疏水性有机污染物在土壤/沉积物中的赋存状态研究

孙红文, 张闻. 疏水性有机污染物在土壤/沉积物中的赋存状态研究[J]. 环境化学, 2011, 30(1): 231-241.
引用本文: 孙红文, 张闻. 疏水性有机污染物在土壤/沉积物中的赋存状态研究[J]. 环境化学, 2011, 30(1): 231-241.
SUN Hongwen, ZHANG Wen. EXISTING STATE OF HYDROPHOBIC ORGANIC COMPOUNDS IN SOILS AND SEDIMENTS[J]. Environmental Chemistry, 2011, 30(1): 231-241.
Citation: SUN Hongwen, ZHANG Wen. EXISTING STATE OF HYDROPHOBIC ORGANIC COMPOUNDS IN SOILS AND SEDIMENTS[J]. Environmental Chemistry, 2011, 30(1): 231-241.

疏水性有机污染物在土壤/沉积物中的赋存状态研究

  • 基金项目:

    国家自然科学基金重点项目(No. 20737002)资助.

EXISTING STATE OF HYDROPHOBIC ORGANIC COMPOUNDS IN SOILS AND SEDIMENTS

  • Fund Project:
  • 摘要: 土壤/沉积物是环境中有机污染物主要的汇. 由于土壤-沉积物结构和性质的复杂性,有机污染物进入其中,会结合在不同的位点上,赋存状态发生分化,具有不同的物理流动性、生态风险和化学反应活性. 对于土壤-沉积物中有机污染物吸附/解吸的研究是认识其赋存状态并预测其生态风险的重要手段. 本文对于疏水性污染物吸附/解吸及赋存状态的国内外研究进展进行了综述,介绍了对吸附/解吸动力学及机理的认识历程,讨论了吸附剂的化学性质和物理构象、吸附质的性质及浓度、相互作用时间、以及环境条件与复合污染对有机污染物的吸附/解吸行为的影响.
  • 加载中
  • [1] 吴文伶, 孙红文. 菲在沉积物上的吸附-解吸研究[J]. 环境科学, 2009, 30(4):1133-1138
    [2] 李俊国, 孙红文. 芘在土壤中的长期吸附和解吸行为[J]. 环境科学, 2006, 27(1):165-170
    [3] 高媛, 孙红文. 菲在不同地质吸附剂上吸附/解吸的研究[J]. 环境化学, 2008, 27(2):158-163
    [4] Sun H, Li J. Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction, and SFE[J]. Water Air Soil Pollut, 2005, 166:353-365
    [5] Lambert S M. Omega(Ω), a useful index of soil sorption equilibria[J]. J Agric Food Chem, 1968, 16:340-343
    [6] Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organic compounds between soil organic matter and water[J]. Environ Sci Technol, 1983, 17:227-231
    [7] Weber Jr W J, Huang W, LeBoeuf E J. Geosorbent organic matter and its relationship to the binding and sequestration of organic contaminants[J]. Colloids Surf. A, 1999, 151:167-179
    [8] Weber Jr W J, Young T M. A distributed reactivity model for sorption by soils and sediments. 6. Mechanistic implications of desorption under supercritical fluid conditions[J]. Environ Sci Technol, 1997, 31:1686-1691
    [9] Young T M, Weber Jr W J. A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics[J]. Environ Sci Technol, 1995, 29:92-97
    [10] Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environ Sci Technol, 1996, 30:1-11
    [11] Huang W, Young T M, Schlautman M A, et al. A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model[J]. Environ Sci Technol, 1997, 31:1703-1710
    [12] Sun H, Tateda M, Ike M, et al. Short- and long-term sorption/desorption of polycyclic aromatic hydrocarbons onto artificial solids:effects of particle and pore sizes and organic matters[J]. Water Res, 2003, 37:2960-2968
    [13] Xing B, Pignatello J J. Dual-mode sorption of low-polarity compounds in glass polyvinylchloride and soil organic matter[J]. Environ Sci Technol, 1997, 31:792-799
    [14] Chun Y, Sheng G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environ Sci Technol, 2004, 38:4649-4655
    [15] Cornelissen G, Gustafsson O. Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sediments[J]. Environ Sci Technol, 2005, 39:764-769
    [16] Yang Y, Sheng G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environ Sci Technol, 2003, 37:3635-3639
    [17] Morelis S, Van den Heuvel H, van Noort PCM. Competition between phenanthrene, chrysene, and 2,5-dichlorobiphenyl for high-energy adsorption sites in a sediment[J]. Chemosphere, 2007, 68:2028-2032
    [18] Pikaar I, Koelmans A A, van Noort PCM. Sorption of organic compounds to activated carbons. Evaluation of isotherm models[J]. Chemosphere, 2006, 65:2343-2351
    [19] Sander M, Pignatello J J. Characterization of charcoal adsorption sites for aromatic compounds:insights drawn from single-solute and bi-solute competitive experiments[J]. Environ Sci Technol, 2005, 39:1606-1615
    [20] Carter M C, Kilduff J E, Weber Jr W J. Site energy distribution analysis of preloaded adsorbents[J]. Environ Sci Technol, 1995, 29:1773-1780
