫酸钠(Na2S2O8)和过氧化氢(H2O2)两种氧化剂分别与纳米Fe粉和硫酸亚铁(FeSO4)两种活化剂结合,以及加入腐殖酸(HA),对多环芳烃(PAHs)的去除,分析了对土壤和菠菜中溶剂可提取态PAHs以及土壤中不同结合态PAHs含量和组成的影响,并分析了波菜中PAHs的毒性当量浓度(BaPeq).结果表明,经过7周修复,对于土壤中溶剂可提取态PAHs,氧化剂剂量为0.2 g·kg-1时,H2O2的氧化效果优于Na2S2O8;活化剂剂量为0.448 g·kg-1时,纳米Fe粉的活化效果优于FeSO4;加入2 g·kg-1HA后PAHs含量有所降低,去除率升高.H2O2、纳米Fe粉和HA联合处理后土壤和菠菜中溶剂可提取态PAHs含量均最低,其在土壤中的去除率和菠菜中的减少率均最高,其中土壤中溶剂可提取态PAHs的去除率为36.8%,在菠菜地上部和地下部的减少率分别为45.3%、36.4%.土壤去除率和菠菜减少率中,2环和3环的PAHs高于4环、5环和6环.对于结合态PAHs,经过H2O2、纳米Fe粉和HA联合处理后土壤中不同结合态PAHs平均去除率最高,达44.5%.化学处理后,各处理对菠菜的生物量没有影响.H2O2、纳米Fe粉和HA联合处理后,菠菜地上部总BaPeq最低.

English Abstract

参考文献 (30)

目录

/

返回文章
返回