环境中砷与溶解有机质的络合作用

刘广良, 蔡勇. 环境中砷与溶解有机质的络合作用[J]. 环境化学, 2011, 30(1): 50-55.
引用本文: 刘广良, 蔡勇. 环境中砷与溶解有机质的络合作用[J]. 环境化学, 2011, 30(1): 50-55.
LIU Guangliang, CAI Yong. COMPLEXATION OF ARSENIC WITH DISSOLVED ORGANIC MATTER IN THE ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 50-55.
Citation: LIU Guangliang, CAI Yong. COMPLEXATION OF ARSENIC WITH DISSOLVED ORGANIC MATTER IN THE ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 50-55.

环境中砷与溶解有机质的络合作用

COMPLEXATION OF ARSENIC WITH DISSOLVED ORGANIC MATTER IN THE ENVIRONMENT

  • 摘要: 砷(As)与溶解有机质(DOM)的络合从而形成As—DOM络合物是控制砷的形态、移动性和生物可利用性的关键过程.本文综述了目前为数不多的As—DOM络合物形成的研究,力争对这方面的研究有一系统认识.本综述包括:(1)砷与溶解有机质的络合形式;(2)As—DOM络合物的分离分析方法;(3)As—DOM络合物形成的观测证据;(4)As—DOM络合物形成在砷环境化学上的意义;(5)今后需要重点加强的研究方向.
  • 加载中
  • [1] Cotton F A, Wilkinson G, Murillo C A, et al. Advanced inorganic chemistry[M]. 6th edition ed. New York: John Wiley & Sons, 1999
    [2] Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89:713-764
    [3] McAuliffe C A, Arsenic, Antimony, Bismuth[M]. In comprehensive coordination chemistry. Vol. 7, Wilkinson, Gilard, Mcleverty, Eds., Oxford: Pergamon, 1987:237-298
    [4] National Research Council. Arsenic in drinking water[M]. Washington DC: National Academy Press, 1999
    [5] Matschullat J. Arsenic in the geospherea review[J]. Sci Total Environ, 2000, 249:297-312
    [6] Mandal B K, Suzuki K T. Arsenic round the world: a review[J]. Talanta, 2002, 58:201-235
    [7] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Appl Geochem, 2002, 17:517-568
    [8] Tseng C H. Blackfoot disease and arsenic: a never-ending story[J]. Journal of Environmental Science and Health Part C, 2005,23: 55-74
    [9] Anawar H M, Akai J, Komaki K, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes[J]. J Geochem Explor, 2003, 77:109-131
    [10] Tufano K J, Fendorf S. Biogeochemical conditions governing arsenic migration in surface and subsurface environments[J]. Geochim Cosmochim Acta, 2006, 70:A658-3802
    [11] O'Shea B M, Clark G, Jankowski J. A comparison of arsenic occurrence and geochemistry in two groundwater environments[J]. Geochim Cosmochim Acta, 2006, 70:A579-3802
    [12] Harvey C F, Swartz C H, Badruzzaman A B M, et al. Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale[J]. Comptes Rendus Geosciences, 2005, 337:285-296
    [13] Swartz C H, Blute N K, Badruzzman B, et al. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization[J]. Geochim Cosmochim Acta, 2004, 68:4539-4557
    [14] Stollenwerk K G, Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption[M]. In Arsenic in Ground Water Welch, Stollenwerk, Eds., Kluwer Academic Publishers, 2003:67-100
    [15] Wang S, Mulligan C N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater[J]. Environ Geochem Health, 2006, 28:197-214
    [16] McArthur J M, Banerjee D M, Hudson-Edwards K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications[J]. Appl Geochem, 2004, 19:1255-1293
    [17] Bauer M, Blodau C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J]. Sci Total Environ, 2006, 354:179-190
    [18] Harvey C F, Swartz CH, Badruzzaman A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002, 298:1602-1606
    [19] Kalbitz K, Wennrich R, Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter[J]. Sci Total Environ, 1998, 209:27-39