    [21] Harkey G A, Van Hoof P L, Landrum P F. Bioavailability of polycyclic aromatic hydrocarbons from a historically contaminated sediment core[J]. Environ Toxicol Chem, 1995, 14:1551-1560
    [22] Landrum P F, Reinhold M D, Nihart S R, et al. Predicting the bioavailability of organic xenobiotics to Pontoporeia hoyi in the presence of humic and fulvic materials and natural dissolved organic matter[J]. Environ Toxicol Chem, 1985, 4:459-467
    [23] Chen W, Kan A T, Newell C J, et al. More realistic soil cleanup standards with dual-equilibrium desorption[J]. Ground Water, 2002, 40:153-164
    [24] Qi Y, Chen W. Comparison of earthworm bioaccumulation between readily-desorbable and desorption-resistant naphthalene:implications for bio-uptake routes[J]. Environ Sci Technol, 2010, 44:323-328
    [25] Cornelissen G, Rigterink H, Van Noort PCM, et al. Slowly and very slowly desorbing organic compounds in sediments exhibit Langmuir-type sorption[J]. Environ Toxicol Chem, 2000, 19:1532-1539
    [26] Xing B. Sorption of anthropogenic organic compounds by natural organic matter:A mechanistic consideration[J]. Can J Soil Sci, 1999, 79:653
    [27] Pan B, Xing B, Liu W, et al. Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin[J]. Environ Pollut, 2006, 143:24-33
    [28] Sun H, Yan Q. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene[J]. J Hazard Mater, 2007, 144:164-170
    [29] Xie H, Guetzloff T F, Rice J A. Fractionation of pesticide residues bound to humin[J]. Soil Sci, 1997, 162:421-429
    [30] Kohl S D, Rice J A. The binding of contaminants to humin:A mass balance[J]. Chemosphere, 1998, 36:251-261
    [31] Doick K J, Burauel P, Jones K C, et al. Distribution of aged C-14-PCB and C-14-PAH residues in particle-size and humic fractions of an agricultural soil[J]. Environ Sci Technol, 2005, 39:6575-6583
    [32] Wen B, Zhang J, Zhang S, et al. Phenanthrene sorption to soil humic acid and different humin fractions[J]. Environ Sci Technol, 2007, 41:3165-3171
    [33] Cheng K Y, Wong JWC. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil-water system[J]. Chemosphere, 2006, 62:1907-1916
    [34] Chiou C T, Malcolm R, Brinton T I, et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids[J]. Environ Sci Technol, 1986, 20:502-508
    [35] Mott H V. Association of hydrophobic organic contaminants with soluble organic matter:evaluation of the database of K-doc values[J]. Adv Environ Res, 2002, 6:577-593
    [36] Haitzer M, Hoss S, Traunspurger W, et al. Effect s of dissolved organic matter (DOM) on the bioconcent ration of organic chemicals in aquatic organisms-a review[J]. Chemosphere, 1998, 37:1335-1362
    [37] Kukkonen J, Oikari A. Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material[J]. Water Res, 1991, 25:455-463
    [38] Heyes A, Moore T R. The influence of dissolved organic carbon and anaerobic conditions on mineral weathering[J]. Soil Sci, 1992, 2:120-129
    [39] Dahlgren R A, Uglini F C. Aluminium fractionation of soil solutions from unperturbed and tephra-treated Spodosols, Cascade Range, Washington, USA[J]. Soil Sci Soc Am J, 1989, 53:559-566
    [40] Leenheer J A, Huffman E W D. Analytical method for dissolved organic carbon fractionation[M]. Denver CO: US Geol Survey Water Res Invest, 1979:79-84
    [41] Vance G F, David M B. Effect of acid treatment on dissolved organic carbon retention by a Spodic horizon[J]. Soil Sci Soc Am J, 1989:1242-1247
    [42] Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environ Sci Technol, 2005, 39:6881-6895
    [43] Wang X, Xing B. Importance of structural makeup of biopolymers for organic contaminant sorption[J]. Environ Sci Technol, 2007, 41, 3559-3565
    [44] Sun H, Zhou Z. Impacts of charcoal characteristics on sorption of polycyclic aromatic hydrocarbons[J]. Chemosphere, 2008, 71:2113-2120
    [45] Zhou Z, Sun H, Zhang W. Desorption of polycyclic aromatic hydrocarbons from aged and unaged charcoals with and without modification of humic acids[J]. Environ Pollut, 2010, 158:1619-1921
    [46] Mitra S, Bhowmik P C, Xing B. Physical and chemical properties of soil influence the sorption of the diketonitrile metabolite of RPA 201772[J]. Weed Sci, 2001, 49:423-430
    [47] Ding G, Novak J M, Herbert S, et al. Long-term tillage effects on soil metolachlor sorption and desorption behavior[J]. Chemosphere 2002, 48:897-904
    [48] Chiou C T, McGroddy S E, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments[J]. Environ Sci Technol, 1998, 32:264-269
    [49] Perminova I V, Grechishcheva N Y, Petrosyan V S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons:Relevance of molecular descriptors[J]. Environ Sci Technol, 1999, 33:3781-3787
    [50] Gunasekara A S, Simpson M J, Xing B. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environ Sci Technol, 2003, 37:852-858
    [51] Golding C J, Smernik R J, Birch G F. Investigation of the role of structural domains identified in sedimentary organic matter in the sorption of hydrophobic organic compounds[J]. Environ Sci Technol, 2005, 39:3925-3932
    [52] Ran Y, Sun K, Yang Y, et al. Strong sorption of phenanthrene by condensed organic matter in soils and sediments[J]. Environ Sci Technol, 2007, 41:3952-3958
    [53] Sun K, Ran Y, Yang Y, et al. Sorption of phenanthrene by nonhydrolyzable organic matter from different size sediments[J]. Environ Sci Technol, 2008, 42:1961-1966
    [54] Kang S, Xing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environ Sci Technol, 2005, 39:134-140
    [55] Xing B, Liu J, Liu X, et al. Extraction and characterization of humic acids and humin fractions from a black soil of China[J]. Pedosphere, 2005, 15:1-8
    [56] Chefetz B, Deshmukh A P, Hatcher P G, et al. Pyrene sorption by natural organic matter[J]. Environ Sci Technol, 2000, 34:2925-2930
    [57] Chefetz B, Salloum M J, Deshmukh A P, et al. Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-, and thermochemolysis-gas chromatography/mass spectrometry[J]. Soil Sci Soc Am J, 2002, 66:1159-1171
    [58] Simpson M J, Chefetz B, Deshmukh A P, et al. Comparison of polycyclic aromatic hydrocarbon distributions and sedimentary organic matter characteristics in contaminated, coastal sediments from Pensacola Bay, Florida[J]. Mar Environ Res, 2005, 59:139-163
    [59] Rutherford D W, Chiou C T, Klle D E. Influence of soil organic matter composition on the partition of organic compounds[J]. Environ Sci Technol, 1992, 26:336-340
    [60] Chin Y P, Aiken G R, O'Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances[J]. Environ Sci Technol, 1994, 28:1853-1858
    [61] Chin Y P, Aiken G R, Danielsen K M. Binding of pyrene to aquatic and commercial humic substances:the role of molecular weight and aromaticity[J]. Environ Sci Technol, 1997, 31:1630-1635
    [62] Hur J, Schlautman M A. Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated humic substances[J]. Environ Sci Technol, 2004, 38:5871-5877
    [63] Chefetz B, Xing B. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds:a review[J]. Environ Sci Technol, 2009, 43:1680-1688
    [64] Pan B, Xing B, Tao S, et al. Effect of physical forms of soil organic matter on phenanthrene sorption[J]. Chemosphere, 2007, 68:1262-1269
    [65] Xing B, Chen Z. Spectroscopic evidence for condensed domains in soil organic matter[J]. Soil Sci, 1999, 164:40-47
    [66] Weber Jr W J, LeBoeuf E J, Young T M, et al. Contaminant interactions with geosorbent organic matter:Insights drawn from polymer sciences[J]. Water Res, 2001, 35:853-868
    [67] Young K D, LeBoeuf E J. Glass rransition behavior in a peat humic acid and an aquatic fulvic acid[J]. Environ Sci Technol, 2000, 34:4549-4553