    [20] Cano-Aguilera I, Haque N, Morrison G M, et al. Use of hydride generation-atomic absorption spectrometry to determine the effects of hard ions, iron salts and humic substances on arsenic sorption to sorghum biomass[J]. Microchem J, 2005, 81:57-60
    [21] Grafe M, Eick M J, Grossl P R. Adsorption of arsenate (Ⅴ) and arsenite (Ⅲ) on goethite in the presence and absence of dissolved organic carbon[J]. Soil Sci Soc Am J, 2001, 65:1680-1687
    [22] Redman A D, Macalady D L, Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite[J]. Environ Sci Technol, 2002, 36:2889-2896
    [23] Grafe M, Eick M J, Grossl P R, et al. Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon[J]. J Environ Qual, 2002, 31:1115-1123
    [24] Takahashi Y, Minai Y, Ambe S, et al. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique[J]. Geochim Cosmochim Acta, 1999, 63:815-836
    [25] Ko I, Davis A P, Kim J Y, et al. Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid[J]. J Hazard Mater, 2007, 141:53-60
    [26] de Jonge L W, Kjaergaard C, Moldrup P. Colloids and colloid-facilitated transport of contaminants in soils: an introduction[J]. Vadose Zone Journal, 2004, 3:321-325
    [27] Ko I, Kim J Y, Kim K W. Arsenic speciation and sorption kinetics in the As-hematite-humic acid system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 234:43-50
    [28] Ritter K, Aiken G R, Ranville J F, et al. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(Ⅲ)[J]. Environ Sci Technol, 2006, 40:5380-5387
    [29] Chen Z, Cai Y, Solo-Gabriele H, et al. Interactions of arsenic and the dissolved substances derived from turf soils[J]. Environ Sci Technol, 2006, 40:4659-4665
    [30] Buschmann J, Kappeler A, Lindauer U, et al. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum[J]. Environ Sci Technol, 2006, 40:6015-6020
    [31] Lin H T, Wang M C, Li G C. Complexation of arsenate with humic substance in water extract of compost[J]. Chemosphere, 2004, 56:1105-1112
    [32] Warwick P, Inam E, Evans N. Arsenic's interaction with humic acid[J]. Environ Chem, 2005, 2:119-124
    [33] Sharma P, Ofner J, Kappler A. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As[J]. Environ Sci Technol, 2010, 44:4479-4485
    [34] Sharma A K, Tjell J C, Mosbaek H. Health effects from arsenic in groundwater of the Bengal delta: Effects of iron and water storage practices[J]. Environmental Geosciences, 2006, 13:17-29
    [35] Bauer M, Blodau C. Arsenic distribution in the dissolved, colloidal and particulate size fraction of experimental solutions rich in dissolved organic matter and ferric iron[J]. Geochim Cosmochim Acta, 2009, 73:529-542
    [36] Liu G, Cai Y. Complexation of arsenite with dissolved organic matter: conditional distribution coefficients and apparent stability constants[J]. Chemosphere 2010, 81:890-896
    [37] Liu G, Fernandez A, Cai Y. Iron-bridged complexation of arsenite with dissolved organic matter. Environ Sci Technol, 2010, under review
    [38] Yalcin S, Le C. Speciation of As using solid phase extraction cartridges[J]. J Environ Monit, 2001, 3:81-85
    [39] Buschmann J, Sigg L. Antimony(Ⅲ) binding to humic substances: influence of pH and type of humic acid[J]. Environ Sci Technol, 2004, 38, 4535-4541
    [40] Liu G, Fernandez A, Cai Y. Complexation of arsenite with dissolved organic matter in the absence and presence of natural sand[M]. Abstracts of Papers, 235th ACS National Meeting, 2008, GEOC-195