    [68] Ran Y, Xing B, Rao P S C, et al. Importance of adsorption(Hole-Filling) mechanism for hydrophobic organic contaminants on a aquifer kerogen isolate[J]. Environ Sci Technol, 2004, 38:4340-4348
    [69] Chen B, Xing B. Sorption and conformational characteristics of reconstituted plant cuticular waxes on montmorillonite[J]. Environ Sci Technol, 2005, 39:8315-8323
    [70] Bonin J L, Simpson M J. Variation in phenanthrene sorption coefficients with soil organic matter fractionation:The result of structure or conformation?[J]. Environ Sci Technol, 2007, 41:153-159
    [71] Salloum M J, Dudas M J, McGill W B. Variation of 1-naphthol sorption with organic matter fractionation:the role of physical conformation[J]. Org Geochem, 2001, 32:709-719
    [72] Leboeuf E J, Weber Jr W J. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains:discovery of a humic acid glass transition and an argument for a polymer-based model[J]. Environ Sci Technol, 1997, 31:1697-1702
    [73] Sander M, Lu Y, Pignatello J J. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion[J]. Environ Sci Technol, 2006, 40:170-178
    [74] Gunasekara A S, Xing B. Sorption and desorption of naphthalene by soil organic matter:Importance of aromatic and aliphatic components[J]. J Environ Qual, 2003, 32:240-246
    [75] Lu Y, Pignatello J J. Demonstration of the "conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis[J]. Environ Sci Technol, 2002, 36:4553-4561
    [76] Xu X, Sun H, Simpson M J. Concentration- and time-dependent sorption and desorption behavior of phenanthrene to geosorbents with varying organic matter composition[J]. Chemosphere, 2010, 79:772-778
    [77] Schaumann G E. Soil organic matter beyond molecular structure Part I:Macromolecular and supramolecular characteristics[J]. J. Plant Nutr Soil SC, 2006, 169:145-156
    [78] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry, 2nd ed[M]. John Wiley & L Sons, 2004
    [79] Liu P, Zhu D, Zhang H, et al. Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China[J]. Environ Pollut, 2008, 156:1053-1060
    [80] van Noort P C M, Jonker M T O, Koelmans A A. Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs[J]. Environ Sci Technol, 2004, 38:3305-3309
    [81] 王岙. 共存污染物对沉积物及其主要组分吸附阿特拉津的影响研究. 吉林大学博士学位论文, 2009
    [82] Wang X, Sato T, and Xing B. Competitive sorption of pyrene on wood chars[J]. Environ Sci Technol, 2006, 40:3267-3272
    [83] 李俊国. 土壤中芘的长期吸附/解吸与有效性研究. 南开大学博士学位论文, 2005
    [84] 徐晓阳. 土壤中菲的形态及其生物可利用性研究. 南开大学博士学位论文, 2010
    [85] Steinberg S M, Pignatello J J, Sawhney B L. Persistence of 1,2-dibromoethane in soils:entrapment in intraparticle Micropores[J]. Environ Sci Technol, 1987, 21:1201-1208
    [86] Sun H, Wang C, Huo C, et al. Semipermeable membrane device-assisted desorption of pyrene from soils and its relationship to bioavailability[J]. Environ Toxicol Chem, 2008, 27:103-111
    [87] Weber Jr W J, Huang, W. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environ Sci Technol, 1996, 30:881-888
    [88] Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environ Sci Technol, 2000, 34:4259-4265
    [89] Oren A, Chefetz B. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments[J]. Chemosphere, 2005, 61:19-29
    [90] Kan A T, Fu G, Hunter M, et al. Irreversible sorption of neutral hydrocarbons to sediments:experimental observations and model predictions[J]. Environ Sci Technol, 1998, 32:892-902
    [91] Xing B. Reaction of toluene with soil organic matter[J]. J Environ Sci Heal B, 1998, 33:293-305
    [92] Wang X, Xing B. Sorption of organic contaminants by biopolymer-derived chars[J]. Environ Sci Technol, 2007, 41:8342-8348
    [93] Huang L, Boving T B, Xing B. Sorption of PAHs by aspen wood fibers as affected by chemical alterations[J]. Environ Sci Technol, 2006, 40:3279-3284
    [94] Kelsey J W, Kottler B D, Alexander M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals[J]. Environ Sci Technol, 1997, 31:214-217
    [95] 吴文伶. 离子型化合物对菲吸附解吸影响研究. 南开大学博士学位论文, 2010
    [96] Wu W, Sun H, Wang L, et al. Comparative study on the micelle properties of synthetic and dissolved organic matters[J]. J Hazard Mater, 2010, 174, 635-640
    [97] Totsche K U, Danzer J, Kogel-Knanber I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments[J]. J Environ Qual, 1997, 26:1090-1100
    [98] Willams C F, Agassi M, Letey J. Facilitated transport of napropamide by dissolved organic matter through soil columns[J]. Soil Sci Soc Am J, 2000, 64:590-594
    [99] Schlautman M A, Morgan J J. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials[J]. Environ Sci Technol, 1993, 27:961-969
    [100] 陶庆会, 汤鸿霄. 阿特拉津在天然水体沉积物中的吸附行为[J]. 环境化学, 2004, 23(2):145-151
    [101] Burton E D, Phillips I R, Hawker D W. Sorption and desorption behavior of tributyltin with natural sediments[J]. Environ Sci Technol, 2004, 38:6694-6700
    [102] 吴济舟, 孙红文. 离子对芘与天然溶解性有机质结合系数的影响[J]. 环境化学, 2010,29(6):1004-1009
    [103] Wu W, Sun H. Sorption-desorption hysteresis of phenanthrene-effect of nanopores, solute concentration, and salinity[J]. Chemosphere, 2010, 81(7): 961-967
    [104] Chen J, Zhu D, Sun C. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal[J]. Environ Sci Technol, 2007, 41:2536-2541
    [105] Weber W J, Sung H K, Johnson M D. A distributed reactivity model for sorption by soils and sediments.15.High-concentration co-contaminant effects on phenanthrene sorption and desorption[J]. Environ Sci Technol, 2002, 36:3625-3634
    [106] Xing B, Pignatello J J, Gigioti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ Sci Technol, 1996, 30:2432-2440
    [107] Zhu L, Lou B F, Yang K, et al. Effects of ionizable organic compounds in different species on the sorption of p-nitroanline to sediment[J]. Water Res, 2005, 39:281-288
    [108] Yang K, Zhu L, Xing B. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS[J]. Environ Sci Technol, 2006, 40:4274-4280
    [109] Dai, G Liu, Y Qian, X Cheng, The sorption behavior of complex pollution system composed of aldicarb and surfactant-SDBS[J]. Water Res, 2001, 35:2286-2290
    [110] Sun H, Wu W, Wang L. Phenanthrene partitioning in sediment-surfactant fresh/saline water systems[J]. Environ Pollut, 2009, 157: 2520-2528
    [111] Zhu L, Feng S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants[J]. Chemosphere, 2003, 53:459-467
    [112] Sheng G, Xu S, Boyd S A. Mechanism(s)-controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter[J]. Environ Sci Technol, 1996, 30:1553-1557
    [113] Xu S, Sheng G, Boyd S A. Use of organoclays in pollution abatements[J]. Adv Agron, 1997, 59:25-62
    [114] Zhu L, Chen B, Tao S, et al. Interactions of organic contaminants with mineral-adsorbed surfactants[J]. Environ Sci Technol, 2003, 37:4001-4006
  • 加载中
计量
  • 文章访问数:  1533
  • HTML全文浏览数:  1339
  • PDF下载数:  470
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-07-28
孙红文, 张闻. 疏水性有机污染物在土壤/沉积物中的赋存状态研究[J]. 环境化学, 2011, 30(1): 231-241.
引用本文: 孙红文, 张闻. 疏水性有机污染物在土壤/沉积物中的赋存状态研究[J]. 环境化学, 2011, 30(1): 231-241.
SUN Hongwen, ZHANG Wen. EXISTING STATE OF HYDROPHOBIC ORGANIC COMPOUNDS IN SOILS AND SEDIMENTS[J]. Environmental Chemistry, 2011, 30(1): 231-241.
Citation: SUN Hongwen, ZHANG Wen. EXISTING STATE OF HYDROPHOBIC ORGANIC COMPOUNDS IN SOILS AND SEDIMENTS[J]. Environmental Chemistry, 2011, 30(1): 231-241.

疏水性有机污染物在土壤/沉积物中的赋存状态研究

  • 1. 南开大学环境科学与工程学院, 教育部环境污染过程与基准重点实验室, 天津, 300071
基金项目:

国家自然科学基金重点项目(No. 20737002)资助.

摘要: 土壤/沉积物是环境中有机污染物主要的汇. 由于土壤-沉积物结构和性质的复杂性,有机污染物进入其中,会结合在不同的位点上,赋存状态发生分化,具有不同的物理流动性、生态风险和化学反应活性. 对于土壤-沉积物中有机污染物吸附/解吸的研究是认识其赋存状态并预测其生态风险的重要手段. 本文对于疏水性污染物吸附/解吸及赋存状态的国内外研究进展进行了综述,介绍了对吸附/解吸动力学及机理的认识历程,讨论了吸附剂的化学性质和物理构象、吸附质的性质及浓度、相互作用时间、以及环境条件与复合污染对有机污染物的吸附/解吸行为的影响.

English Abstract

参考文献 (114)

返回顶部

目录

/

返回文章
返回