    [41] Striegel A M. Multiple detection in size-exclusion chromatography of macromolecules[J]. Anal Chem, 2005, 77:104 A-115 A
    [42] Newton K, Amarasiriwardena D, Xing B. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard[J]. Environ Pollut (Amsterdam, Neth.), 2006, 143:197-205
    [43] Wrobel K, Sadi B B M, Wrobel K, et al. Effect of metal ions on the molecular weight distribution of humic substances derived from municipal compost: ultrafiltration and size exclusion chromatography with spectrophotometric and inductively coupled plasma-MS detection[J]. Anal Chem, 2003, 75:761-767
    [44] Li B, Bergmann J, Lassen S, et al. Distribution of elements binding to molecules with different molecular weights in aqueous extract of Antarctic krill by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry[J]. J Chromatogr, B 2005, 814:83-91
    [45] Styblo M, Thomas D J. Binding of arsenicals to proteins in an in vitro methylation system[J]. Toxicol Appl Pharmacol, 1997, 147:1-8
    [46] Raab A, Genney D R, Meharg A A, et al. Identification of arsenic species in sheep-wool extracts by different chromatographic methods[J]. Appl Organomet Chem, 2003, 17:684-692
    [47] Jiang G, Gong Z, Li X F, et al. Interaction of trivalent arsenicals with metallothionein[J]. Chem Res Toxicol, 2003, 16:873-880
    [48] Pizarro I, Gomez M, Camara C, et al. Evaluation of arsenic species-protein binding in cardiovascular tissues by bidimensional chromatography with ICP-MS detection[J]. J Anal At Spectrom, 2004, 19:292-296
    [49] Cabaero A I, Madrid Y, Cámara C. Study of mercury-selenium interaction in chicken liver by size exclusion chromatography inductively coupled plasma mass spectrometry[J]. J Anal At Spectrom, 2005, 20:847-855
    [50] Thanabalasingam P, Pickering W F. Arsenic sorption by humic acids. Environmental Pollution Series B[J]. Chemical and Physical, 1986, 12:233-246
    [51] Riggle J, von Wandruszka R, Binding of inorganic phosphate to dissolved metal humates[J]. Talanta, 2005, 66:372-375
    [52] Stevenson F J. Humus Chemistry[M]. New York: Wiley, 1994
    [53] Corapcioglu M Y, Jiang S. Colloid-facilitated groundwater contaminant transport[J]. Water Resour Res, 1993, 29:2215-2226
    [54] McCarthy J F, Zachara J M. Subsurface transport of contaminants[J]. Environmental Science and Technology, 1989, 23:496-502
    [55] Fendorf S, Michael H A, van Geen A. Spatial and temporal variations of groundwater arsenic in south and southeast Asia[J]. Science, 2010, 328:1123-1127
  • 加载中
计量
  • 文章访问数:  1995
  • HTML全文浏览数:  1916
  • PDF下载数:  373
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-31
刘广良, 蔡勇. 环境中砷与溶解有机质的络合作用[J]. 环境化学, 2011, 30(1): 50-55.
引用本文: 刘广良, 蔡勇. 环境中砷与溶解有机质的络合作用[J]. 环境化学, 2011, 30(1): 50-55.
LIU Guangliang, CAI Yong. COMPLEXATION OF ARSENIC WITH DISSOLVED ORGANIC MATTER IN THE ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 50-55.
Citation: LIU Guangliang, CAI Yong. COMPLEXATION OF ARSENIC WITH DISSOLVED ORGANIC MATTER IN THE ENVIRONMENT[J]. Environmental Chemistry, 2011, 30(1): 50-55.

环境中砷与溶解有机质的络合作用

  • 1. 佛罗里达国际大学化学与生物化学系和东南环境研究中心, 迈阿密, 33199, 美国

摘要: 砷(As)与溶解有机质(DOM)的络合从而形成As—DOM络合物是控制砷的形态、移动性和生物可利用性的关键过程.本文综述了目前为数不多的As—DOM络合物形成的研究,力争对这方面的研究有一系统认识.本综述包括:(1)砷与溶解有机质的络合形式;(2)As—DOM络合物的分离分析方法;(3)As—DOM络合物形成的观测证据;(4)As—DOM络合物形成在砷环境化学上的意义;(5)今后需要重点加强的研究方向.

English Abstract

参考文献 (55)

返回顶部

目录

/

返回文章
返回